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Abstract: The amount of data in the maritime domain is rapidly increasing due to the increase in
devices that can collect marine information, such as sensors, buoys, ships, and satellites. Maritime
data is growing at an unprecedented rate, with terabytes of marine data being collected every month
and petabytes of data already being made public. Heterogeneous marine data collected through
various devices can be used in various fields such as environmental protection, defect prediction,
transportation route optimization, and energy efficiency. However, it is difficult to manage vessel
related data due to high heterogeneity of such marine big data. Additionally, due to the high
heterogeneity of these data sources and some of the challenges associated with big data, such
applications are still underdeveloped and fragmented. In this paper, we propose the Vessel Data
Lakehouse architecture consisting of the Vessel Data Lake layer that can handle marine big data,
the Vessel Data Warehouse layer that supports marine big data processing and AI, and the Vessel
Application Services layer that supports marine application services. Our proposed a Vessel Data
Lakehouse that can efficiently manage heterogeneous vessel related data. It can be integrated and
managed at low cost by structuring various types of heterogeneous data using an open source-based
big data framework. In addition, various types of vessel big data stored in the Data Lakehouse can
be directly utilized in various types of vessel analysis services. In this paper, we present an actual use
case of a vessel analysis service in a Vessel Data Lakehouse by using AIS data in Busan area.

Keywords: vessel monitoring system; data lakehouse; big data; AI analysis

1. Introduction

Big data is an enormous amount of data that is difficult to collect, store, analyze, and
process using legacy application software. Big data technology is showing efficiency by
processing big data into a form that users can understand and utilize. The concept of a
data lake has emerged to efficiently store, process, and protect big data. Data lakes have
the advantage of being cheaper than legacy databases. Data lakes provide a view of raw
data that can be used by analytics technologies independent of traditional data storage or
systems of record. However, data lakes require ongoing maintenance and a plan for how
data is used and accessed. Without ongoing data lake maintenance, data management is
difficult and expensive. There is also a risk of inaccessible junk data. This inaccessible data
lake is called a data swamp. To solve this problem, the concept of a data lakehouse has
emerged. A data lakehouse is the implementation of data structures and data management
functions similar to a data warehouse on the low-cost storage used in a data lake [1].

Data Lakehouse is a new method to analytics structure that aims to combine traditional
Data Lakes and Data Warehouses to serve different analytics needs. Data Lakehouse allows
structured queries and enhanced analytics to run on best structured data for a given
purpose while hiding the system complexity to users. Data Lakehouse alleviates common
issues with Data Warehouse and Data Lake while allowing you to use the benefits of both
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structures. This architecture can use structured, semi-structured and unstructured data
which supports streaming workloads, machine learning and business intelligence. Data
Lakehouse can be utilized as a foundation for constructing entirely novel systems and
fusing the Data Lakes and the Data Warehouses by using platforms and frameworks [2].

A VMS (Vessel Monitoring System) is a generic word describing systems utilized in
commercial fishing to help fisheries regulators track and monitor the fishing activity of
ships. It is a core role of MCS (Monitoring Control and Surveillance) at national levels. VMS
systems are utilized to enhance the operation and sustainability of the vessel environment
by ensuring good fishing habits and preventing illegal fishing to protect and improve the
fishermen’s livelihood [3].

72% of the planet is covered by seas, oceans and other marine regions, 95% of which
is hardly explored. The marine area is one of the most used economic areas by mankind.
In other words, the marine area carries out economic activities through fishing, tourism,
transportation, and logistics, and is used as a renewable energy resource such as wind and
tidal power. For this reason, the maritime industry is an important and strategic industry
and is continuously growing. Additionally, the marine domain has recently begun to
provide a large, diverse and heterogeneous data. Marine domain data is growing at a rapid
rate. Marine terabytes data is collected every month, and marine petabytes data is used in
public already. Big data from heterogeneous sources such as satellites, buoys, ship, and
sensors can be used as material for applications for environmental protection, security, error
prediction, transportation route optimization and energy production. However, marine big
data has a problem of high heterogeneity of data sources, which the marine solutions are
still fragmented and underdeveloped [4,5].

In this paper, we propose a Vessel Data Lakehouse with Big Data and AI analysis
technology for Vessel Monitoring System that can efficiently manage various heterogeneous
vessel related data. The advantages of the proposed method in this paper are as follows.
First, by using the Vessel Data Lake, it is possible to store vessel related big data in various
formats at low cost. By placing the Vessel Data Lakehouse layer on top of the Data Lake,
heterogeneous vessel related big data can be managed and controlled. Various types of
vessel related big data stored in the Data Lake can be directly used for various types of
analysis services.

The remainder of the paper is organized as follows. Section 2 describes the related
studies on Data Lakehouse and VMS with vessel applications, and Section 3 presents the
proposed the Vessel Data Lakehouse for Vessel Monitoring System. Then Section 4 shows
the experiment results, and Section 5 concludes the paper.

2. Related Work
2.1. Data Lakehouse

Orescanin and Hlupic proposed a high-level Data Lakehouse structure consisting of an
extraction layer, a Data Lake layer, and a Data Warehouse layer. The extraction layer uses
data integration (ETL) tools or streaming tools such as MQ (Message Queue) frameworks
(i.e., Kafka and Spark) to ingest data from data sources into the Data Lakehouse. The
Data Lake layer is the takeoff/phase area, which is a temporary place where source data is
prepared for the next processing. In this area, data is stored until a certain number of batch
loads or time segments have passed, after which it is deleted. In the Data Warehouse part,
three layers are defined: the manual entry layer, the base layer, and the performance and
analytics layer. The manual entry layer maintains attributes and dimensions that do not
exist in the resource system. The base layer is the part of the Data Warehouse that has data
loaded and transformed directly from resource systems. The performance and analytics
layer hold additional tables for analytics purposes based on the data aggregated from the
base layer [2]. Armbrust et al. argue replacing from Data Warehouse to Lakehouse, since
Lakehouse is based on open direct-access data formats and supports machine learning and
data science. They mentioned the Lakehouse’s advantage is a combination of key strengths
of Data Lakes and Data Warehouses, which low-cost storage in an open format that can



Electronics 2023, 12, 1943 3 of 20

be accessed from a variety of systems in the former, with the strong management and
optimization capabilities of the latter. They also propose a Lakehouse implementation that
holds system store data in a low-cost object store using Apache Parquet and Delta Lake [6].
Begoli et al. proposed the concept of a Data Lakehouse in the domain of biomedical research
and health data analysis, which it was implemented using Apache Spark for data processing
and Delta Lake for data lake management. They also proposed a Lakehouse data intake
scenario to process the heterogeneous and complex structure of the Lakehouse and the data
in it. They noted that many projects using Lakehouse require mature, empirical researches
and specific implementations [7]. The authors of this paper proposed the concept of Marine
Data Lakehouse Architecture for managing maritime analytics application as a previous
study. We designed Marine Data Lakehouse Architecture to consist of Data Management
& Governance layer and Maritime Analytics Services layer. The Data Management &
Governance layer performs data storage management, data preprocessing, a collection of
processes, roles, policies, standards, and metrics. The Maritime Analytics Services layer
performs marine data analysis services and visualization services [8]. Harby and Zhlkernine
presented a comparative review of existing data Warehouse, Data Lake and Data Lakehouse
technologies, highlighting their strengths and weaknesses. They also propose the concept
of the necessity and necessary functions of the Lakehouse architecture, which has recently
attracted a lot of attention in the big data management research community [9]. Kumar
and Li separated storage and computers by using the Databricks Lakehouse platform for
ingestion, connecting to upstream databases and storing the data in AWS S3 buckets. They
showed that because they created a Databricks cluster similar in size to their Redshift
cluster and configured it to dynamically scale up/down over the duration of a query as
needed, queries run—11× faster on Databricks, but at half the cost [10].

The Data Lakehouse is not only a new concept, but it is still a conceptual construct.
For this reason, nowadays, these Data Lakehouse concepts are spreading in special domain
areas [2,6,7,9,10]. In this paper, a Vessel Data Lakehouse architecture is designed by
adopting the Data Lakehouse concept to maritime applications. In this paper, the detailed
implementation of Vessel Data Lakehouse at the module level based on actual ocean
observation data and open source for the marine domain, rather than Lakehouse function
descriptions, is unveiled for the first time.

2.2. VMS and Vessel Applications

Hery et al. designed the website to predict tuna fishing location using Naive Bayes
and SVM based on Indonesia sea VMS data. Their homepage consists of five sub-menus:
Get Data, Data Processing, Data Visualization, Analysis, and Prediction Visualization [11].
Zhao et al. proposed a hybrid interpolation scheme of trawler fishing track to interpolate
missing VMS samples using Cubic Hermite Spline (CHS) and Long-Short Term Memory
(LSTM) for Satellite-based VMS Traces [12]. Ahmed et al. proposed a space-time track
association algorithm based on marine vessel AIS data for tracking sea ships as the ship’s
location and movement observations [13]. Beek et al. combined VMS and VIIRS fishing
vessel data and used the LLFI package in R to merge the data with the VMS data set to
track and identify the anonymous fishing boats detected by VIIRS in Natuna Indonesia [14].
Huang et al. proposed an edge computing-based adaptive trajectory transmission policy
(EC-ATT) framework for VMS to enhance communication efficiency. Each ship has edge
computing intelligent nodes that collect, process and transmit data. The Edge Computing
server is configured to improve collaborative computing between the Edge and the Cloud,
which transmits data through the Beidou navigation satellite [15].

Li et al. proposed a framework to integrate fishing vessel data from AIS (Automatic
Information System) and VBD (VIIRS boat detection) data for mapping and analyzing
fishery strength in the northern South China Sea, which the regional features and rules
of fishing strength in typical seasons (i.e., February, April, September, and November)
in the northern South China Sea in 2018 were systematically analyzed [16]. Souza et al.
proposed a method to recognize fishing activity from S-AIS data for three major fishing
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gear types: trawl, longline and purse seine. A Hidden Markov Model (HMM) was created
using the vessel speed as an observed variable for a trawler. They designed a data mining
(DM) method for long-liners. They also implemented a multilayer filtering strategy based
on vessel speed and operating time for purse seines [17]. Alba et al. proposed an AIS
(Automatic Identification System) localization monitoring application using a mobile phone.
They searched for a way to create and implement a monitoring application for an AIS using
a mobile phone. It is a monitoring system to check the location and movement of a ship or
a ship in the surrounding area in a mobile and ubiquitous networking environment [18].
Prasad et al. proposed a new route extraction algorithm that effectively characterizes global
route behavior and captures seasonal trends by processing historical AIS data (running on
tens of gigabytes of daily data from more than 100,000 ships at sea). The proposed method
is performed by formulating a sigmoid based turning waypoint recognition that does not
rely only on changes in the ship’s course derived from AIS messages [19].

Evmides et al. proposed a new framework for collecting, processing, storing, and
analyzing AIS data in real time and algorithms to perform it efficiently and scalable. The
proposed framework has been operating in Cyprus for the past few years and has collected
and processed approximately 1 billion AIS messages in the Eastern Mediterranean Sea [20].
Liu et al. propose to develop a big data-based multilevel computational framework for
extracting the most popular shipping routes. It uses trajectory simplification and density
clustering algorithms to generate maritime transportation networks. It also uses the KDE
(Kernel Density Estimation) method to visualize transport route heat-maps related to traffic
frequency in a specific area. The most popular shipping routes are extracted through a
sliding window algorithm performed on the shipping route heat-map [21]. Huang et al.
proposed a Fishing Vessels Relationships Discovery (FVRD) system that calculates the
interaction time between fishing boats and uses it as a weight to create a relationship
network. Their method utilizes a trajectory process model to interpolate trajectories, align
time steps, and assess spatial proximity between ships to create companionships for fishing
vessels. The model then combines the periods between ongoing partnerships to construct a
relationship model over time windows of 1 day, 1 week, 2 weeks and 4 weeks. After creating
the relationship model, FVRD calculates important metrics of the relationship model to
reveal some important conclusions [22]. Xiao et al. discussed some obvious limitations
of existing VTS systems and key design considerations for their conversion to active VTS
systems for advanced decision support for surveillance managers and operators. Their
framework was elaborated with regard to a layered bottom-up processing flow in data
processing, knowledge bases, intelligence services, and HMI visualizers [23]. Tampakis
et al. present the structure of the i4sea big data platform for coastal monitoring and fishing
vessel activity analysis and demonstrate the operation of some use case pilot scenarios.
Their platform uses a lambda architecture to facilitate access to both batch and stream
processing in a hybrid method, which have a balance between latency, throughput and
fault tolerance [24]. Lytra et al. proposed a scalable data management solution to analyze
challenges and requirements related to big marine data applications for multi-segment
marine applications that integrate data of different velocity, variety, and volume under an
inter-linked, trusted, multilingual engine [4].

3. Vessel Data Lakehouse for Vessel Monitoring System

As shown in Figure 1, Vessel Data Lakehouse consists of Extraction and Ingestion layer,
Vessel Data Lake layer, Vessel Data Warehouse Model, and Vessel Application Services.
This paper focuses on the implementation of Vessel Data Lakehouse for VMS and the
application example of the implemented system. The Extraction and Ingestion layer in
Figure 1a extracts vessel-related data from data sources using a push or pull approach based
on Message Queuing technology and stores it in the Vessel Data Lake layer of Figure 1b.
The Vessel Big Data layer of the Vessel Data Warehouse Model in Figure 1c manages the
data in the Vessel Data Lake layer with data loaded and transformed directly from the
resource system, analyzes Vessel Big Data, and supports the data to enable AI analysis. The
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Vessel AI layer supports AI analysis and prediction for vessel application services. Vessel
Application Service in Figure 1d supports Visualization service, Big Data Analysis service,
and AI Analysis service for vessels.
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3.1. Extraction and Ingestion Layer

In the Extraction and Ingestion layer, data is imported from an external source in the
format specified by the Vessel Big Data Management module of the Vessel Big Data layer in
Figure 1c and stored in the Vessel Data Lake layer in Figure 1b. In this paper, vessel-related
data received from the Korea Institute of Ocean Science and Technology Maritime Safety
Research Center are stored in the Vessel Data Lake by using the Extraction and Ingestion
layer. The ETL (Extract Transform Load) function was implemented by using Python to
load the vessel-related csv file to the Data Lake. Table 1 shows the size and number of rows
for each type of vessel related data used in this paper.
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Table 1. Kind of Vessel-related Data import to Marine Data Lake.

Type of Vessel-Related Data Size Number of Rows

AIS (Automatic Information
System) [5]

(a) staticais 1.3 MB 13,856

(b) daynamicais 31.0 GB 354,857,410

(c) V-Pass (Vessel-Pass) [25] 2.8 GB 35,053,969

(d) VBD (VIIRS boat detection) [16] 10.3 GB 9,709,207

Observation data

(e) Disaster Prevention Weather Observatory (hour)
[26]: Aws_1hr_2019123123 49.5 KB 714

(f) Disaster Prevention Weather Observatory
(minute) [26]: Aws_min_201912310000 59.7 KB 714

(g) tide station [27]: Khoa_79980120191216 100.3 KB 1441

(h) synoptic weather station [26]:
Khoa_busan20191216 12.3 KB 145

(i) Main route marine observation buoy [27]:
Khoa_ieodo20191216 172.3 KB 1441

(j) Marine observation buoys in major sea areas [27]:
Khoa_jjea20191216 6.1 KB 48

(k) wave observation buoy [26]:
Khoa_sf_0001200191216 96.3 KB 1441

(l) sea fog observatory [27]: Kma_utc2019121622475 1.3 KB 24

(m) marine science base [27]: Shk60_202001050002 15 KB 59

(n) Marine weather observation buoy [26]:
Vbko60_20200106110022194 75 Byte 1

3.2. Vessel Data Lake Layer

In this subsection, a Hadoop [28] cluster-based Vessel Data Lake was implemented to
enable storage and processing of large volume vessel data in the Vessel Data Lake layer.
Apache Hadoop is open source software for reliable and scalable distributed computing.
The Apache Hadoop software library is a framework that allows distributed processing of
large data sets across clusters of computers using a simple programming model. Figure 2
shows a conceptual diagram of the software stack of the Vessel Data Lake based on Hadoop
cluster. Hadoop HDFS (Hadoop Distributed File System) is a file system that stores
large files of tens of terabytes or petabytes or more in distributed servers and enables
fast processing of the stored data. Hadoop YARN (Yet Another Resource Negotiator)
manages numerous tasks in clusters composed of dozens or more nodes, which it manages
distributed resources such as resources (i.e., CPU, RAM) to be used for specific tasks.
Hadoop MapReduce is a data processing model designed to process large amounts of data
in a distributed/parallel computing environment. When large data is received, it divides
the data into blocks of a specific size and executes Map Task and Reduce Task for each
block. The hardware cluster of Vessel Data Lake consists of Vessel Big Data cluster and
Vessel AI cluster. The Vessel Big Data cluster is a Hadoop-based Data Lake hardware node
which it consists of 1 master node and 3 slave nodes, and detailed specifications are shown
in Table 2. The Vessel AI cluster supports big data analytics and AI analytics associated
with GPUs. Each node has a 1G network card and a 10G network card. The 10G network
card is used for internal data movement, and the 1G network card is used for external
control of nodes.
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Table 2. Hardware Specifications of Vessel Data Lake.

Cluster CPU RAM SSD NIC GPU OS

Vessel Big Data
cluster

master node Intel i9-7940x 64 GB 2 TB 1Gb/1Gb - CentOS 7.7

slaver node 01 Intel i9-7940x 64 GB 2 TB 1Gb/1Gb - CentOS 7.7

slaver node 02 Intel i9-7940x 64 GB 2 TB 1Gb/1Gb - CentOS 7.7

slaver node 03 Intel i9-7940x 64 GB 2 TB 1Gb/1Gb - CentOS 7.7

Vessel AI cluster
ai node 01 Intel i9-7940x 64 GB 2 TB 1Gb/1Gb 2080 * 2 Ubuntu 18.04

ai node 02 Intel i9-7940x 64 GB 2 TB 1Gb/1Gb 2080 * 2 Ubuntu 18.04

3.3. Vessel Data Warehouse Model

Vessel Data Warehouse Model consists of Vessel Big Data layer and Vessel AI layer.
The Vessel Big Data layer transforms the source data and loads it into the Data Lake to
enable vessel big data analysis or vessel AI analysis. Vessel AI layer supports basic models
and analysis tools for vessel AI analysis.

3.3.1. Vessel Big Data Layer

The Vessel Big Data layer consists of Vessel Big Data Management module, Supporting
AI Models module, and Vessel Big Data Analysis module. Vessel Big Data Management
module performs original data collection, data purification/modeling, data imposing/data
export, data insertion/deletion, and data saving/loading for big data analysis. It also
transforms source data to enable direct big data processing. Supporting AI Models mod-
ule performs data preprocessing, missing data processing, categorical data processing,
and feature scaling for AI analysis. It also is possible to support data clearing, labeling,
storage, convergence analysis for all types of vessel structured and unstructured data.
Vessel Big Data Analysis as shown in Figure 1c provides Ship Detection based on Marine
Related Information, Classification of Vessel Type based on Marine Association Informa-
tion, Unidentified Ship Detection, Ship Detection and Type Classification based on Marine
Geographic Information, Marine Information Convergence, and others analysis function.
Figure 3b shows the functions of the Vessel Big Data layer and the implementation software
stack based on open source.
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The software stack of the Vessel Big Data layer is composed of the following. The
Hue [29] of the Vessel Big Data layer in Figure 3b is used to process the functions of the
Vessel Big Data Management module or the Support AI Models module with SQL on the
dashboard. Hue is an open-source SQL Assistant for databases and data warehouses which
supported by dashboards form. In this paper, we use Impala [30] and Kudu [31] in Figure 3b
to build a Data Warehouse on the Hadoop file system (e.g., Data Lake), which it handles the
functions of the Vessel Big Data Management module or the Support AI Models module.
Apache Impala is a query processing engine. Apache Kudu is an open-source distributed
data storage engine that makes it easy to do fast analysis on fast-changing data. Unlike
many other columnar storage, Kudu provides a primary key which enabling millisecond-
level random access. Since Kudu supports both OLAP (online analytical processing) and
OLTP (online transaction processing) queries, which the structure of the big data analysis
system can be simplified. The Analytic Application module in Figure 3b supports tools
to program and implement functions of each module that cannot be processed with SQL.
It supports programming languages such as Java, Python, Scala, and R that can program
each function based on the Spark [32] module and the TEZ [33] module. Apache Spark is a
unified computing open source engine and set of libraries for processing data in parallel
in a clustered environment. Spark supports Python, Java, Scala, and R, and provides a
wide range of libraries from SQL to streaming and machine learning. Apache TEZ is a
MapReduce alternative data processing framework that runs on top of Hadoop Yarn. TEZ
saves the processing results of the Map phase in memory and directly transfers them to the
Reduce phase to improve speed by reducing IO overhead.

• Building a Vessel Data Lakehouse

This subsection shows how to build a Data Lakehouse in Data Lake with vessel-related
data from Table 1 using the Vessel Big Data layer. Figure 4 shows the schema for building
AIS, V-Pass, VBD, and Observation data in Table 1 into a Data Lakehouse. Figure 5 describes
the meaning of the field names in the schema of Figure 4. A table is created in the schema
format defined in Figure 4 by using Impala SQL in Vessel Big Data layer. There are two
ways to import the original csv file data into a Data Lakehouse table: using Impala SQL
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and using the Import Python module of the Extraction and Ingestion layer. In this paper,
Impala SQL is used as an import method. Figure 6 shows the tables of Data Lakehouse by
using Impala SQL command of “show tables;”. In Figure 6, a table with a different name
than Table 1 shows an intermediate table created for analysis. Figure 7 shows the contents
of the AIS Static table using the “SELECT * FROM ais.staticais” command in Impala SQL.
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3.3.2. Vessel AI (Artificial Intelligence) Layer

The Vessel AI layer in Figure 8 consists of the Vessel AI model module, ML (Machine
Learning)/DL (Deep Learning) Algorithm module, and AI Framework module. The Vessel
AI model module in Figure 8a consists of 5 basic models for ship AI analysis and other
extended models. In the Vessel AI model module, an analysis model is created, trained,
and tested based on a model suitable for each AI analysis purpose of vessel-related data
stored in the data layer, and then AI analysis or prediction is performed. This module
supports basic models such as Vessel Track Prediction Model, Abnormal Ship Detection
Model, Ship Activity Analysis Model, Ship Distribution Prediction Model and Fish Habitat
Suitability Analysis Model. If a special analysis other than the basic model is required, an
extended model can be created by selecting an appropriate algorithm from the ML/DL
Algorithm module. The ML/DL algorithm module in Figure 8b supports the machine
learning algorithm or deep learning algorithm used in the Vessel AI Model module. This
algorithm module provides HMM, Association Rule, K-means, Decision Tree, Random
Forest, CNN (Convolutional Neural Network), and RNN (Recurrent Neural Network) as
basic algorithms. If an extended algorithm is required, it is supported by the AI framework
in Figure 8c. The AI framework module provides Anaconda, an integrated development
environment for Python, and TensorFlow, PyTorch, and Keras, ML development frameworks.
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3.4. Vessel Application Services

Vessel Application Services in Figure 1d consists of Visualization Services and Opera-
tion Services. Operation Services provides Vessel Big Data Analysis results of the Vessel Big
Data layer and AI Analysis results of the Vessel AI layer. Visualization Services provides
visualization of Big Data Analysis results and AI Analysis results. Since this paper focused
on building a Vessel Data Lakehouse, only a few Vessel Application Services were imple-
mented as use cases. The next subsection presents a method of vessel distribution and
activity intensity using Vessel Big Data layer and a method of predicting fishing activity
using Vessel AI layer.

3.4.1. Identification of Distribution of Ship Types

This subsection shows how to identify the distribution by ship type based on AIS
in Busan and visualize the activity intensity of each ship. The calculating of distribution
location by ship type consists of three steps. In the first step, only the data of the Busan
area is extracted from the AIS data, and the extracted data is preprocessed. The second
step calculates the activity intensity of each ship. The last step is to visualize the activity
intensity of the ship on the map. Table 3 shows the characteristics of the AIS data built in
the Vessel Data Lakehouse.

Table 3. Characteristics of AIS Data.

AIS Location

ship ship type ship number period latitude longitude

cargo 70–79 9058

2018-12-01
–

2019-12-19
33◦–38◦ 124◦–132◦

tanker 80–89 3104

passenger 60–69 133

fishing 30 458

other 1103

In the preprocessing step, Impala SQL is used to extract AIS data within the range
of Busan in Figure 9. Table 4a shows the number of data for each ship type in Busan area.
Table 4b shows the number of data extracted from the data in Table 4a at 2-min intervals.
From the data in Table 4a, MMSI (Maritime Mobile Service Identity) in AIS is used as a
key, clustered at daily intervals, 10 SOGs (Speed Over Ground) in AIS are extracted from
daily data, and the COG (Course Over Ground) in AIS is normalized by using Equation (1).
Classify the category labels as follows: 0 is a fishing ship, 1 is a non-fishing ship, 2 is a ferry,
and 3 is a cargo. Figure 10 shows the preprocessing results of AIS data for fishing ships.

ncog =
∑n

k=1|cogi+1 − cogi|
n

(1)

here, ncog (i.e., scog) is a normalization of cog in AIS, cog in AIS is a course over ground.

Table 4. Preprocessing of AIS Data.

(a) Number of Row (b) Extraction Data
(Per 2 Min)

(c) Extraction Data
(Per 1 Day)

Fishing 17,853,172 131,390 1761

Ferry 8,236,992 143,757 2803

Cargo 56,377,013 292,082 5273
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In the second step, Equation (2) is used to calculate the cluster strength for each
MMSI. The higher the cluster intensity, the higher the vessel’s activity. Figure 11 shows the
calculation result of cluster strength by MMSI.

SC = ns× (ascog× 0.2 + scog× 0.5 + asog× 0.3) (2)

here, SC is a strength of clusters, ns is a number of sampling of MMSI, ascog is an average
of sum of abs of cog, scog is a normalization of cog, and asog is an average of sog.
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In the last step, using the data in Figure 11, it is visualized and displayed on Google
Earth as shown in Figure 12.
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The Algorithm 1 for identification of distribution of ship types is as follows.

Algorithm 1. ShipActivity(A)

Input: the AIS data set A, cog in AIS is a course over ground, ns is a number of sampling of mmsi,
SC is a strength of clusters, ascog is an average of sum of abs of cog, scog is a normalization of cog,
and asog is an average of sog
Output: the preprocessing data set T1, the calculated cluster strength data set T2
Method:
01: T1← Preprocessing(A);
02: T2← Clusterstrength(T1);
03: Visualization(T2);

Preprocessing(A)
04: for i← 1 to n do
05: if 33 <= Ai,latutude <= 38 and 124 <= Ai,longitude <= 132
06: then Temp1i ← Ai
07: end
08: Temp2j ← kmeans(Temp1i,mmis)
09: extract Temp2j ← 2-minute intervals Temp2j
10: extract Temp2j ← #10 sogs Temp2j
11: for j← 1 to m do
12: Temp3j ← ∑n

k=1|cogk+1−cogk |
n

13: end
14: for l← 1 to p do
15: Temp4l ← classify(Temp3j,type)
16: end
17: Return Temp4l

Clusterstrength(T1)
18: for i← 1 to n do
19: Temp5i ← ns× (ascog× 0.2 + scog× 0.5 + asog× 0.3)
20: end
21: Return Temp5i

Visualization(T2)
22: for i← 1 to n do
23: display(T2i,mmsi);
24: display(T2i,SC)
25: end
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In line 4 to 16, preprocessing phase extract 10 sogs (speed over ground) in AIS are
extracted from daily data, then calculate a normalization of cog. In line 18 to 21, calculating
of cluster strength phase compute the cluster strength for each MMSI. In line 22 to 25,
visualization phase, the cluster strength, which is the activity intensity based on the ship’s
MMSI, is displayed on the google Earth.

3.4.2. Predicting Fishing Activity

This subsection shows how to predict the fishing activity using LSTM and visualize
the fishing activity of each ship in Google Earth. Fishing activity was predicted using the
data in Figure 10, which is the result of the preprocessing algorithm in Section 3.4.1. The
fishery activity was predicted by designing the input and output with the ship speed of
10 intervals and ncog (normalization of course over ground) in the data in Figure 10 suitable
for the LSTM (Long Short-Term Memory) algorithm. Figure 13 shows the results of fishing
activities using LSTM designed for input and output. The red line represents the fishing
activity and the yellow line represents the sailing of the vessel. A green triangle indicates
the current ship’s position.
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4. Experimental Results

In this section, the experimental results are presented to Data Lakehouse and analysis
results of the implemented system.

4.1. Data Lakehouse Performance Evaluation

In order to measure the performance of the Data Lakehouse, this subsection compared
the query processing results of PostgreSQL, a relational database, and Impala, the query
engine of the Data Lake. The Marine Data Lake data in Table 1 were used to evaluate
the performance of the Data Lakehouse. Figure 14 shows the comparison result of query
processing between PostgreSQL and Impala SQL. The result measure is the time it takes to
process the count query, which counts the number of rows. The shorter the query process-
ing time, the better the performance. Query processing for the same data between a Data
Lake cluster with 4 nodes and PostgreSQL with 1 node was evaluated. The hardware speci-
fications of the Data Lake node and the PostgreSQL node are configured. The evaluation
query is “SELECT count(*) FROM table-name”.
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Figure 14a compares and evaluates the AIS Static data, which is the size of 1.3 MB
and has 13,856 rows. PostgreSQL query processing time for AIS static data is 0.081 s and
Impala query processing time is 0.0054 s, impala is 15.06 times faster than PostgreSQL.
Impala’s query response rate for AIS static data is about 88.14% faster than PostgreSQL’s.
Figure 14b compares and evaluates the AIS Dynamic data, which is the size of 31 GB and
has 354,857,410 rows. PostgresSQL query processing time for AIS Dynamic data is 87 s
and Impala query processing time is 2.28 s, impala is 38.20 times faster than PostgresSQL.
Impala’s query response rate for AIS Dynamic data is about 93.33% faster than PostgreSQL’s.
Figure 14c compares and evaluates the V-Pass data, which is the size of 2.8 GB and has
35,053,969 rows. PostgresSQL query processing time for AIS Dynamic data is 8.759 s and
Impala query processing time is 1.039 s, impala is 8.43 times faster than PostgresSQL.
Impala’s query response rate for V-Pass data is about 97.38% faster than PostgreSQL’s.

4.2. Marine Analysis Performance Evaluation

This subsection evaluates the performance of marine analysis of Vessel AI layer
for fishing activity prediction and fishing vessel type forecasting. The data in Table 4c
preprocessed in Section 3.4.1 is used for training and testing the prediction model. 9872
rows of data are used for training and testing in a 70:30 ratios. Decision Trees (DT),
Random Forest (RF), LSTM (Long Short-Term Memory), and HMM (Hidden Markov
Model) algorithms are used for predictive models. Since this paper is focused on the
data point of view of building a Lakehouse using actual maritime observation data, the
algorithms of the prediction model used the basic models provided by TensorFlow [34] and
Keras [35] without tuning. Data processing within the predictive model used Pandas [36].
The input and output parts of each predictive model were modified to fit the preprocessed
data. The type of ship is predicted using the speed as an input value for each prediction
model. Fishing activity prediction forecasts only one type of fishing ship with speed and
ncog as input values to each prediction model.

Figure 15 shows the procedure of Fishing Activity and Ship Type Prediction. Figure 16
shows the results of comparison of the accuracy rate of fishing activity and vessel type
prediction. Figure 16a shows the vessel type prediction results of data with mixed ships
such as fishing ship, cargo, and ferry. In Figure 16a, we compared the prediction accuracy
of vessel classification for four prediction models: DT, RF, LSTM, and HMM. The prediction
accuracy of vessel classification of RF is approximately 1.10% higher than that of LSTM,
10.97% higher that of DT, 18.11% higher than that of HMM. Figure 16b shows the prediction
results of fishing activities from only fishing ship data. In Figure 16b, we compared the
prediction accuracy of fishing activity for four pre-diction models: DT, RF, LSTM, and
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HMM. The prediction accuracy of fishing activity of LSTM is approximately 0% higher
than that of RF, 2.8% higher that of DT, 16.8% higher than that of HMM. In Figure 16, it can
be seen that prediction from somewhat classified data shows better results than prediction
from a mixture of different types of data.
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5. Conclusions

Various challenges are currently affecting the development of large-scale marine data
services, limiting users’ ability to use the full potential of this data ecosystem. From a
technical point of view, these challenges are mainly related to the big data nature and high
level of heterogeneity of marine data sources. In this paper, we designed and implemented
the architecture of Vessel Data Lakehouse, which can efficiently manage various types
(i.e., heterogeneous) of vessel-related data. The proposed Vessel Data Lakehouse consists
of Extraction and Ingestion layer that can collect and store data, Vessel Data Lake layer
that can handle marine big data, Vessel Data Warehouse Model that supports marine big
data processing and AI, and Vessel Application Services that supports marine application
services. The Extraction and Ingestion layer extracts vessel-related data from data sources
and stores it in the Vessel Data Lake layer of Data Warehouse Model. The Vessel Data Lake
layer constructed a Data Lake for AIS, VPSS, VBD, Observation data based on Apache
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Hadoop. The Vessel AI layer of the Data Warehouse Model supports AI analysis and
prediction for vessel application services. Vessel Application Service supports Visualization
service, Big Data Analysis service, and AI Analysis service for vessels. In this paper, a use
case of constructing a Vessel Data Lakehouse using actual vessel-related data and a use
case of analyzing vessel distribution and fishing activities with Vessel Application Service
were shown, respectively. As a result of the experiment from about 34 GB of data of AIS
and VPSS, the Data Lakehouse showed 92.95% higher average query response rate than the
relational database, demonstrating the efficiency of the proposed Data Lakehouse. Since the
Data Lakehouse in this paper focuses on structured AIS data or observational time series
data, it is still insufficient for processing large-scale ocean image data. We plan to expand
our current Data Lakehouse using Delta Lake [37] and satellite imageries (i.e., satellite AIS
data, satellite SAR data, satellite EO/IR data) to handle large amounts of image data in
future work.
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