
Citation: Kotsiantis, S.; Verykios, V.;

Tzagarakis, M. AI-Assisted

Programming Tasks Using Code

Embeddings and Transformers.

Electronics 2024, 13, 767. https://

doi.org/10.3390/electronics13040767

Academic Editors: Galina Ilieva

and George A. Tsihrintzis

Received: 19 January 2024

Revised: 8 February 2024

Accepted: 13 February 2024

Published: 15 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

AI-Assisted Programming Tasks Using Code Embeddings
and Transformers
Sotiris Kotsiantis 1,* , Vassilios Verykios 2 and Manolis Tzagarakis 3

1 Department of Mathematics, University of Patras, 265 04 Patras, Greece
2 School of Science and Technology, Hellenic Open University, 263 35 Patras, Greece; verykios@eap.gr
3 Department of Economics, University of Patras, 265 04 Patras, Greece; tzagara@upatras.gr
* Correspondence: sotos@math.upatras.gr

Abstract: This review article provides an in-depth analysis of the growing field of AI-assisted pro-
gramming tasks, specifically focusing on the use of code embeddings and transformers. With the
increasing complexity and scale of software development, traditional programming methods are
becoming more time-consuming and error-prone. As a result, researchers have turned to the applica-
tion of artificial intelligence to assist with various programming tasks, including code completion,
bug detection, and code summarization. The utilization of artificial intelligence for programming
tasks has garnered significant attention in recent times, with numerous approaches adopting code
embeddings or transformer technologies as their foundation. While these technologies are popular
in this field today, a rigorous discussion, analysis, and comparison of their abilities to cover AI-
assisted programming tasks is still lacking. This article discusses the role of code embeddings and
transformers in enhancing the performance of AI-assisted programming tasks, highlighting their
capabilities, limitations, and future potential in an attempt to outline a future roadmap for these
specific technologies.

Keywords: AI-assisted programming; code embeddings; transformers

1. Introduction

AI-assisted programming or development is defined as the utilization of machine
learning models trained on the vast amount of available source code. Its purpose is
to support various aspects of programming and, more broadly, software engineering
implementation tasks. According to the software naturalness conjecture [1], which posits
that source code, like natural language, is often repetitive and predictable, this technology
has become integrated into popular integrated development environments (IDEs) and
gained widespread popularity among developers [2]. Noteworthy applications such as
IntelliCode [3], Github Copilot [4,5], Codex [6], and DeepMind AlphaCode [7] exemplify
AI-assisted programming tools accessible to the public.

The impact of AI on software development tasks is expected to enhance precision,
speed, and efficiency [8]. These benefits extend beyond professional programmers to
include novice programmers [9], with ongoing studies exploring the potential of AI in
various fields. Research reports highlight the sensitivity of these tools to the specific tasks
they support.

Despite generating code, AI-assisted programming tools may produce complex and
error-prone code [10]. In the domains of data science and data analysis, these tools con-
tribute positively to addressing challenging problems [11,12]. For novice programmers in
educational settings, AI-assisted programming tools increase project completion rates and
grades [13,14]. Nevertheless, novices may encounter difficulties in comprehending and
utilizing these tools proficiently [15].

Code embeddings and transformers represent popular approaches to AI-assisted pro-
gramming, significantly impacting software engineering by improving task performance

Electronics 2024, 13, 767. https://doi.org/10.3390/electronics13040767 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13040767
https://doi.org/10.3390/electronics13040767
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2247-3082
https://orcid.org/0000-0002-9758-0819
https://orcid.org/0000-0002-1315-5840
https://doi.org/10.3390/electronics13040767
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13040767?type=check_update&version=1


Electronics 2024, 13, 767 2 of 25

and efficiency. These techniques reduce manual effort in coding, debugging, and mainte-
nance, thereby decreasing overall development time and costs. Furthermore, they enable
cross-language development, allowing seamless work with multiple programming languages.

Code embedding [16] is a machine learning technique representing code as dense vec-
tors in a continuous vector space. Unlike traditional methods that treat code as sequences,
code embedding captures semantic relationships between code snippets by training a neu-
ral network to learn fixed-size vector representations. These embeddings find application
in various software engineering tasks, such as code completion, correction, summarization,
and search [17].

Researchers like Azcona et al. [18] propose using embeddings to profile individ-
ual Computer Science students, analyzing Python source code submissions to predict
code correctness. Similarly, Ding et al. [19] introduce GraphCodeVec, employing graph
convolutional networks to generate generalizable and task-agnostic code embeddings,
demonstrating superior performance in multiple tasks.

Transformers [20], a type of neural network utilizing attention mechanisms for sequen-
tial data processing, stand out from traditional recurrent neural networks. Transformers can
handle parallel input and self-attention mechanisms, processing a sequence of tokens by
attending to all input tokens simultaneously. In contrast, code embeddings use traditional
deep learning models like recurrent neural networks (RNNs) and convolutional neural
networks (CNNs). Transformers, trained through pre-training and fine-tuning, can handle
variable input lengths, whereas code embeddings require fixed input lengths.

For code-related tasks, input code snippets feed into the transformer model, which
employs self-attention mechanisms to capture contextual relationships within the code. The
transformed representations generated using the model find application in downstream
software engineering tasks, such as code generation, summarization, translation, or identi-
fying patterns and anomalies in code. Chirkova and Troshin [21] demonstrated improved
performance with syntax-capture modifications in transformer models.

In Figure 1, the timeline showcases the evolution of AI-assisted programming tasks
utilizing code embeddings and transformers from their early stages of experimentation to
their integration as indispensable tools in modern software development workflows.

Electronics 2024, 13, x FOR PEER REVIEW 3 of 27 
 

 

 
Figure 1. Timeline of the main contributions of AI-assisted programming tasks. 

In summary, this paper details code embeddings and transformers, discussing their char-
acteristics. It explores existing AI-supported programming approaches, contextualizing their 
support for various tasks. The paper concludes with insights and acknowledged limitations. 

2. Code Embeddings and Transformers 
Code embeddings, also referred to as source code embeddings or program embed-

dings, have garnered significant attention in the realms of natural language processing 
(NLP) and code generation. These techniques, categorized as representation learning, aim 
to encode both syntactic and semantic information from source code into a lower-dimen-
sional vector space. While code embeddings have demonstrated promising results in var-
ious NLP tasks such as code similarity, bug detection, and code completion, recent ad-
vancements in transformer models have led to a shift in focus towards using transformers 
for code representation and generation tasks. This section delves into the concept of code 
embeddings and their relationship with transformers. 

In contrast to conventional approaches relying on static program analysis techniques, 
code embeddings offer more effective ways to represent and analyze source code [16]. 
These embeddings employ neural networks to create a semantic representation of code 
sequences, learning from a substantial code corpus. The specific architectures and training 
techniques employed enable these networks to capture inherent patterns and relation-
ships between code elements. Consequently, code embeddings encode both structural and 
lexical characteristics of source code, presenting a comprehensive representation applica-
ble to diverse downstream tasks [19]. 

The process of creating code embeddings involves several steps. Initially, the source 
code undergoes tokenization, breaking it down into a sequence of tokens, which can be 
characters, words, or syntactic constructs of the programming language. Subsequently, this 

Figure 1. Timeline of the main contributions of AI-assisted programming tasks.



Electronics 2024, 13, 767 3 of 25

In summary, this paper details code embeddings and transformers, discussing their
characteristics. It explores existing AI-supported programming approaches, contextualizing
their support for various tasks. The paper concludes with insights and acknowledged limitations.

2. Code Embeddings and Transformers

Code embeddings, also referred to as source code embeddings or program embed-
dings, have garnered significant attention in the realms of natural language processing
(NLP) and code generation. These techniques, categorized as representation learning,
aim to encode both syntactic and semantic information from source code into a lower-
dimensional vector space. While code embeddings have demonstrated promising results
in various NLP tasks such as code similarity, bug detection, and code completion, recent
advancements in transformer models have led to a shift in focus towards using transform-
ers for code representation and generation tasks. This section delves into the concept of
code embeddings and their relationship with transformers.

In contrast to conventional approaches relying on static program analysis techniques,
code embeddings offer more effective ways to represent and analyze source code [16].
These embeddings employ neural networks to create a semantic representation of code
sequences, learning from a substantial code corpus. The specific architectures and training
techniques employed enable these networks to capture inherent patterns and relationships
between code elements. Consequently, code embeddings encode both structural and lexical
characteristics of source code, presenting a comprehensive representation applicable to
diverse downstream tasks [19].

The process of creating code embeddings involves several steps. Initially, the source
code undergoes tokenization, breaking it down into a sequence of tokens, which can be
characters, words, or syntactic constructs of the programming language. Subsequently, this
token sequence is fed into a neural network, and trained to generate a vector representation
for each token. This process is repeated for all code sequences in the training data, and the
resulting vectors are stored in an embedding matrix. The embedding matrix is considered a
form of “learned parameters” in the neural network architecture. In detail, at the beginning
of training, the embedding matrix is initialized with random values or pre-trained word
embeddings. During the forward pass of the neural network, the input tokens (words) are
represented as one-hot vectors or integer indices that correspond to their positions in the
vocabulary. These indices are then used to index into the embedding matrix, retrieving
the dense vector representations (embeddings) of the input tokens. During training, the
values of the embedding matrix are adjusted via backpropagation and gradient descent. The
objective is to learn meaningful representations of words that capture semantic relationships
and contextual information from the training data. This process involves updating the
parameters of the embedding matrix to minimize the loss function of the neural network.

One key technique employed in training code embeddings is the use of skip-gram
models [22]. Initially developed for natural language processing tasks, skip-gram models
are adapted for code embeddings to learn semantic relationships between code tokens
based on their contextual surroundings. This enables the model to capture both syntactic
and semantic aspects, yielding a more holistic representation.

In the realm of program synthesis, code embeddings find application in generating
code from natural language descriptions [23]. This entails training the model to compre-
hend the relationship between natural language descriptions and code sequences, facil-
itating the generation of code aligned with the provided description. This application
extends to automatic code documentation and the development of programming tools for
non-technical users.

To summarize, the mathematical representation of code embeddings involves
the following:

• Tokenizing the code snippet S to obtain a sequence of tokens (t1,t2,. . .,tn).
• Obtaining the embedding E(ti) for each token ti.



Electronics 2024, 13, 767 4 of 25

• Combining the token embeddings to obtain the code embedding C, for example,
by averaging.

Rabin et al. [17] evaluated the use of code2vec embeddings compared to handcrafted
features for machine learning tasks, finding that code2vec embeddings offered even in-
formation gains distribution and exhibited resilience to dimension removal compared to
handcrafted feature vectors.

Sikka et al. [24] introduced a machine learning problem related to estimating the time
complexity of programming code. Comparing feature engineering and code embeddings,
both methods performed well, showcasing their applicability in estimating time complexity
across various applications.

While code embeddings demonstrate significant potential in diverse applications,
challenges and limitations exist. Incorporating semantic knowledge into embeddings
remains challenging, as models may struggle to interpret contextual or domain-specific
information that human programmers easily grasp. Kang et al. [25] investigated the
potential benefits of embeddings in downstream tasks for source code models but found
no tangible improvement in existing models, calling for further research in this direction.

Romanov and Ivanov [26] experimentally explored the use of pre-trained graph neural
networks for type prediction, revealing that pre-training did not enhance type prediction
performance. Ding et al. [27] studied the generalizability of pre-trained code embeddings
for various software engineering tasks, introducing StrucTexVec, a two-stage unsupervised
training framework. Their experiments demonstrated that pre-trained code embeddings,
incorporating structural context, could be advantageous in most software engineering tasks.

Another challenge lies in the requirement for substantial amounts of training data.
Code embeddings rely on a large corpus of code for training, limiting their applicability in
specific programming languages or domains with smaller codebases.

As previously mentioned, NLP transformers, utilizing attention mechanisms, have
become dominant in handling sequential data. Unlike traditional models such as recurrent
neural networks (RNNs) and long short-term memory (LSTM), transformers, particu-
larly in the form of bidirectional encoder representations from transformers (BERT), have
demonstrated superior performance in various NLP tasks, including those related to code.

The self-attention mechanism in transformers can be mathematically described as the

following: Attention(Q,K,V) = softmax
(

QKT√
dk

)
, where Q represents the query matrix, K

represents the key matrix, V represents the value matrix, and dk represents the dimension
of the key vectors.

NLP transformers leverage self-attention mechanisms [28] to process words in a sen-
tence. This involves the model learning to focus on other words in the sentence for each
word, assigning weights based on significance. In code-related tasks, the transformer’s
input comprises a sequence of tokens representing parts of the code (e.g., function names,
variable names). These tokens traverse the transformer model, enabling it to learn relation-
ships between different parts of the code. The model then predicts the next token based on
the acquired relationships.

A notable advantage of NLP transformers in code-related tasks is their proficiency
in handling long sequences [29]. Unlike traditional models like RNNs and LSTMs, trans-
formers circumvent the vanishing gradient problem when processing lengthy sequences,
leading to significantly improved performance.

Transformers introduce positional encoding [28], conveying information about the
position of words in a sentence. This proves beneficial in code-related tasks where the order
of code is crucial for functionality. Positional encoding aids the model in distinguishing
between words with similar meanings but from different parts of the code, enhancing
overall performance. In Figure 1, we present a timeline of the main contributions of
AI-assisted programming tasks.

NLP transformers find successful applications in various code-related tasks. In code
completion [30], the model predicts the next tokens of code given a partial snippet. Code



Electronics 2024, 13, 767 5 of 25

summarization [31] involves generating a concise summary of a piece of code, aiding
comprehension of large and complex codebases. Code translation [32] sees the model
translating code from one programming language to another, particularly useful for dealing
with legacy code.

One prominent NLP transformer model is bidirectional encoder representations
from transformers (BERT) [33], widely applied in code-related tasks due to its success
in natural language tasks. Another transformer model, gated transformer [34], addresses
the limitations of the original transformer, enhancing efficiency on long sequences with
repetitive elements.

The transformer architecture consists of encoder and decoder components. The en-
coder processes input text, converting it into a sequence of vectors, while the decoder
generates output text based on these vectors. The encoder comprises multiple identical
layers, each featuring self-attention and feed-forward network sub-layers. Input to the
encoder passes through an embedding layer, converting the input sequence into fixed-
dimensional embeddings. Self-attention within the encoder captures relevant information
in the input sequence, utilizing multiple heads or parallel attention mechanisms to attend
to different parts of the sequence. These mechanisms compute weighted sums based on
word importance, capturing long-term dependencies.

The self-attention and feed-forward network layers repeat within the encoder, allowing
hierarchical processing of the input sequence. This hierarchical approach captures different
levels of abstraction [33], resulting in the hidden representation of the input sequence for
further processing by the decoder.

An advantage of transformers lies in the encoder’s ability to process input sequences
of variable lengths, offering versatility for various NLP tasks. The use of multiple heads [35]
in self-attention mechanisms allows transformers to learn diverse representations of the
input sequence, enhancing encoder robustness.

In simple terms, multi-head attention empowers the transformer model to attend to
multiple pieces of information simultaneously. Instead of relying on a single attention
mechanism, multi-head attention deploys several attention mechanisms in parallel, creating
multiple representations of the input sequence. These parallel mechanisms, or “heads”,
perform the same operation with different sets of parameters, enabling the model to attend
to different aspects of the input sequence. Context vectors generated by each head are
concatenated, resulting in the final representation of the input sequence.

Pre-trained models in transformers are large neural network architectures pre-trained
on extensive text data. These models learn statistical patterns and language structures,
allowing them to understand and generate human-like text. Unlike traditional language
models, pre-trained transformers use bidirectional attention to consider both previous and
future words, providing a better understanding of the overall context.

The effectiveness of transformer models in software engineering tasks relies on domain-
specific data availability and the relevance of pre-training data to the target domain. Exper-
imentation and adaptation are crucial for optimal results in diverse software engineering
applications [36].

The general process in software engineering tasks using transformers can be outlined
in the following steps:

• Data preprocessing: The initial step involves preprocessing the input data, typically
through tokenization and vectorization of code snippets. This step is crucial to feed
meaningful data into the transformer model.

• Transformer architecture: The transformer model comprises an encoder and a decoder.
The encoder processes input data to create a code representation, and the decoder
utilizes this representation to generate the code.

• Attention mechanism: Transformers incorporate an attention mechanism, a pivotal
element allowing the model to focus on specific parts of the input data while generat-
ing the output. This enhances efficiency in handling long sequences and capturing
complex dependencies.



Electronics 2024, 13, 767 6 of 25

• Training the model: Following data preprocessing and setting up the transformer
model, the next step involves training the model using backpropagation. Batches of
data pass through the model, loss is calculated, and model parameters are updated to
minimize the loss.

• Fine-tuning: It is essential to assess its quality and make any necessary adjustments
to the model. Fine-tuning may involve retraining on a labeled dataset or adjusting
hyperparameters.

CodeBERT [37], a transformer model pre-trained on a comprehensive dataset of source
code and natural language, excels in understanding the relationship between code and
corresponding comments. It demonstrates state-of-the-art performance in code completion,
summarization, and translation tasks, generating accurate and human-like code. CodeBERT
follows the underlying architecture of BERT with modifications to suit the programming
language domain [38]. The bidirectional transformer encoder takes in code and natural
language sequences, encoding them into contextualized representations. A decoder then
generates a human-readable description of the code. Code and natural language sequences
are concatenated with special tokens to indicate the input type. Pre-trained on extensive
data from GitHub, Stack Overflow, Wikipedia, and other sources, CodeBERT undergoes
fine-tuning for downstream tasks like code summarization, classification, and retrieval.
This transfer learning model adapts to different codebases and programming languages,
facilitating code generation and retrieval for non-programmers.

T5 (text-to-text transfer transformer) [39], another large-scale transformer model, caters
to various natural language tasks. Pre-trained on diverse datasets, T5 can handle tasks such
as translation, summarization, and question answering. It has proven effective in code
generation tasks, producing high-quality code with detailed explanations.

GPT-3 (generative pre-trained transformer) [40], developed by OpenAI, excels in natu-
ral language generation tasks, including code completion. Its large size and pre-training
on a wide range of tasks make it adept at generating code for different programming
languages, often matching human writing.

XLNet [41], based on the permutation language model, outperforms BERT in many
NLP tasks, including code completion. Similar to BERT, XLNet comprehends code syntax
and context well, generating code for various programming languages. CCBERT [42], a
deep learning model for generating Stack Overflow question titles, exhibits strong perfor-
mance in regular and low-resource datasets.

EL-CodeBert [43], a pre-trained model combining programming languages and natural
languages, utilizes representational information from each layer of CodeBert for down-
stream source code-related tasks. Outperforming state-of-the-art baselines in four tasks,
EL-CodeBert demonstrates effectiveness in leveraging both programming and natural
language information.

Transformers have demonstrated impressive performance across various natural
language processing (NLP) tasks and have found successful applications in AI-assisted
programming. However, they also exhibit certain inherent weaknesses within this domain.
One limitation lies in their capacity for contextual understanding. While transformers
excel at capturing context within a fixed-length window, typically around 512 tokens, pro-
gramming tasks often involve extensive codebases where understanding context beyond
this window becomes crucial for accurate analysis and generation. Additionally, trans-
formers lack domain-specific knowledge. Being pre-trained on general-purpose corpora,
they may not adequately capture the intricacies and specialized knowledge required for
programming tasks. This deficiency can result in suboptimal performance when dealing
with programming languages, libraries, and frameworks.

In AI-assisted programming tasks, code embeddings and transformers are closely
connected, often complementing each other to enhance the capabilities of programming
assistance tools. There are connections between code embeddings and transformers in
this context:



Electronics 2024, 13, 767 7 of 25

• Representation learning: Both code embeddings and transformers aim to learn mean-
ingful representations of code. Code embeddings convert source code into fixed-
dimensional vectors, capturing syntactic and semantic information. Similarly, trans-
formers utilize self-attention mechanisms to learn contextual representations of code
snippets, allowing them to capture dependencies between different parts of the code.

• Semantic understanding: Code embeddings and transformers facilitate semantic un-
derstanding of code. Code embeddings map code snippets into vector representations
where similar code fragments are closer in the embedding space, aiding tasks like code
search, code similarity analysis, and clone detection. Transformers, with their ability
to capture contextual information, excel at understanding the semantics of code by
considering the relationships between tokens and their context.

• Feature extraction: Both techniques serve as effective feature extractors for down-
stream tasks in AI-assisted programming. Code embeddings provide compact repre-
sentations of code that can be fed into traditional machine learning models or neural
networks for tasks like code classification, bug detection, or code summarization.
Transformers, on the other hand, extract features directly from code snippets using
self-attention mechanisms, enabling end-to-end learning for various programming-
related tasks.

• Model architecture: Code embeddings and transformers are often integrated into the
same model architecture to leverage their complementary strengths. For instance, mod-
els like CodeBERT combine transformer-based architectures with code embeddings
to enhance code understanding and generation capabilities. This fusion allows the
model to capture both local and global dependencies within code snippets, resulting
in more accurate and context-aware predictions.

• Fine-Tuning: Pre-trained transformers, such as BERT or GPT, can be fine-tuned on
code-related tasks using code embeddings as input features. This fine-tuning process
adapts the transformer’s parameters to better understand the specific characteristics
of programming languages and code structures, leading to improved performance on
programming-related tasks.

In conclusion, the use of code embeddings and transformers in software engineering
tasks has witnessed substantial growth. Code embeddings, capturing both syntactic and
semantic information, offer effective representation learning techniques. Transformers,
particularly in the form of BERT and its derivatives, demonstrate superior performance
in various code-related tasks, owing to their ability to handle long sequences and con-
sider both past and future context. The pre-trained models, such as CodeBERT and T5,
have shown remarkable success in code generation, summarization, and translation tasks.
However, challenges such as incorporating semantic knowledge into embeddings and the
need for extensive training data persist. Continuous experimentation and adaptation are
crucial for harnessing the full potential of these advanced techniques in diverse software
engineering applications.

3. Methodology

A comprehensive review of literature pertaining to AI-supported programming tasks
was conducted. The selection criteria were based on both content and publication year.
Specifically, papers were chosen based on their utilization of code-embeddings or trans-
former technologies to facilitate AI-assisted programming tasks. The focus was on papers
explicitly mentioning specific programming tasks that were supported. The scope of the
research encompassed papers published within the last 5 years.

To ensure a thorough examination, only publications indexed in Scopus were taken
into consideration. The identification of relevant papers was achieved through a keyword-
based search using terms such as “code embeddings” and “transformers”, coupled with
specific programming tasks (e.g., “code embeddings bug detection”).



Electronics 2024, 13, 767 8 of 25

4. AI-Supported Programming Tasks

In this section, the current body of literature on AI-assisted programming is examined,
emphasizing the specific tasks addressed by the studied approaches. The discussion is or-
ganized around a framework comprising nine programming tasks identified in the relevant
literature. These tasks encompass code summarization, bug detection and correction, code
completion, code generation process, code translation, code comment generation, duplicate
code detection and similarity, code refinement, and code security.

4.1. Code Summarization

Code summarization involves generating natural language descriptions for source
code written in various programming languages, primarily to support documentation
generation. During this process, input source code is transformed into a descriptive
narrative, typically in English, providing an overview of the code’s functionality at the
function level.

An enhanced code embedding approach known as Flow2Vec [16] improved the rep-
resentation of inter-procedural program dependence (value flows) with precision. It ac-
commodated control flows and data flows with alias recognition, mapping them into a
low-dimensional vector space. Experiments on 32 open-source projects demonstrated
Flow2Vec’s effectiveness in enhancing the performance of existing code embedding tech-
niques for code classification and code summarization tasks.

Transformers play a crucial role in generating summaries, involving preprocessing
the text by removing unnecessary characters and segmenting them into smaller sentences
or phrases. The transformer model, trained on extensive text data, utilizes its attention
mechanism to identify key words and phrases, producing a summary based on these
essential elements.

Wang et al. [44] introduced Fret, a functional reinforced transformer with BERT,
which outperformed existing approaches in both Java and Python. Achieving a BLEU-4
score of 24.32 and a ROUGE-L score of 40.12, Fret demonstrated superior performance
in automatic code summarization. For smart contracts, Yang et al. [45] proposed a multi-
modal transformer-based code summarization model, showcasing its ability to generate
higher-quality code comments compared to state-of-the-art baselines.

Hou et al. [46] presented TreeXFMR, an automatic code summarization paradigm
with hierarchical attention, using abstract syntax trees and positional encoding for code
representation. Pre-trained and tested on GitHub, TreeXFMR achieved significantly better
results than baseline methods.

GypSum [47] incorporated a graph attention network and a pre-trained programming
and natural language model for code summarization. Utilizing a dual-copy mechanism,
GypSum achieved effective hybrid representations and improved the summary generation
process. Gu et al. [48] introduced AdaMo, a method for automated code summarization
leveraging adaptive strategies like pre-training and intermediate fine-tuning to optimize
latent representations.

Ma et al. [49] proposed a multi-modal fine-grained feature fusion model for code
summarization, effectively aligning and fusing information from token and abstract syntax
tree modalities. Outperforming current state-of-the-art models, this approach demonstrated
superior results.

Gong et al. [31] presented SCRIPT, a structural relative position-guided transformer,
using ASTs to capture source code structural dependencies. SCRIPT outperformed exist-
ing models on benchmark datasets in terms of BLEU, ROUGE-L, and METEOR metrics.
Gao and Lyu [50] proposed M2TS, an AST-based source code summarization technique
integrating AST and token features to capture the structure and semantics of source code,
demonstrating performance on Java and Python language datasets.

Ferretti and Saletta [51] introduced a novel summarization approach using a pseudo-
language to enhance the BRIO model, outperforming CodeBERT and PLBART. The study ex-



Electronics 2024, 13, 767 9 of 25

plored the limitations of existing NLP-based approaches and suggested further
research directions.

Choi et al. [52] presented READSUM, a model combining abstractive and extractive
approaches for generating concise and informative code summaries. READSUM considered
both structural and temporal aspects of input code, utilizing a multi-head self-attention
mechanism to create augmented code representations. The extractive procedure verified the
relevancy of important keywords, while the abstractive approach generated high-quality
summaries considering both structural and temporal information from the source code.

In summary, code embeddings and transformers both play crucial roles in code summa-
rization, yet they operate in distinct ways. Code embeddings typically involve representing
code snippets as fixed-length vectors in a continuous vector space, capturing semantic
and syntactic information. This approach offers simplicity and efficiency in handling
code representations but may struggle with capturing long-range dependencies. On the
other hand, transformers excel in modeling sequential data by processing the entire in-
put sequence simultaneously through self-attention mechanisms. This allows them to
capture intricate dependencies across code snippets effectively, resulting in more com-
prehensive summarizations. However, transformers often require larger computational
resources compared to code embeddings. Thus, while code embeddings offer efficiency
and simplicity, transformers provide a more powerful and context-aware solution for code
summarization tasks.

4.2. Bug Detection and Correction

This task focuses on identifying errors in code (Figure 2), emphasizing the detection
of unknown errors to enhance software reliability. Traditional bug detection methods rely
on manual code reviews, which are often tedious and time-consuming. In contrast, code
embedding presents an efficient approach, capable of processing large volumes of code and
identifying potential bugs within minutes. The effectiveness of code embedding depends
on a diverse training dataset, as a lack of diversity may hinder its ability to capture all types
of bugs.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 27 
 

 

 
Figure 2. Code bug detection and correction example. 

Aladics et al. [53] demonstrated that representing source code as vectors, based on 
an abstract syntax tree and the Doc2Vec algorithm, improved bug prediction accuracy and 
was suitable for machine learning tasks involving source code. Cheng et al. [54] proposed 
a self-supervised contrastive learning approach for static vulnerability detection, leverag-
ing pre-trained path embedding models to reduce the need for labeled data. Their ap-
proach outperformed eight baselines for bug detection in real-world projects. 

Hegedus and Ferenc [55] used a machine learning model to filter out false positive 
code analysis warnings from an open-source Java dataset, achieving an accuracy of 91%, 
an F1-score of 81.3%, and an AUC of 95.3%. NLP transformers offer an efficient and accu-
rate method for bug detection by analyzing source code, identifying patterns, and detect-
ing inconsistencies indicative of bugs. Bagheri and Hegedus [56] compared text represen-
tation methods (word2vec, fastText, and BERT) for detecting vulnerabilities in Python 
code, with BERT exhibiting the highest accuracy rate (93.8%). Gomes et al. [57] found that 
BERT-based feature extraction significantly outperformed TF-IDF-based extraction in pre-
dicting long-lived bugs, with support vector machines and random forests producing bet-
ter results when using BERT. 

Code summarization, utilizing NLP transformers, presents an approach to bug de-
tection by automatically generating human-readable summaries of code fragments. This 
method has shown promise in detecting bugs in open-source projects with ample code 
and bug data available for training. 

Evaluation of four new CodeBERT models for predicting software defects demon-
strated their ability to improve predictive accuracy across different software versions and 
projects [58]. The choice of distinct prediction approaches influenced the accuracy of the 
CodeBERT models. 

DistilBERT, a lightweight version of BERT, pre-trained and fine-tuned on various 
NLP tasks, including bug detection and correction, offers faster and more efficient bug 
detection, albeit with potentially lower performance than other transformer models. 
AttSum, a deep attention-based summarization model, surpassed existing models in eval-
uating bug report titles [59]. 

Bugsplainer, a transformer-based generative model for explaining software bugs to 
developers, presented more precise, accurate, concise, and helpful explanations than pre-
vious models [60]. Transformers contribute to bug localization, identifying the exact loca-
tion of bugs in the code. Validation of patches in automated program repair (APR) remains 
a crucial area, with Csuvik et al. [61] demonstrating the utility of Doc2Vec models in gen-
erating patches for JavaScript code. 

Mashhadi and Hemmati [62] introduced an automated program repair approach re-
lying on CodeBERT, generating qualitative fixes in various bug cases. Chakraborty et al. 
[63] created Modit, a multi-modal NMT code editing engine, which outperformed existing 
models in obtaining correct code patches, especially when developer hints were included. 

Generate and validate, a strategy for automatic bug repair using the generative pre-
trained transformer (GPT) model, achieved up to 17.25% accuracy [64]. SeqTrans, pro-
posed by Chi et al. [65], demonstrated superior accuracy in addressing certain types of 

Figure 2. Code bug detection and correction example.

Aladics et al. [53] demonstrated that representing source code as vectors, based on an
abstract syntax tree and the Doc2Vec algorithm, improved bug prediction accuracy and
was suitable for machine learning tasks involving source code. Cheng et al. [54] proposed a
self-supervised contrastive learning approach for static vulnerability detection, leveraging
pre-trained path embedding models to reduce the need for labeled data. Their approach
outperformed eight baselines for bug detection in real-world projects.

Hegedus and Ferenc [55] used a machine learning model to filter out false positive
code analysis warnings from an open-source Java dataset, achieving an accuracy of 91%, an
F1-score of 81.3%, and an AUC of 95.3%. NLP transformers offer an efficient and accurate
method for bug detection by analyzing source code, identifying patterns, and detecting
inconsistencies indicative of bugs. Bagheri and Hegedus [56] compared text representation
methods (word2vec, fastText, and BERT) for detecting vulnerabilities in Python code, with
BERT exhibiting the highest accuracy rate (93.8%). Gomes et al. [57] found that BERT-based
feature extraction significantly outperformed TF-IDF-based extraction in predicting long-



Electronics 2024, 13, 767 10 of 25

lived bugs, with support vector machines and random forests producing better results
when using BERT.

Code summarization, utilizing NLP transformers, presents an approach to bug de-
tection by automatically generating human-readable summaries of code fragments. This
method has shown promise in detecting bugs in open-source projects with ample code and
bug data available for training.

Evaluation of four new CodeBERT models for predicting software defects demon-
strated their ability to improve predictive accuracy across different software versions and
projects [58]. The choice of distinct prediction approaches influenced the accuracy of the
CodeBERT models.

DistilBERT, a lightweight version of BERT, pre-trained and fine-tuned on various NLP
tasks, including bug detection and correction, offers faster and more efficient bug detection,
albeit with potentially lower performance than other transformer models. AttSum, a deep
attention-based summarization model, surpassed existing models in evaluating bug report
titles [59].

Bugsplainer, a transformer-based generative model for explaining software bugs
to developers, presented more precise, accurate, concise, and helpful explanations than
previous models [60]. Transformers contribute to bug localization, identifying the exact
location of bugs in the code. Validation of patches in automated program repair (APR)
remains a crucial area, with Csuvik et al. [61] demonstrating the utility of Doc2Vec models
in generating patches for JavaScript code.

Mashhadi and Hemmati [62] introduced an automated program repair approach rely-
ing on CodeBERT, generating qualitative fixes in various bug cases. Chakraborty et al. [63]
created Modit, a multi-modal NMT code editing engine, which outperformed existing
models in obtaining correct code patches, especially when developer hints were included.

Generate and validate, a strategy for automatic bug repair using the generative pre-
trained transformer (GPT) model, achieved up to 17.25% accuracy [64]. SeqTrans, proposed
by Chi et al. [65], demonstrated superior accuracy in addressing certain types of vulner-
abilities, outperforming previous strategies in the context of neural machine translation
(NMT) technology.

VRepair, an approach by Chen et al. [66], utilized deep learning and transfer learning
techniques for automatic software vulnerability repair, showing effectiveness in repair-
ing security vulnerabilities in C. Kim and Yang [67], who utilized the BERT algorithm
to predict duplicated bug reports, outperforming existing models and improving bug
resolution times.

A technique for developing test oracles, combined with automated testing, improved
accuracy by 33%, identifying 57 real-world bugs [68]. da Silva et al. [69] explored various
program embeddings and learning models for predictive compilation, with surprisingly
simple embeddings performing comparably to more complex ones.

In summary, code embeddings and transformers serve as valuable tools for bug
detection and correction, each with its unique strengths. Code embeddings offer a concise
representation of code snippets, capturing their semantic and syntactic properties in a
fixed-length vector format. This can facilitate efficient similarity comparisons between
code segments, aiding in identifying similar bug patterns across projects. However, code
embeddings may struggle with capturing complex contextual information and long-range
dependencies, potentially leading to limitations in detecting subtle bugs. In contrast,
transformers excel in modeling sequential data through self-attention mechanisms, enabling
them to capture intricate patterns and contextual information across code segments. This
makes transformers particularly effective in detecting and correcting bugs that involve
complex interactions and dependencies between code components. Despite the promising
results of NLP transformers in bug detection, challenges include the scarcity of large, high-
quality datasets and the significant computational resources and training time required.
Existing datasets are often language-specific, making generalization to different codebases



Electronics 2024, 13, 767 11 of 25

challenging. Additionally, the resource-intensive nature of NLP transformers may limit
their suitability for real-time bug detection.

4.3. Code Completion

Code completion, a crucial aspect of programming, involves suggesting code to assist
programmers in efficiently completing the code they are currently typing. This suggestion
can span variable and function names to entire code snippets. The application of transform-
ers in code completion harnesses advanced language models, trained on extensive text data,
to enhance developers’ coding efficiency. These models exhibit a deep understanding of the
context of the code under construction, predicting and suggesting the next code sequence as
developers type. This extends beyond basic keyword suggestions, encompassing variable
names, function calls, and even the generation of complete code snippets.

The model’s proficiency in comprehending syntactic and semantic structures in pro-
gramming languages ensures accurate and contextually relevant suggestions. It plays a
role in identifying and preventing common coding mistakes by offering real-time correc-
tions. Moreover, code completion with transformers often entails providing contextual
information such as function signatures, parameter details, and relevant documentation.
This not only accelerates the coding process but also aids developers in effectively utilizing
various functions and methods.

Roberta [70], another transformer model, has demonstrated impressive results in
various natural language processing tasks, showcasing noteworthy performance in code
completion. It excels in generating code for diverse programming languages, showcasing a
robust understanding of code syntax and context.

Transformer-XL [71], designed to handle longer sequences compared to traditional
transformers, has exhibited promising outcomes in code completion tasks, especially when
dealing with extensive and intricate sequences. It showcases proficiency in generating code
for various programming languages.

CodeFill, proposed by Izadi et al. [72], is a language model for autocompletion lever-
aging learned structure and naming information. Outperforming several baseline and
state-of-the-art models, including GPT-C and TravTrans+, CodeFill excels in both single-
token and multi-token prediction. All code and datasets associated with CodeFill are
publicly available.

CCMC, presented by Yang and Kuang [29], is a code completion model utilizing
a Transformer-XL model for handling long-range dependencies and a pointer network
with CopyMask for copying OOV tokens from inputs. The model demonstrates excellent
performance in code completion on real-world datasets.

Developers can seamlessly integrate code completion into their preferred integrated
development environments (IDEs) or code editors, enhancing the overall coding experience.
The interactive and adaptive nature of transformer-based code completion renders it a pow-
erful tool for developers working across various programming languages and frameworks.

Liu et al. [73] introduced a multi-task learning-based pre-trained language model
with a transformer-based neural architecture to address challenges in code completion
within integrated development environments (IDEs). Experimental results highlight the
effectiveness of this approach compared to existing state-of-the-art methods.

BART (bidirectional and auto-regressive transformer), another popular transformer
model developed [74], is trained using a combination of supervised and unsupervised learn-
ing techniques. Specifically designed for text generation tasks, BART has shown promising
results in code generation, achieving state-of-the-art performance in code completion tasks
where it predicts the remaining code based on the given context.

A novel neural architecture based on transformer models was proposed and evaluated
for autocomplete systems in IDEs, showcasing an accuracy increase of 14–18%. Additionally,
an open-source code and data pipeline were released [75]. While transformer models exhibit
promise for code completion, further enhancements in accuracy are essential for addressing
complex scenarios [30].



Electronics 2024, 13, 767 12 of 25

In summary, code embeddings and transformers are both valuable tools for code
completion, each offering distinct advantages. Code embeddings provide a compact rep-
resentation of code snippets in a continuous vector space, capturing their semantic and
syntactic properties. This allows for efficient retrieval of similar code segments, aiding in
suggesting relevant completions based on the context of the code being written. However,
code embeddings may struggle with capturing long-range dependencies and contextual
nuances, potentially leading to less accurate suggestions in complex coding scenarios.
Transformers, on the other hand, excel in modeling sequential data through self-attention
mechanisms, enabling them to capture intricate patterns and contextual information across
code sequences. This results in more accurate and context-aware code completions, espe-
cially in scenarios where understanding broader context and dependencies is crucial.

4.4. Code Generation Process

Code generation involves the task of creating source code based on constraints speci-
fied by the programmer in natural language. Hu et al. [23] introduced a supervised code
embedding approach along with a tree representation of code snippets, demonstrating
enhanced accuracy and efficiency in generating code from natural language compared to
current state-of-the-art methods.

Transformers, a type of neural network architecture widely used for various natural
language processing (NLP) tasks, including code generation, utilize an attention mechanism
to capture long-term dependencies. They excel in handling sequential data without relying
on recurrent connections, making them well-suited for tasks involving code generation.

Transformers can be applied to generate functions or methods based on high-level
specifications. Developers can articulate the desired functionality in natural language, and
the transformer generates the corresponding code.

Svyatkovskiy et al. [3] introduced IntelliCode Compose, a versatile, multilingual
code completion tool capable of predicting arbitrary code tokens and generating correctly
structured code lines. It was trained on 1.2 billion lines of code across four languages and
utilized in the Visual Studio Code IDE and Azure Notebook.

Gemmell et al. [76] explored Transformer architectures for code generation beyond
existing IDE capabilities, proposing a “Relevance Transformer” model. Benchmarking
results demonstrated improvement over the current state-of-the-art.

Soliman et al. [77] presented MarianCG-NL-to-Code, a code generation transformer
model for generating Python code from natural language descriptions. Outperforming
state-of-the-art models, it was downloadable on GitHub and evaluated on CoNaLa and
DJANGO datasets.

ExploitedGen [78], an exploit code generation approach based on CodeBERT, achieved
better accuracy in generating exploit code than existing methods. It incorporated a template-
augmented parser and a semantic attention layer, with additional experiments assessing
generated code for syntax and semantic accuracy.

Laskari et al. [79] discussed Seq2Code, a transformer-based solution for translat-
ing natural language problem statements into Python source code. Using an encoder–
decoder transformer design with multi-head attention and separate embeddings for special
characters, the model demonstrated improved perplexity compared to similarly struc-
tured models.

To summarize the code generation process, code embeddings and transformers offer
distinctive approaches, each with its own strengths. Code embeddings condense code
snippets into fixed-length vectors, capturing semantic and syntactic information efficiently.
This simplifies the generation process by enabling quick retrieval of similar code segments
and facilitating straightforward manipulation in vector space. However, code embeddings
might struggle with capturing complex dependencies and contextual nuances, potentially
limiting their ability to produce diverse and contextually accurate code. In contrast, trans-
formers excel in modeling sequential data through self-attention mechanisms, allowing
them to capture intricate patterns and long-range dependencies across code sequences.



Electronics 2024, 13, 767 13 of 25

This enables transformers to generate code with greater context awareness and flexibil-
ity, resulting in more accurate and diverse outputs. Nevertheless, transformers typically
demand significant computational resources and extensive training data compared to
code embeddings.

4.5. Code Translation

Code translation (Figure 3) involves the conversion of source code from one program-
ming language to another, commonly employed for managing legacy source code. Unlike
code generation, which takes natural language as input, code translation deals directly with
source code. Bui et al. [80] introduced a bilingual neural network (Bi-NN) architecture for
automatically classifying Java and C++ programs. Comprising two sub-networks dedicated
to Java and C++ source code, Bi-NN utilized an additional neural network layer to recog-
nize similarities in algorithms and data structures across different languages. Evaluation
of a code corpus containing 50 diverse algorithms and data structures revealed promis-
ing classification results, with increased accuracy attributed to encoding more semantic
information from the source code.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 27 
 

 

Gemmell et al. [76] explored Transformer architectures for code generation beyond 
existing IDE capabilities, proposing a “Relevance Transformer” model. Benchmarking re-
sults demonstrated improvement over the current state-of-the-art. 

Soliman et al. [77] presented MarianCG-NL-to-Code, a code generation transformer 
model for generating Python code from natural language descriptions. Outperforming 
state-of-the-art models, it was downloadable on GitHub and evaluated on CoNaLa and 
DJANGO datasets. 

ExploitedGen [78], an exploit code generation approach based on CodeBERT, 
achieved better accuracy in generating exploit code than existing methods. It incorporated 
a template-augmented parser and a semantic attention layer, with additional experiments 
assessing generated code for syntax and semantic accuracy. 

Laskari et al. [79] discussed Seq2Code, a transformer-based solution for translating nat-
ural language problem statements into Python source code. Using an encoder–decoder trans-
former design with multi-head attention and separate embeddings for special characters, the 
model demonstrated improved perplexity compared to similarly structured models. 

To summarize the code generation process, code embeddings and transformers offer 
distinctive approaches, each with its own strengths. Code embeddings condense code 
snippets into fixed-length vectors, capturing semantic and syntactic information effi-
ciently. This simplifies the generation process by enabling quick retrieval of similar code 
segments and facilitating straightforward manipulation in vector space. However, code 
embeddings might struggle with capturing complex dependencies and contextual nu-
ances, potentially limiting their ability to produce diverse and contextually accurate code. 
In contrast, transformers excel in modeling sequential data through self-attention mecha-
nisms, allowing them to capture intricate patterns and long-range dependencies across 
code sequences. This enables transformers to generate code with greater context aware-
ness and flexibility, resulting in more accurate and diverse outputs. Nevertheless, trans-
formers typically demand significant computational resources and extensive training data 
compared to code embeddings. 

4.5. Code Translation 
Code translation (Figure 3) involves the conversion of source code from one pro-

gramming language to another, commonly employed for managing legacy source code. 
Unlike code generation, which takes natural language as input, code translation deals di-
rectly with source code. Bui et al. [80] introduced a bilingual neural network (Bi-NN) ar-
chitecture for automatically classifying Java and C++ programs. Comprising two sub-net-
works dedicated to Java and C++ source code, Bi-NN utilized an additional neural net-
work layer to recognize similarities in algorithms and data structures across different lan-
guages. Evaluation of a code corpus containing 50 diverse algorithms and data structures 
revealed promising classification results, with increased accuracy attributed to encoding 
more semantic information from the source code. 

 
Figure 3. Code translation example. 

In contrast to traditional machine translation methods, transformers, which employ 
self-attention mechanisms instead of recurrent networks, play a pivotal role in code trans-
lation. Transformers facilitate the automatic conversion of source code written in one pro-
gramming language into its equivalent in another language. This capability proves 

Figure 3. Code translation example.

In contrast to traditional machine translation methods, transformers, which employ
self-attention mechanisms instead of recurrent networks, play a pivotal role in code trans-
lation. Transformers facilitate the automatic conversion of source code written in one
programming language into its equivalent in another language. This capability proves
valuable for tasks such as cross-language code migration, integrating code from different
languages, or aiding developers familiar with one language in comprehending and working
with code written in another.

Hassan et al. [32] introduced a source code converter based on the neural machine
translation transformer model, specializing in converting source code between Java and
Swift. The model was trained on a merged dataset, and initial results demonstrated promise
in terms of the pipeline and code synthesis procedure.

DeepPseudo, presented by Yang et al. [81], leveraged advancements in sequence-
to-sequence learning and code semantic learning to automatically generate pseudo-code
from source code. Experiment results indicated DeepPseudo’s superiority over seven
state-of-the-art models, providing a valuable tool for novice developers to understand
programming code more easily.

Alokla et al. [82] proposed a new model for generating pseudocode from source code,
achieving higher accuracy compared to previous models. This model utilized similarity
measures and deep learning transformer models, demonstrating promising results on
two datasets.

DLBT, a deep learning-based transformer model for automatically generating pseu-
docode from source code [83], tokenized the source code and employed a transformer
to assess the relatedness between the source code and its corresponding pseudocode.
Tested with Python source code, DLBT achieved accuracy and BLEU scores of 47.32 and
68.49, respectively.

Acharjee et al. [84] suggested a method utilizing natural language processing and a
sequence-to-sequence deep learning-based model trained on the SPoC dataset for pseu-
docode conversion. This approach exhibited increased accuracy and efficiency compared
to other techniques, as evaluated using bilingual understudy scoring.



Electronics 2024, 13, 767 14 of 25

To sum up regarding the realm of code generation translation, both code embeddings
and transformers offer distinct advantages. Code embeddings condense code snippets into
fixed-length vectors, effectively capturing the semantic and syntactic information essential
for translation tasks. This approach simplifies the translation process by enabling quick
retrieval of similar code segments and facilitating straightforward manipulation in vector
space. However, code embeddings may struggle to capture complex dependencies and
nuances present in code, potentially limiting their ability to produce accurate translations.
On the other hand, transformers excel in modeling sequential data through self-attention
mechanisms, allowing them to capture intricate patterns and long-range dependencies
across code sequences. This results in more context-aware translations, with the ability to
handle a wide range of coding languages and structures.

4.6. Code Comment Generation

The objective of this task is the automatic generation of natural language comments
for a given code snippet. Shahbazi et al. [85] introduced API2Com, a comment generation
model that utilized Application Programming Interface Documentations (API Docs) as
external knowledge resources. The authors observed that API Docs could enhance comment
generation, especially when there was only one API in the method. However, as the number
of APIs increased, the model output was negatively impacted.

ComFormer, proposed by Yang et al. [86], is a novel code comment generator that
integrates transformer and fusion method-based hybrid code presentation. Byte-BPE and
Sim_SBT were employed to address out-of-vocabulary (OOV) problems during training.
The evaluation involved three metrics and a human study comparing ComFormer to
seven state-of-the-art baselines from both code comment and neural machine translation
(NMT) domains.

Chakraborty et al. [87] introduced a new pre-training objective for language models
for source code, aiming to naturalize the code by utilizing its bi-channel structure (formal
and informal). The authors employed six categories of semantic maintaining changes
to construct unnatural forms of code for model training. After fine-tuning, the model
performed on par with CodeT5, exhibiting improved performance for zero-shot and few-
shot learning, as well as better comprehension of code features.

Geng et al. [88] proposed a two-stage method for creating natural language comment
texts for code. The approach utilized a model interpretation strategy to refine summaries,
enhancing accuracy. Thongtanunam et al. [89] developed AutoTransform, an advanced
neural machine translation (NMT) model that significantly increased accuracy in auto-
matically transforming code for code review processes. This innovation aimed to reduce
developers’ time and effort in manual code review.

BASHEXPLAINER [90] automated code comment generation for Bash scripts, outper-
forming existing methods based on metrics such as BLEU-3/4, METEOR, and ROUGE-L
by up to 9.29%, 8.75%, 4.77%, and 3.86%, respectively. Additionally, it offered a browser
plug-in to facilitate the understanding of Bash code.

S-Coach, presented by Lin et al. [91], is a two-phase approach to updating software
comments. The first phase utilizes a predictive model to determine if comment updates
are code-indicative. If affirmative, an off-the-shelf heuristic-based approach is employed;
otherwise, a specially-designed deep learning model is leveraged. Results demonstrated
that this approach is more effective than the current state-of-the-art by 20%.

In the domain of code comment generation, both code embeddings and transformers
play vital roles, each offering distinct advantages. Code embeddings provide a concise
representation of code snippets in a continuous vector space, capturing their semantic
and syntactic properties. This facilitates the generation of comments by enabling efficient
retrieval of similar code segments and assisting in understanding the context for comment
generation. However, code embeddings may struggle with capturing the intricacies and
nuances of code, potentially leading to less contextually relevant comments. Transformers,
on the other hand, excel in modeling sequential data through self-attention mechanisms,



Electronics 2024, 13, 767 15 of 25

allowing them to capture complex patterns and dependencies across code sequences.
This results in more context-aware and informative comments that better align with the
underlying code logic.

4.7. Duplicate Code Detection and Similarity

This task involves identifying duplicate code snippets, whether within the same
codebase or across different codebases. Transformers play a crucial role in duplicate
code detection, automating the identification of redundant or duplicated code segments
within a software project. This process is vital for maintaining code quality, enhancing
maintainability, and preventing potential issues associated with code redundancy.

Karakatic et al. [92] introduced a novel method for comparing software systems by
computing the robust Hausdorff distance between semantic source code embeddings
of each program component. The authors utilized a pre-trained neural network model,
code2vec, to generate source code vector representations from various open-source li-
braries. Employing different types of robust Hausdorff distance, the proposed method
demonstrated its suitability for gauging semantic similarity.

The presence of code smells and security smells in various training datasets, a fine-
tuned transformer-based GPT-Neo model, and a closed-source code generation tool raised
concerns about the cautious application of language models to code generation tasks [93].

Yu et al. [94] proposed BEDetector, a two-channel feature extraction method for binary
similarity detection, encompassing contextual semantic feature extraction and a neural GAE
model. This system achieved impressive detection rates, including 88.8%, 86.7%, and 100%
for resilience against CVE vulnerabilities ssl3-get-key-exchange, ssl3-get-new-session-ticket,
and udhcp-get-option, respectively.

Mateless et al. [95] developed Pkg2Vec to encode software packages and predict their
authors with remarkable accuracy. Comparisons against state-of-the-art algorithms on the
ISOT datasets revealed Pkg2Vec’s superior performance, showcasing a 13% increase in
accuracy. This demonstrated the efficacy of applying deep learning to improve authorship
attribution of software packages, providing deep, interpretable features indicating the
unique style and intentions of the programmer.

CodeBERT showed effectiveness for Type-1 and Type-4 clone detection, although
its performance declined for unseen functionalities. Fine-tuning was identified as a po-
tential avenue to marginally improve recall [96]. Kovacevic et al. [97] investigated the
effectiveness of both ML-based and heuristics-based code smell detection models, utilizing
different source code representations (metrics and code embeddings) on the large-scale
MLCQ dataset. Transfer learning models were evaluated to analyze the impact of mined
knowledge on code smell detection.

An efficient transformer-based code clone detection method was proposed by [98],
promising accurate and rapid identification of code clones while significantly reducing
computational cost.

To sum up, in the realm of duplicate code detection and similarity analysis, both
code embeddings and transformers offer unique advantages. Code embeddings distill
code snippets into fixed-length vectors, effectively capturing their semantic and syntactic
features. This enables efficient comparison and retrieval of similar code segments, facil-
itating the identification of duplicate code instances. However, code embeddings may
struggle to capture complex dependencies and contextual nuances, potentially limiting
their effectiveness in detecting subtle similarities. Transformers, on the other hand, excel
in modeling sequential data through self-attention mechanisms, allowing them to capture
intricate patterns and long-range dependencies across code sequences. This results in more
accurate and context-aware similarity analysis, enabling the detection of subtle variations
and similarities within code snippets. Nonetheless, transformers typically require larger
computational resources and extensive training data compared to code embeddings.



Electronics 2024, 13, 767 16 of 25

4.8. Code Refinement

Code refinement (Figure 4) involves identifying and correcting pieces of code suscepti-
ble to bugs or vulnerabilities. In the work of Liu et al. [99], a software maintenance method
was introduced for debugging method names by evaluating the consistency between their
names and code to identify discrepancies. Through experiments on over 2.1 million Java
methods, the method achieved an F1-measure of 67.9%, surpassing existing techniques by
15%. Notably, the authors successfully fixed 66 inconsistent method names in a live study
on projects in the wild.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 27 
 

 

attribution of software packages, providing deep, interpretable features indicating the 
unique style and intentions of the programmer. 

CodeBERT showed effectiveness for Type-1 and Type-4 clone detection, although its 
performance declined for unseen functionalities. Fine-tuning was identified as a potential 
avenue to marginally improve recall [96]. Kovacevic et al. [97] investigated the effective-
ness of both ML-based and heuristics-based code smell detection models, utilizing differ-
ent source code representations (metrics and code embeddings) on the large-scale MLCQ 
dataset. Transfer learning models were evaluated to analyze the impact of mined 
knowledge on code smell detection. 

An efficient transformer-based code clone detection method was proposed by [98], 
promising accurate and rapid identification of code clones while significantly reducing 
computational cost. 

To sum up, in the realm of duplicate code detection and similarity analysis, both code 
embeddings and transformers offer unique advantages. Code embeddings distill code snip-
pets into fixed-length vectors, effectively capturing their semantic and syntactic features. 
This enables efficient comparison and retrieval of similar code segments, facilitating the 
identification of duplicate code instances. However, code embeddings may struggle to cap-
ture complex dependencies and contextual nuances, potentially limiting their effectiveness 
in detecting subtle similarities. Transformers, on the other hand, excel in modeling sequen-
tial data through self-attention mechanisms, allowing them to capture intricate patterns and 
long-range dependencies across code sequences. This results in more accurate and context-
aware similarity analysis, enabling the detection of subtle variations and similarities within 
code snippets. Nonetheless, transformers typically require larger computational resources 
and extensive training data compared to code embeddings. 

4.8. Code Refinement 
Code refinement (Figure 4) involves identifying and correcting pieces of code sus-

ceptible to bugs or vulnerabilities. In the work of Liu et al. [99], a software maintenance 
method was introduced for debugging method names by evaluating the consistency be-
tween their names and code to identify discrepancies. Through experiments on over 2.1 
million Java methods, the method achieved an F1-measure of 67.9%, surpassing existing 
techniques by 15%. Notably, the authors successfully fixed 66 inconsistent method names 
in a live study on projects in the wild. 

 
Figure 4. Code refinement example. 

Cabrera Lozoya et al. [100] extended a state-of-the-art approach for representing 
source code to also include changes in the source code (commits). Transfer learning was 
then applied to classify security-relevant commits. The study demonstrated that represen-
tations based on structural information of the code syntax outperformed token-based rep-
resentations. Moreover, pre-training with a small dataset (greater than 10^4 samples) for 
a closely related pretext task showed superior performance compared to pre-training with 
a larger dataset (more than 106 samples) and a loosely related pretext task. 

Figure 4. Code refinement example.

Cabrera Lozoya et al. [100] extended a state-of-the-art approach for representing source
code to also include changes in the source code (commits). Transfer learning was then
applied to classify security-relevant commits. The study demonstrated that representations
based on structural information of the code syntax outperformed token-based representa-
tions. Moreover, pre-training with a small dataset (greater than 10ˆ4 samples) for a closely
related pretext task showed superior performance compared to pre-training with a larger
dataset (more than 106 samples) and a loosely related pretext task.

Wang et al. [101] introduced Cognac, a context-guidance method name recommender
that incorporated global context from methods related by calls. It utilized prior knowledge
to adjust method name recommendations and method name consistency checking tasks.
Cognac outperformed existing approaches on four datasets with F-scores of 63.2%, 60.8%,
66.3%, and 68.5%, respectively, achieving an overall accuracy of 76.6%, surpassing MNire
by 11.2%, a machine learning approach to check the consistency between the name of a
given method and its implementation [102].

Xie et al. [103] proposed DeepLink, a model applying code knowledge graph em-
beddings and deep learning to identify links between issue reports and code commits
for software projects. Evaluation of real-world projects demonstrated its superiority over
current state-of-the-art solutions.

Borovits et al. [104] presented an automated procedure using word embeddings and
deep learning processes to detect inconsistencies between infrastructure as code (IaC) code
units and their names. Experiments on an open-source dataset showed an accuracy range
of 78.5% to 91.5% in finding such inconsistencies.

Ma et al. [105] introduced Graph-code2vec, a novel self-supervised pre-training ap-
proach using code investigation and graph neural networks to generate agnostic task
embeddings for software engineering tasks. The proposed technique proved more effective
than existing generic and task-specific learning-based baselines, including GraphCodeBERT.

NaturalCC [106] is an open-source code intelligence toolkit, accessible on the website
(http://xcodemind.github.io), built on Fairseq and PyTorch technology. It is designed to
enable efficient machine learning-based implementation of code intelligence tasks such as
code summarization, code retrieval, and code completion.

In the context of code refinement, both code embeddings and transformers offer dis-
tinct advantages. Code embeddings condense code snippets into fixed-length vectors,
capturing their semantic and syntactic properties efficiently. This facilitates the refinement

http://xcodemind.github.io


Electronics 2024, 13, 767 17 of 25

process by enabling quick retrieval of similar code segments and aiding in identifying areas
for improvement. However, code embeddings may struggle to capture complex depen-
dencies and nuanced coding patterns, potentially limiting their ability to suggest refined
solutions accurately. Conversely, transformers excel in modeling sequential data through
self-attention mechanisms, enabling them to capture intricate patterns and dependencies
across code sequences. This results in more contextually aware refinements, with the ability
to suggest solutions that align closely with the underlying logic of the code.

4.9. Code Security

Code security involves checking source code for exploits that may allow unauthorized
access to restricted resources. Zaharia et al. [107] proposed the use of an intermediate rep-
resentation that strikes a balance between stringency to retain security flaws, as per MITRE
standards, and dynamism that does not strictly rely on the lexicon of a programming
language. This intermediate representation is based on the semantical clusterization of com-
mands in C/C++ programs through word embeddings. These embeddings are distributed
through the formed intermediate representation to different classifiers for recognizing
security vulnerability patterns.

In related work, Zaharia et al. [108] developed a security scanning system employing
machine learning algorithms to detect various patterns of vulnerabilities listed in the
Common Weaknesses Enumeration (CWE) from NIST. This system, independent of the
programming language, achieved a recall value exceeding 0.94, providing a robust defense
against cyber-attacks.

Barr et al. [109] conducted an in-depth analysis of the Fluoride Bluetooth module’s
source code using deep learning, machine learning, heuristics, and combinatorial optimiza-
tion techniques. They employed byte-pair encoding to lower dimensionality, embedded
tokens into a low-dimensional Euclidean space using LSTM, and created a distance matrix
based on cosines between vectors of functions. The authors used cluster-editing to segment
the graph’s vertices into nearly complete subgraphs, assessing vulnerability risk based on
vectors and features of each component.

Saletta and Ferretti [110] discussed a technique using natural language processing to
recognize security weaknesses in source code. This involved mapping code to vector space
through its abstract syntax trees, and supervised learning to capture distinguishing features
among different vulnerabilities. Results demonstrated the model’s ability to accurately
recognize various types of security weaknesses.

In the domain of code security, both code embeddings and transformers serve as
valuable tools, each with its unique strengths. Code embeddings offer a compact repre-
sentation of code snippets, capturing their semantic and syntactic properties efficiently.
This allows for quick analysis of code similarities, aiding in the identification of potential
security vulnerabilities based on patterns observed in known security issues. However,
code embeddings may struggle to capture complex interactions and subtle security flaws,
potentially leading to limitations in detecting sophisticated attacks. Transformers, on the
other hand, excel in modeling sequential data and understanding contextual information
through self-attention mechanisms. This enables them to capture intricate patterns and
dependencies across code sequences, resulting in a more comprehensive and context-aware
analysis of code security. However, transformers typically require larger computational
resources and extensive training data compared to code embeddings.

5. Datasets

Similar to most deep learning models, transformers demand extensive data to exhibit
optimal performance. This becomes a notable challenge in the field of programming,
where acquiring high-quality datasets is not as straightforward as in natural language
processing (NLP).

To tackle this issue, initiatives like CodeSearchNet (https://github.com/github/
CodeSearchNet, accessed on 10 January 2024) and CodeXGLUE (https://github.com/

https://github.com/github/CodeSearchNet
https://github.com/github/CodeSearchNet
https://github.com/microsoft/CodeXGLUE
https://github.com/microsoft/CodeXGLUE


Electronics 2024, 13, 767 18 of 25

microsoft/CodeXGLUE, accessed on 10 January 2024) have been established, provid-
ing valuable datasets for training and evaluating code-related models. CodeSearchNet
stands out as a large-scale dataset, encompassing over 6 million GitHub repositories and
4.2 million code files. It spans six programming languages: Java, Python, JavaScript, Go,
Ruby, and PHP. CodeBERT has undergone training on this comprehensive dataset, enhanc-
ing its capacity to learn cross-lingual representations of source code.

CodeXGLUE, on the other hand, serves as a benchmark dataset strategically crafted
for the advancement and assessment of code intelligence methods, specifically focusing on
code completion and code retrieval tasks. This dataset incorporates 14 tasks across various
programming languages such as Python, Java, C++, and PHP. CodeBERT, recognizing the
significance of diverse challenges, has undergone training on this dataset to elevate its
proficiency in code intelligence tasks.

6. Conclusions

Code embeddings serve as vector representations of source code, acquired through
deep learning techniques. They adeptly encapsulate the lexical, syntactic, and semantic
intricacies of code, projecting them into a high-dimensional vector space. Various methods,
including recurrent neural networks (RNNs), convolutional neural networks (CNNs),
and graph neural networks (GNNs), are employed to generate code embeddings. These
methods utilize input source code to establish a mapping between code tokens and their
corresponding vector representations. Subsequently, the vector representations become
inputs for downstream natural language processing (NLP) tasks.

Code embeddings prove formidable in capturing the semantic essence of code, distin-
guishing themselves from traditional approaches reliant on handcrafted features. Unlike
their predecessors, code embeddings autonomously learn semantic relationships between
distinct code tokens, enhancing efficiency in grasping nuances like variable and function
dependencies. Furthermore, code embeddings exhibit language agnosticism, enabling
training on diverse programming languages and proving valuable for tasks demanding
code comprehension across language boundaries. Their capacity to generalize effectively
to unseen code snippets stems from training on extensive code corpora, enabling the
absorption of general patterns and structures prevalent in code.

Transformers, distinguished by their self-attention mechanisms, have excelled in
learning from substantial datasets in an end-to-end manner, eliminating the need for
task-specific feature engineering. This adaptability allows a single transformer model to
assist in multiple programming tasks, facilitated by fine-tuning specific languages or tasks.
Nevertheless, the performance of a transformer model fine-tuned for one task may not
seamlessly translate to another task without further adaptation.

The application of transformers extends from natural language processing (NLP) to
code representation and generation tasks. Self-attention mechanisms empower transform-
ers to discern long-range dependencies within input text, enhancing their ability to capture
contextual nuances in code.

In Table 1, we summarize the literature review presented in this paper.
Next, we try to compare the use of code embeddings and transformers in the nine

referred tasks.

• Code summarization:

• Code embeddings capture the semantic meaning of code snippets, enabling
summarization through techniques like clustering or similarity-based retrieval.

• Transformers can learn contextual representations of code, allowing them to gen-
erate summaries by attending to relevant parts of the code and its surrounding context.

• Bug detection and correction:

• By learning embeddings from code, similarity metrics can be applied to detect
similar code segments containing known bugs, or to identify anomalous patterns.

https://github.com/microsoft/CodeXGLUE
https://github.com/microsoft/CodeXGLUE


Electronics 2024, 13, 767 19 of 25

• Transformers can learn to detect bugs by learning from labeled data, and they can
also be fine-tuned for specific bug detection tasks. For bug correction, they can
generate patches by learning from examples of fixed code.

• Code completion:

• Embeddings can be used to predict the next tokens in code, enabling code com-
pletion by suggesting relevant completions based on learned representations.

• Transformers excel at predicting sequences and can provide context-aware code
completions by considering the surrounding code.

• Code generation:

• Code embeddings can be used to generate code by sampling from the learned
embedding space, potentially leading to diverse outputs.

• Transformers can generate code by conditioning on input sequences and gen-
erating output sequences token by token, allowing for precise control over the
generation process.

• Code translation:

• Embeddings can be leveraged for mapping code from one programming language
to another by aligning representations of similar functionality across languages.

• Transformers can be trained for sequence-to-sequence translation tasks, allowing
for direct translation of code between different programming languages.

• Code comment generation:

• By learning embeddings from code-comment pairs, embeddings can be used
to generate comments for code by predicting the most likely comment given
the code.

• Transformers can be trained to generate comments by conditioning on code and
generating natural language descriptions, capturing the context and intent of
the code.

• Duplicate code detection and similarity:

• Similarity metrics based on embeddings can efficiently identify duplicate or
similar code snippets by measuring the distance between their embeddings.

• Transformers can learn contextual representations of code, enabling them to iden-
tify duplicate or similar code snippets by comparing their representations directly.

• Code refinement:

• Embeddings can be used to refine code by suggesting improvements based on
learned representations and similarity to high-quality code.

• Transformers can be fine-tuned for code refinement tasks, such as code formatting
or refactoring, by learning from labeled data or reinforcement learning.

• Code security:

• Embeddings can be utilized for detecting security vulnerabilities by identifying
patterns indicative of vulnerabilities or by comparing code snippets to known
vulnerable code.

• Transformers can be trained to detect security vulnerabilities by learning from
labeled data, and they can also be used for code analysis to identify potential
security risks through contextual understanding.

Finally, for AI-assisted programming tasks, leveraging both code embeddings and
transformers can significantly enhance the efficiency and effectiveness of the development
process. By combining the strengths of both techniques, developers can benefit from a
comprehensive AI-assisted programming environment that offers efficient code analysis,
accurate recommendations, and context-aware assistance throughout the development
lifecycle. This hybrid approach ensures that developers can leverage the simplicity and
efficiency of code embeddings alongside the contextual awareness and sophistication of
transformers, thereby maximizing productivity and code quality.



Electronics 2024, 13, 767 20 of 25

Table 1. Literature overview.

Tasks Publications

Code summarization [16,43–45,48–51]—Code embedding
[31,46,47,52]—Transformer

Bug detection and correction [53–57,61,68,69]—Code embedding
[38,58–60,62–67]—Transformer

Code completion [29,30,71–75]—Transformer

Code generation process [23]—Code embedding
[3,76–79]—Transformer

Code translation [80,81,84]—Code embedding
[32,82,83]—Transformer

Code comment generation

[85,87,88,90]—Code embedding
[86]-Code embedding—Transformer
[37,89]—Transformer
[91]—Custom

Duplicate code detection and similarity
[92,94,95]—Code embedding
[92,96,98]—Transformer
[97]—Custom

Code refinement [99–105]—Code embedding
[106]—Transformer

Code security [107–110]—Code embedding

Ethical Considerations

Various ethical considerations come to the forefront when employing transformers, or
any form of AI, for programming tasks. These considerations encompass aspects related to
privacy, bias, transparency, and accountability [111].

A primary ethical concern centers around the potential invasion of privacy inherent in
the utilization of transformers for programming. Given that transformers are engineered
to analyze and process extensive datasets, including personal or sensitive information,
questions arise concerning the storage, utilization, and safeguarding of these data. A critical
aspect involves ensuring individuals are informed about the use of their information for
programming purposes.

Another ethical dimension revolves around the prospect of bias within the data used
for training the transformer. Should the analyzed data exhibit biases or gaps, it could
profoundly impact the decisions made by the transformer, potentially perpetuating existing
biases and fostering discrimination. Therefore, it becomes imperative to curate training
data that are diverse, representative, and devoid of bias.

Transparency emerges as a pivotal ethical consideration in the integration of trans-
formers for AI-assisted programming tasks. Programmers must possess a comprehensive
understanding of the inner workings of the transformer and the rationale behind its deci-
sions. Transparency serves not only debugging and troubleshooting purposes but also acts
as a safeguard against the occurrence of unethical or harmful decisions.

Moreover, accountability assumes a critical role in the ethical framework surround-
ing the use of transformers in programming. With advancing technology, ascertaining
responsibility for the decisions made by a transformer becomes increasingly challenging.
In scenarios involving errors or ethical breaches, establishing clear frameworks for account-
ability and liability becomes indispensable. These frameworks serve to assign responsibility
and address any ensuing issues with precision and fairness.



Electronics 2024, 13, 767 21 of 25

Author Contributions: Conceptualization, S.K.; methodology, S.K.; investigation, S.K., M.T. and V.V.;
resources, S.K.; data curation, M.T.; writing—original draft preparation, S.K.; writing—review and
editing, M.T.; supervision, V.V.; project administration, V.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hindle, A.; Barr, E.T.; Su, Z.; Gabel, M.; Devanbu, P. On The Naturalness of Software. In Proceedings of the 34th International

Conference on Software Engineering (ICSE), Zurich, Switzerland, 2–9 June 2012; pp. 837–847.
2. Shani, I. Survey Reveals AI’s Impact on the Developer Experience. 2023. Available online: https://github.blog/2023-06-13

-survey-reveals-ais-impact-on-the-developer-experience (accessed on 24 December 2023).
3. Svyatkovskiy, A.; Deng, S.K.; Fu, S.; Sundaresan, N. IntelliCode compose: Code generation using transformer. In Proceedings of

the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Online, 8–13 November 2020. [CrossRef]

4. Bird, C.; Ford, D.; Zimmermann, T.; Forsgren, N.; Kalliamvakou, E.; Lowdermilk, T.; Gazit, I. Taking Flight with Copilot. Commun.
ACM 2023, 66, 56–62. [CrossRef]

5. Friedman, N. Introducing GitHub Copilot: Your AI Pair Programmer. 2021. Available online: https://github.com/features/
copilot (accessed on 24 December 2023).

6. Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; de Oliveira Pinto, H.P.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al.
Evaluating large language models trained on code. arXiv 2021, arXiv:2107.03374. [CrossRef]

7. Li, Y.; Choi, D.; Chung, J.; Kushman, N.; Schrittwieser, J.; Leblond, R.; Eccles, T.; Keeling, J.; Gimeno, F.; Dal Lago, A.; et al.
Competition-level Code Generation with Alphacode. Science 2022, 378, 1092–1097. [CrossRef] [PubMed]

8. Parashar, B.; Kaur, I.; Sharma, A.; Singh, P.; Mishra, D. Revolutionary transformations in twentieth century: Making AI-assisted
software development. In Computational Intelligence in Software Modeling; De Gruyter: Berlin, Germany, 2022. [CrossRef]

9. Gulwani, S. AI-assisted programming: Applications, user experiences, and neuro-symbolic techniques (keynote). In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
Singapore, 14–18 November 2022. [CrossRef]

10. Vaithilingam, P.; Zhang, T.; Glassman, E.L. Expectation vs. experience: Evaluating the usability of code generation tools powered
by large language models. In Proceedings of the CHI Conference on Human Factors in Computing Systems Extended Abstracts,
New Orleans, LA, USA, 29 April–5 May 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–7.

11. Fernandez, R.C.; Elmore, A.J.; Franklin, M.J.; Krishnan, S.; Tan, C. How Large Language Models Will Disrupt Data Management.
Proc. VLDB Endow. 2023, 16, 3302–3309. [CrossRef]

12. Zhou, H.; Li, J. A Case Study on Scaffolding Exploratory Data Analysis for AI Pair Programmers. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–7. [CrossRef]

13. Kazemitabaar, M.; Chow, J.; Ma, C.K.T.; Ericson, B.J.; Weintrop, D.; Grossman, T. Studying the effect of AI Code Generators on
Supporting Novice Learners in Introductory Programming. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–23. [CrossRef]

14. Daun, M.; Brings, J. How ChatGPT Will Change Software Engineering Education. In Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education V. 1, Turku, Finland, 7–12 July 2023; pp. 110–116. [CrossRef]

15. Prather, J.; Reeves, B.N.; Denny, P.; Becker, B.A.; Leinonen, J.; Luxton-Reilly, A.; Powell, G.; Finnie-Ansley, J.; Santos, E.A. “It’s
Weird That It Knows What I Want”: Usability and Interactions with Copilot for Novice Programmers. ACM Trans. Comput.
Interact. 2023, 31, 1–31. [CrossRef]

16. Sui, Y.; Cheng, X.; Zhang, G.; Wang, H. Flow2Vec: Value-flow-based precise code embedding. Proc. ACM Program. Lang. 2020,
4, 233. [CrossRef]

17. Rabin, M.R.I.; Mukherjee, A.; Gnawali, O.; Alipour, M.A. Towards demystifying dimensions of source code embeddings. In
Proceedings of the 1st ACM SIGSOFT International Workshop on Representation Learning for Software Engineering and Program
Languages, Online, 8–13 November 2020. [CrossRef]

18. Azcona, D.; Arora, P.; Hsiao, I.-H.; Smeaton, A. user2code2vec: Embedding for Profiling Students Based on Distributinal
Representations of Source Code. In Proceedings of the 9th International Conference on Learning Analytics and Knowledge,
Tempe, AZ, USA, 4–8 March 2019. [CrossRef]

19. Ding, Z.; Li, H.; Shang, W.; Chen, T.-H. Towards Learning Generalizable Code Embeddings Using Task-agnostic Graph
Convolutional Networks. ACM Trans. Softw. Eng. Methodol. 2023, 32, 48. [CrossRef]

20. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In EMNLP 2020—Conference on Empirical Methods in Natural Language Processing:
Systems Demonstrations; Association for Computational Linguistics: Kerrville, TX, USA, 2020; pp. 38–45.

https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3589996
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.1126/science.abq1158
https://www.ncbi.nlm.nih.gov/pubmed/36480631
https://doi.org/10.1515/9783110709247-001
https://doi.org/10.1145/3540250.3569444
https://doi.org/10.14778/3611479.3611527
https://doi.org/10.1145/3544549.3583943
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3587102.3588815
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3428301
https://doi.org/10.1145/3416506.3423580
https://doi.org/10.1145/3303772.3303813
https://doi.org/10.1145/3542944


Electronics 2024, 13, 767 22 of 25

21. Chirkova, N.; Troshin, S. Empirical study of transformers for source code. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Athens, Greece, 23–28
August 2021. [CrossRef]

22. Song, Y.; Shi, S.; Li, J.; Zhang, H. Directional skip-gram: Explicitly distinguishing left and right context forword embeddings. In
Proceedings of the NAACL HLT 2018—2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018; pp. 175–180.

23. Hu, H.; Chen, Q.; Liu, Z. Code Generation from Supervised Code Embeddings. In Neural Information Processing; Springer: Cham,
Switzerland, 2019; pp. 388–396. [CrossRef]

24. Sikka, J.; Satya, K.; Kumar, Y.; Uppal, S.; Shah, R.R.; Zimmermann, R. Learning Based Methods for Code Runtime Complexity
Prediction. In Advances in Information Retrieval; Springer: Cham, Switzerland, 2020; pp. 313–325. [CrossRef]

25. Kang, H.J.; Bissyande, T.F.; Lo, D. Assessing the Generalizability of Code2vec Token Embeddings. In Proceedings of the 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE), San Diego, CA, USA, 11–15 November 2019.
[CrossRef]

26. Romanov, V.; Ivanov, V. Prediction of Types in Python with Pre-trained Graph Neural Networks. In Proceedings of the 2022
Ivannikov Memorial Workshop (IVMEM), Moscow, Russia, 23–24 September 2022. [CrossRef]

27. Ding, Z.; Li, H.; Shang, W.; Chen, T.-H.P. Can pre-trained code embeddings improve model performance? Revisiting the use of
code embeddings in software engineering tasks. Empir. Softw. Eng. 2022, 27, 63. [CrossRef]

28. Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-attention with relative position representations. In Proceedings of the NAACL HLT
2018—2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, New Orleans, LA, USA, 1–6 June 2018; pp. 464–468.

29. Yang, H.; Kuang, L. CCMC: Code Completion with a Memory Mechanism and a Copy Mechanism. In Proceedings of the EASE
2021: Evaluation and Assessment in Software Engineering, Trondheim, Norway, 21–23 June 2021. [CrossRef]

30. Ciniselli, M.; Cooper, N.; Pascarella, L.; Mastropaolo, A.; Aghajani, E.; Poshyvanyk, D.; Di Penta, M.; Bavota, G. An Empirical
Study on the Usage of Transformer Models for Code Completion. IEEE Trans. Softw. Eng. 2021, 48, 4818–4837. [CrossRef]

31. Gong, Z.; Gao, C.; Wang, Y.; Gu, W.; Peng, Y.; Xu, Z. Source Code Summarization with Structural Relative Position Guided
Transformer. In Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), Honolulu, HI, USA, 15–18 March 2022. [CrossRef]

32. Hassan, M.H.; Mahmoud, O.A.; Mohammed, O.I.; Baraka, A.Y.; Mahmoud, A.T.; Yousef, A.H. Neural Machine Based Mobile
Applications Code Translation. In Proceedings of the 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference
(NILES), Giza, Egypt, 24–26 October 2020. [CrossRef]

33. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the NAACL HLT 2019—2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.

34. Sengupta, A.; Kumar, A.; Bhattacharjee, S.K.; Roy, S. Gated Transformer for Robust De-noised Sequence-to-Sequence Modelling.
In Proceedings of the 2021 Findings of the Association for Computational Linguistics, Punta Cana, Dominican Republic, 7–11
November 2021.

35. Wu, C.; Wu, F.; Ge, S.; Qi, T.; Huang, Y.; Xie, X. Neural news recommendation with multi-head self-attention. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural
Language Processing, Hong Kong, China, 3–7 November 2019.

36. Chernyavskiy, A.; Ilvovsky, D.; Nakov, P. Transformers: ‘The End of History’ for Natural Language Processing? In Ma-
chine Learning and Knowledge Discovery in Databases; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021;
pp. 677–693. [CrossRef]

37. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. CodeBERT: A pre-trained
model for programming and natural languages. In Findings of the Association for Computational Linguistics Findings of ACL: EMNLP
2020; Association for Computational Linguistics: Kerrville, TX, USA, 2020; pp. 1536–1547.

38. Zhou, X.; Han, D.; Lo, D. Assessing Generalizability of CodeBERT. In Proceedings of the 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Luxembourg, 27 September–1 October 2021. [CrossRef]

39. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67. Available online: http://jmlr.org/papers/v21/
20-074.html (accessed on 24 December 2023).

40. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

41. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. XLNet: Generalized autoregressive pretraining for language
understanding. Adv. Neural Inf. Process. Syst. 2019, 32, 5753–5763.

42. Zhang, F.; Yu, X.; Keung, J.; Li, F.; Xie, Z.; Yang, Z.; Ma, C.; Zhang, Z. Improving Stack Overflow question title generation with
copying enhanced CodeBERT model and bi-modal information. Inf. Softw. Technol. 2022, 148, 106922. [CrossRef]

43. Liu, K.; Yang, G.; Chen, X.; Zhou, Y. EL-CodeBert: Better Exploiting CodeBert to Support Source Code-Related Classification
Tasks. In Proceedings of the 13th Asia-Pacific Symposium on Internetware, Hohhot, China, 11–12 June 2022. [CrossRef]

https://doi.org/10.1145/3468264.3468611
https://doi.org/10.1007/978-3-030-36808-1_42
https://doi.org/10.1007/978-3-030-45439-5_21
https://doi.org/10.1109/ase.2019.00011
https://doi.org/10.1109/ivmem57067.2022.9983956
https://doi.org/10.1007/s10664-022-10118-5
https://doi.org/10.1145/3463274.3463332
https://doi.org/10.1109/TSE.2021.3128234
https://doi.org/10.1109/saner53432.2022.00013
https://doi.org/10.1109/niles50944.2020.9257935
https://doi.org/10.1007/978-3-030-86523-8_41
https://doi.org/10.1109/icsme52107.2021.00044
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1016/j.infsof.2022.106922
https://doi.org/10.1145/3545258.3545260


Electronics 2024, 13, 767 23 of 25

44. Wang, R.; Zhang, H.; Lu, G.; Lyu, L.; Lyu, C. Fret: Functional Reinforced Transformer with BERT for Code Summarization. IEEE
Access 2020, 8, 135591–135604. [CrossRef]

45. Yang, Z.; Keung, J.; Yu, X.; Gu, X.; Wei, Z.; Ma, X.; Zhang, M. A Multi-Modal Transformer-based Code Summarization Approach
for Smart Contracts. In Proceedings of the 2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC),
Madrid, Spain, 20–21 May 2021. [CrossRef]

46. Hou, S.; Chen, L.; Ye, Y. Summarizing Source Code from Structure and Context. In Proceedings of the 2022 International Joint
Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022. [CrossRef]

47. Wang, Y.; Dong, Y.; Lu, X.; Zhou, A. GypSum: Learning hybrid representations for code summarization. In Proceedings of the
30th IEEE/ACM International Conference on Program Comprehension, Online, 16–17 May 2022. [CrossRef]

48. Gu, J.; Salza, P.; Gall, H.C. Assemble Foundation Models for Automatic Code Summarization. In Proceedings of the 2022 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA, 15–18 March 2022.
[CrossRef]

49. Ma, Z.; Gao, Y.; Lyu, L.; Lyu, C. MMF3: Neural Code Summarization Based on Multi-Modal Fine-Grained Feature Fusion. In
Proceedings of the 16th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Helsinki,
Finland, 29–23 September 2022. [CrossRef]

50. Gao, Y.; Lyu, C. M2TS: Multi-scale multi-modal approach based on transformer for source code summarization. In Proceedings of
the 30th IEEE/ACM International Conference on Program Comprehension, Online, 16–17 May 2022. [CrossRef]

51. Ferretti, C.; Saletta, M. Naturalness in Source Code Summarization. How Significant is it? In Proceedings of the 2023 IEEE/ACM
31st International Conference on Program Comprehension (ICPC), Melbourne, VI, Australia, 15–16 May 2023. [CrossRef]

52. Choi, Y.; Na, C.; Kim, H.; Lee, J.-H. READSUM: Retrieval-Augmented Adaptive Transformer for Source Code Summarization.
IEEE Access 2023, 11, 51155–51165. [CrossRef]

53. Aladics, T.; Jasz, J.; Ferenc, R. Bug Prediction Using Source Code Embedding Based on Doc2Vec. In Computational Science and Its
Applications; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; pp. 382–397. [CrossRef]

54. Cheng, X.; Zhang, G.; Wang, H.; Sui, Y. Path-sensitive code embedding via contrastive learning for software vulnerability
detection. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, Online,
Republic of Korea, 18–22 July 2022. [CrossRef]

55. Hegedus, P.; Ferenc, R. Static Code Analysis Alarms Filtering Reloaded: A New Real-World Dataset and its ML-Based Utilization.
IEEE Access 2022, 10, 55090–55101. [CrossRef]

56. Bagheri, A.; Hegedus, P. A Comparison of Different Source Code Representation Methods for Vulnerability Prediction in Python.
In Quality of Information and Communications Technology; Springer: Cham, Switzerland, 2021; pp. 267–281. [CrossRef]

57. Gomes, L.; da Silva Torres, R.; Cortes, M.L. BERT- and TF-IDF-based feature extraction for long-lived bug prediction in FLOSS: A
comparative study. Inf. Softw. Technol. 2023, 160, 107217. [CrossRef]

58. Pan, C.; Lu, M.; Xu, B. An Empirical Study on Software Defect Prediction Using CodeBERT Model. Appl. Sci. 2021, 11, 4793.
[CrossRef]

59. Ma, X.; Keung, J.W.; Yu, X.; Zou, H.; Zhang, J.; Li, Y. AttSum: A Deep Attention-Based Summarization Model for Bug Report Title
Generation. IEEE Trans. Reliab. 2023, 72, 1663–1677. [CrossRef]

60. Mahbub, P.; Shuvo, O.; Rahman, M.M. Explaining Software Bugs Leveraging Code Structures in Neural Machine Translation. In
Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), Melbourne, VI, Australia,
14–20 May 2023. [CrossRef]

61. Csuvik, V.; Horvath, D.; Lajko, M.; Vidacs, L. Exploring Plausible Patches Using Source Code Embeddings in JavaScript. In
Proceedings of the 2021 IEEE/ACM International Workshop on Automated Program Repair (APR), Madrid, Spain, 1 June 2021.
[CrossRef]

62. Mashhadi, E.; Hemmati, H. Applying CodeBERT for Automated Program Repair of Java Simple Bugs. In Proceedings of the 2021
IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), Madrid, Spain, 17–19 May 2021. [CrossRef]

63. Chakraborty, S.; Ray, B. On Multi-Modal Learning of Editing Source Code. In Proceedings of the 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Melbourne, VI, Australia, 15–19 November 2021. [CrossRef]

64. Lajko, M.; Csuvik, V.; Vidacs, L. Towards JavaScript program repair with generative pre-trained transformer (GPT-2). In
Proceedings of the Third International Workshop on Automated Program Repair, Pittsburgh, PA, USA, 19 May 2022. [CrossRef]

65. Chi, J.; Qu, Y.; Liu, T.; Zheng, Q.; Yin, H. SeqTrans: Automatic Vulnerability Fix Via Sequence to Sequence Learning. IEEE Trans.
Softw. Eng. 2023, 49, 564–585. [CrossRef]

66. Chen, Z.; Kommrusch, S.; Monperrus, M. Neural Transfer Learning for Repairing Security Vulnerabilities in C Code. IEEE Trans.
Softw. Eng. 2023, 49, 147–165. [CrossRef]

67. Kim, T.; Yang, G. Predicting Duplicate in Bug Report Using Topic-Based Duplicate Learning with Fine Tuning-Based BERT
Algorithm. IEEE Access 2022, 10, 129666–129675. [CrossRef]

68. Dinella, E.; Ryan, G.; Mytkowicz, T.; Lahiri, S.K. TOGA: A neural method for test oracle generation. In Proceedings of the 44th
International Conference on Software Engineering, Pittsburgh, PA, USA, 21–29 May 2022. [CrossRef]

69. da Silva, A.F.; Borin, E.; Pereira, F.M.Q.; Queiroz, N.L.; Napoli, O.O. Program representations for predictive compilation: State of
affairs in the early 20’s. J. Comput. Lang. 2022, 73, 101171. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.3011744
https://doi.org/10.1109/icpc52881.2021.00010
https://doi.org/10.1109/ijcnn55064.2022.9892013
https://doi.org/10.1145/3524610.3527903
https://doi.org/10.1109/saner53432.2022.00112
https://doi.org/10.1145/3544902.3546251
https://doi.org/10.1145/3524610.3527907
https://doi.org/10.1109/icpc58990.2023.00027
https://doi.org/10.1109/ACCESS.2023.3271992
https://doi.org/10.1007/978-3-030-87007-2_27
https://doi.org/10.1145/3533767.3534371
https://doi.org/10.1109/ACCESS.2022.3176865
https://doi.org/10.1007/978-3-030-85347-1_20
https://doi.org/10.1016/j.infsof.2023.107217
https://doi.org/10.3390/app11114793
https://doi.org/10.1109/TR.2023.3236404
https://doi.org/10.1109/icse48619.2023.00063
https://doi.org/10.1109/apr52552.2021.00010
https://doi.org/10.1109/msr52588.2021.00063
https://doi.org/10.1109/ase51524.2021.9678559
https://doi.org/10.1145/3524459.3527350
https://doi.org/10.1109/TSE.2022.3156637
https://doi.org/10.1109/TSE.2022.3147265
https://doi.org/10.1109/ACCESS.2022.3226238
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1016/j.cola.2022.101171


Electronics 2024, 13, 767 24 of 25

70. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

71. Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.V.; Salakhutdinov, R. Transformer-XL: Attentive language models beyond a
fixed-length context. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy,
28 July–2 August 2019; pp. 2978–2988.

72. Izadi, M.; Gismondi, R.; Gousios, G. CodeFill: Multi-token code completion by jointly learning from structure and naming
sequences. In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 21–29 May 2022.
[CrossRef]

73. Liu, F.; Li, G.; Zhao, Y.; Jin, Z. Multi-task learning based pre-trained language model for code completion. In Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering, Virtual Event Australia, 21–25 December 2020.
[CrossRef]

74. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 7871–7880.

75. Kim, S.; Zhao, J.; Tian, Y.; Chandra, S. Code Prediction by Feeding Trees to Transformers. In Proceedings of the 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), Madrid, Spania, 22–30 May 2021. [CrossRef]

76. Gemmell, C.; Rossetto, F.; Dalton, J. Relevance Transformer: Generating Concise Code Snippets with Relevance Feedback. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual
Event China, 25–30 July 2020. [CrossRef]

77. Soliman, A.S.; Hadhoud, M.M.; Shaheen, S.I. MarianCG: A code generation transformer model inspired by machine translation.
J. Eng. Appl. Sci. 2022, 69, 104. [CrossRef]

78. Yang, G.; Zhou, Y.; Chen, X.; Zhang, X.; Han, T.; Chen, T. ExploitGen: Template-augmented exploit code generation based on
CodeBERT. J. Syst. Softw. 2023, 197, 111577. [CrossRef]

79. Laskari, N.K.; Reddy, K.A.N.; Indrasena Reddy, M. Seq2Code: Transformer-Based Encoder-Decoder Model for Python Source
Code Generation. In Third Congress on Intelligent Systems; Lecture Notes in Networks and Systems; Springer: Singapore, 2023;
pp. 301–309. [CrossRef]

80. Bui, N.D.Q.; Yu, Y.; Jiang, L. Bilateral Dependency Neural Networks for Cross-Language Algorithm Classification. In Proceedings
of the 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER), Hangzhou, China,
24–27 February 2019. [CrossRef]

81. Yang, G.; Zhou, Y.; Chen, X.; Yu, C. Fine-grained Pseudo-code Generation Method via Code Feature Extraction and Transformer.
In Proceedings of the 2021 28th Asia-Pacific Software Engineering Conference (APSEC), Taipei, Taiwan, 6–9 December 2021.
[CrossRef]

82. Alokla, A.; Gad, W.; Nazih, W.; Aref, M.; Salem, A.-B. Retrieval-Based Transformer Pseudocode Generation. Mathematics 2022,
10, 604. [CrossRef]

83. Gad, W.; Alokla, A.; Nazih, W.; Aref, M.; Salem, A. DLBT: Deep Learning-Based Transformer to Generate Pseudo-Code from
Source Code. Comput. Mater. Contin. 2022, 70, 3117–3132. [CrossRef]

84. Acharjee, U.K.; Arefin, M.; Hossen, K.M.; Uddin, M.N.; Uddin, M.A.; Islam, L. Sequence-to-Sequence Learning-Based Conversion
of Pseudo-Code to Source Code Using Neural Translation Approach. IEEE Access 2022, 10, 26730–26742. [CrossRef]

85. Shahbazi, R.; Sharma, R.; Fard, F.H. API2Com: On the Improvement of Automatically Generated Code Comments Using API
Documentations. In Proceedings of the 2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC),
Madrid, Spain, 20–21 May 2021. [CrossRef]

86. Yang, G.; Chen, X.; Cao, J.; Xu, S.; Cui, Z.; Yu, C.; Liu, K. ComFormer: Code Comment Generation via Transformer and Fusion
Method-based Hybrid Code Representation. In Proceedings of the 2021 8th International Conference on Dependable Systems
and Their Applications (DSA), Yinchuan, China, 5–6 August 2021. [CrossRef]

87. Chakraborty, S.; Ahmed, T.; Ding, Y.; Devanbu, P.T.; Ray, B. NatGen: Generative pre-training by “naturalizing” source code. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Singapore, 14–18 November 2022. [CrossRef]

88. Geng, M.; Wang, S.; Dong, D.; Wang, H.; Cao, S.; Zhang, K.; Jin, Z. Interpretation-based Code Summarization. In Proceedings
of the 2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC), Melbourne, VI, Australia, 15–16
May 2023. [CrossRef]

89. Thongtanunam, P.; Pornprasit, C.; Tantithamthavorn, C. AutoTransform: Automated code transformation to support modern
code review process. In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 21–29
May 2022. [CrossRef]

90. Yu, C.; Yang, G.; Chen, X.; Liu, K.; Zhou, Y. BashExplainer: Retrieval-Augmented Bash Code Comment Generation based on
Fine-tuned CodeBERT. In Proceeding of the 2022 IEEE International Conference on Software Maintenance and Evolution (ICSME),
Limassol, Cyprus, 3–7 October 2022. [CrossRef]

91. Lin, B.; Wang, S.; Liu, Z.; Xia, X.; Mao, X. Predictive Comment Updating with Heuristics and AST-Path-Based Neural Learning:
A Two-Phase Approach. IEEE Trans. Softw. Eng. 2023, 49, 1640–1660. [CrossRef]

https://doi.org/10.1145/3510003.3510172
https://doi.org/10.1145/3324884.3416591
https://doi.org/10.1109/icse43902.2021.00026
https://doi.org/10.1145/3397271.3401215
https://doi.org/10.1186/s44147-022-00159-4
https://doi.org/10.1016/j.jss.2022.111577
https://doi.org/10.1007/978-981-19-9225-4_23
https://doi.org/10.1109/saner.2019.8667995
https://doi.org/10.1109/apsec53868.2021.00029
https://doi.org/10.3390/math10040604
https://doi.org/10.32604/cmc.2022.019884
https://doi.org/10.1109/ACCESS.2022.3155558
https://doi.org/10.1109/icpc52881.2021.00049
https://doi.org/10.1109/dsa52907.2021.00013
https://doi.org/10.1145/3540250.3549162
https://doi.org/10.1109/icpc58990.2023.00026
https://doi.org/10.1145/3510003.3510067
https://doi.org/10.1109/icsme55016.2022.00016
https://doi.org/10.1109/TSE.2022.3185458


Electronics 2024, 13, 767 25 of 25

92. Karakatic, S.; MiloÅ¡evic, A.; Hericko, T. Software system comparison with semantic source code embeddings. Empir. Softw. Eng.
2022, 27, 70. [CrossRef]

93. Siddiq, M.L.; Majumder, S.H.; Mim, M.R.; Jajodia, S.; Santos, J.C.S. An Empirical Study of Code Smells in Transformer-based
Code Generation Techniques. In Proceedings of the 2022 IEEE 22nd International Working Conference on Source Code Analysis
and Manipulation (SCAM), Limassol, Cyprus, 3 October 2022. [CrossRef]

94. Yu, L.; Lu, Y.; Shen, Y.; Huang, H.; Zhu, K. BEDetector: A Two-Channel Encoding Method to Detect Vulnerabilities Based on
Binary Similarity. IEEE Access 2021, 9, 51631–51645. [CrossRef]

95. Mateless, R.; Tsur, O.; Moskovitch, R. Pkg2Vec: Hierarchical package embedding for code authorship attribution. Future Gener.
Comput. Syst. 2021, 116, 49–60. [CrossRef]

96. Arshad, S.; Abid, S.; Shamail, S. CodeBERT for Code Clone Detection: A Replication Study. In Proceedings of the 2022 IEEE 16th
International Workshop on Software Clones (IWSC), Limassol, Cyprus, 2 October 2022. [CrossRef]

97. Kovacevic, A.; Slivka, J.; Vidakovic, D.; Grujic, K.-G.; Luburic, N.; Prokic, S.; Sladic, G. Automatic detection of Long Method and
God Class code smells through neural source code embeddings. Expert Syst. Appl. 2022, 204, 117607. [CrossRef]

98. Zhang, A.; Fang, L.; Ge, C.; Li, P.; Liu, Z. Efficient transformer with code token learner for code clone detection. J. Syst. Softw.
2023, 197, 111557. [CrossRef]

99. Liu, K.; Kim, D.; Bissyande, T.F.; Kim, T.; Kim, K.; Koyuncu, A.; Kim, S.; Le Traon, Y. Learning to Spot and Refactor Inconsistent
Method Names. In Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal,
QC, Canada, 25–31 May 2019. [CrossRef]

100. Cabrera Lozoya, R.; Baumann, A.; Sabetta, A.; Bezzi, M. Commit2Vec: Learning Distributed Representations of Code Changes.
SN Comput. Sci. 2021, 2, 150. [CrossRef]

101. Wang, S.; Wen, M.; Lin, B.; Mao, X. Lightweight global and local contexts guided method name recommendation with prior
knowledge. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Athens, Greece, 23–28 August 2021. [CrossRef]

102. Nguyen, S.; Phan, H.; Le, T.; Nguyen, T.N. Suggesting natural method names to check name consistencies. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (ICSE ‘20). Association for Computing Machinery, New
York, NY, USA; 2020; pp. 1372–1384. [CrossRef]

103. Xie, R.; Chen, L.; Ye, W.; Li, Z.; Hu, T.; Du, D.; Zhang, S. DeepLink: A Code Knowledge Graph Based Deep Learning Approach
for Issue-Commit Link Recovery. In Proceedings of the 2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), Hangzhou, China, 24–27 February 2019. [CrossRef]

104. Borovits, N.; Kumara, I.; Krishnan, P.; Palma, S.D.; Di Nucci, D.; Palomba, F.; Tamburri, D.A.; van den Heuvel, W.-J. DeepIaC:
Deep learning-based linguistic anti-pattern detection in IaC. In Proceedings of the 4th ACM SIGSOFT International Workshop on
Machine-Learning Techniques for Software-Quality Evaluation, Virtual, USA, 13 November 2020. [CrossRef]

105. Ma, W.; Zhao, M.; Soremekun, E.; Hu, Q.; Zhang, J.M.; Papadakis, M.; Cordy, M.; Xie, X.; Traon, Y.L. GraphCode2Vec: Generic
code embedding via lexical and program dependence analysis. In Proceedings of the 19th International Conference on Mining
Software Repositories, Pittsburg, PA, USA, 23–24 May 2022. [CrossRef]

106. Wan, Y.; He, Y.; Bi, Z.; Zhang, J.; Sui, Y.; Zhang, H.; Hashimoto, K.; Jin, H.; Xu, G.; Xiong, C.; et al. NaturalCC: An Open-Source
Toolkit for Code Intelligence. In Proceedings of the 2022 IEEE/ACM 44th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), Pittsburgh, PA, USA, 22–24 May 2022. [CrossRef]

107. Zaharia, S.; Rebedea, T.; Trausan-Matu, S. CWE Pattern Identification using Semantical Clustering of Programming Language
Keywords. In Proceedings of the 2021 23rd International Conference on Control Systems and Computer Science (CSCS), Bucharest,
Romania, 26–28 May 2021. [CrossRef]

108. Zaharia, S.; Rebedea, T.; Trausan-Matu, S. Machine Learning-Based Security Pattern Recognition Techniques for Code Developers.
Appl. Sci. 2022, 12, 12463. [CrossRef]

109. Barr, J.R.; Shaw, P.; Abu-Khzam, F.N.; Thatcher, T.; Yu, S. Vulnerability Rating of Source Code with Token Embedding and
Combinatorial Algorithms. Int. J. Semant. Comput. 2020, 14, 501–516. [CrossRef]

110. Saletta, M.; Ferretti, C. A Neural Embedding for Source Code: Security Analysis and CWE Lists. In Proceedings of the 2020 IEEE
International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence
and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and
Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17–22 August 2020. [CrossRef]

111. Hamed, A.A.; Zachara-Szymanska, M.; Wu, X. Safeguarding authenticity for mitigating the harms of generative AI: Issues,
research agenda, and policies for detection, fact-checking, and ethical AI. IScience 2024, 27, 108782. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10664-022-10122-9
https://doi.org/10.1109/scam55253.2022.00014
https://doi.org/10.1109/ACCESS.2021.3064687
https://doi.org/10.1016/j.future.2020.10.020
https://doi.org/10.1109/iwsc55060.2022.00015
https://doi.org/10.1016/j.eswa.2022.117607
https://doi.org/10.1016/j.jss.2022.111557
https://doi.org/10.1109/icse.2019.00019
https://doi.org/10.1007/s42979-021-00566-z
https://doi.org/10.1145/3468264.3468567
https://doi.org/10.1145/3377811.3380926
https://doi.org/10.1109/saner.2019.8667969
https://doi.org/10.1145/3416505.3423564
https://doi.org/10.1145/3524842.3528456
https://doi.org/10.1109/icse-companion55297.2022.9793799
https://doi.org/10.1109/cscs52396.2021.00027
https://doi.org/10.3390/app122312463
https://doi.org/10.1142/S1793351X20500087
https://doi.org/10.1109/dasc-picom-cbdcom-cyberscitech49142.2020.00095
https://doi.org/10.1016/j.isci.2024.108782

	Introduction 
	Code Embeddings and Transformers 
	Methodology 
	AI-Supported Programming Tasks 
	Code Summarization 
	Bug Detection and Correction 
	Code Completion 
	Code Generation Process 
	Code Translation 
	Code Comment Generation 
	Duplicate Code Detection and Similarity 
	Code Refinement 
	Code Security 

	Datasets 
	Conclusions 
	References

