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Abstract: With the emergence of blockchain technology, the cryptocurrency market has experienced
significant growth in recent years, simultaneously fostering environments conducive to cybercrimes
such as phishing scams. Phishing scams on blockchain platforms like Ethereum have become a grave
economic threat. Consequently, there is a pressing demand for effective detection mechanisms for
these phishing activities to establish a secure financial transaction environment. However, existing
methods typically utilize only the most recent transaction record when constructing features, resulting
in the loss of vast amounts of transaction data and failing to adequately reflect the characteristics of
nodes. Addressing this need, this study introduces a multiscale feature fusion approach integrated
with a graph convolutional network model to detect phishing scams on Ethereum. A node basic
feature set comprising 12 features is initially designed based on the Ethereum transaction dataset in
the basic feature module. Subsequently, in the edge embedding representation module, all transaction
times and amounts between two nodes are sorted, and a gate recurrent unit (GRU) neural network is
employed to capture the temporal features within this transaction sequence, generating a fixed-length
edge embedding representation from variable-length input. In the time trading feature module,
attention weights are allocated to all embedding representations surrounding a node, aggregating
the edge embedding representations and structural relationships into the node. Finally, combining
basic and time trading features of the node, graph convolutional networks (GCNs), SAGEConv, and
graph attention networks (GATs) are utilized to classify phishing nodes. The performance of these
three graph convolution-based deep learning models is validated on a real Ethereum phishing scam
dataset, demonstrating commendable efficiency. Among these, SAGEConv achieves an F1-score of
0.958, an AUC-ROC value of 0.956, and an AUC-PR value of 0.949, outperforming existing methods
and baseline models.

Keywords: blockchain; Ethereum; phishing scam detection; graph convolutional networks; feature fusion

1. Introduction

Blockchain technology, serving as the cornerstone for numerous cryptocurrencies such
as Bitcoin and Ethereum [1], boasts a transaction processing capacity of 14.8 transactions
per second [2] and ensures the permanent recording of transactions between parties. In
addition, blockchain technology has also achieved initial success in fields such as man-
ufacturing [3], agri-food [4], healthcare [5], and energy [6]. The ascent of blockchain has
ushered in profound economic and technological shifts, particularly in digital assets and
cryptocurrencies. However, this rapid evolution inevitably spawns a spectrum of security
challenges, turning cryptocurrency and blockchain platforms into hotbeds for diverse crim-
inal activities [7]. Since 2017, phishing scams on the Ethereum platform have constituted up
to 50% of incidents [8], with victims incurring losses of up to USD 645,000 within a single
week and attackers amassing illegal profits exceeding USD 3,000,000 within a month [9].
Such substantial economic damages undermine stakeholders’ confidence in blockchain
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development; hence, pinpointing phishing scams on Ethereum emerges as a paramount
concern for researchers [10,11].

Traditional phishing often involves constructing counterfeit platforms like fake web-
sites or software [12]. Attackers deceive users into believing they are interacting with legiti-
mate entities, aiming to harvest sensitive information or prompt monetary transactions [13].
Such activities can manifest across various online platforms, including emails [14], social
media, and sham websites. Nonetheless, within the Ethereum context, attackers eschew
reliance on fabricated platforms, opting instead for tactics like high-reward promotions or
directly disseminating false transaction addresses to victims via emails and chat groups,
thus directly inducing cryptocurrency transfers [15]. These fraudulent activities predomi-
nantly occur within blockchain-related social media, chat groups, and Initial Coin Offering
(ICO) platforms. Given the absence of a fixed pattern in Ethereum phishing scams, tradi-
tional detection methods prove ineffective [16].

Current research endeavors are focused on detecting phishing scam accounts on
blockchain platforms like Ethereum. Researchers extract information from Ethereum user
transaction data, categorize users into nodes based on unique addresses, and classify
these nodes by capturing their features [17]. Presently, two predominant methodologies
exist for feature extraction from nodes: one relies on manual feature engineering [18,19],
employing traditional machine learning models for classification; the other involves apply-
ing various graph embedding techniques to the Ethereum transaction network to extract
deep features [20]. Manual feature engineering-based methods heavily depend on the
manual extraction of pertinent and productive features, such as out-degree, in-degree,
total transaction amount, and time of the last transaction for a user. This process, de-
manding professional involvement, is both time-consuming and labor-intensive [9], and
the extracted features merely represent user states, failing to encapsulate the relations
between users, thereby marginally enhancing the accuracy of phishing detection. Adopting
graph embedding techniques marks a novel breakthrough, yet it predominantly focuses on
the topological structure within the transaction network, overlooking copious temporal
transaction data [21]. Consequently, existing techniques inadequately integrate the topo-
logical and temporal transaction information between nodes, resulting in embeddings that
insufficiently represent nodes and, in turn, impair phishing detection performance.

To address these challenges, this article proposes a multiscale feature fusion model
leveraging graph convolutional networks for detecting Ethereum phishing scams. Our
research contributes in the following ways:

(1) This study introduces a multiscale feature fusion model to detect phishing scam
accounts on Ethereum. This model integrates manually extracted basic features with
aggregated temporal transaction information and combines these with the topological
structure of the transaction network, yielding comprehensive, practical, and in-depth
features. Experimental outcomes demonstrate that this model achieves superior F1-
scores, AUC-ROC values, and AUC-PR values in detecting Ethereum phishing scam
accounts, surpassing existing methods and baseline models.

(2) The GRU mines all temporal transaction data between target nodes and their first-
order neighbors, generating edge embedding representations. An attention mecha-
nism assigns weights to these edge embeddings, aggregating them with structural
relationships into the nodes to form time trading features, thereby further enriching
the node embedding representations.

(3) Graph convolutional-based deep learning models detect Ethereum phishing scams,
categorizing them based on nodes. The efficacy of this model is validated through
comparisons with random walks, deep learning, and machine learning approaches.

The remainder of this article is organized as follows. Section 2 delineates the dif-
ferences between traditional phishing networks and Ethereum phishing networks, and
introduces the existing techniques for detecting Ethereum phishing. Section 3 details the
technical specifics and the overarching detection framework of the proposed model, which
employs multiscale feature fusion and graph convolutional networks for Ethereum phish-
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ing scam detection. Subsequently, in Section 4, we present the evaluation metrics and
loss functions for assessing the performance of phishing detection. Section 5 describes the
dataset and experimental setup used, evaluates the performance of the proposed model
in detecting phishing on Ethereum, and analyzes the sensitivity of the model parameters.
Finally, conclusions and future work are discussed in Section 6.

2. Related Works

Traditional phishing often involves impersonating genuine company websites to har-
vest users’ personal information, such as phone numbers, passwords, home addresses,
etc. [22]. To tackle this issue, researchers have proposed multiple solutions [23]. For in-
stance, Zouina and Outtaj [24] introduced a novel, lightweight phishing detection method
entirely based on the Uniform Resource Locator (URL), employing the Support Vector
Machine (SVM) as a classifier, and achieved a recognition rate of 95.80%. Compared to
traditional phishing scenarios, phishing methods on Ethereum are more diverse. Phishers
can send fake emails or messages to a vast pool of potential buyers before a cryptocur-
rency launch [25], luring them into transferring funds to a specific address. Consequently,
conventional URL-based phishing detection methods do not apply to issues encountered
on Ethereum.

Current Ethereum phishing scam detection methods predominantly fall into two cate-
gories. The former relies on professionals manually extracting pivotal features, followed
by classification through machine learning algorithms. For instance, Chen et al. [19] con-
structed a transaction graph by collecting all transactions and labeling phishing addresses
in Ethereum and proposed a graph-based cascade feature extraction method. They also in-
troduced the dual-sampling ensemble algorithm, integrating multiple basic models trained
through sampling samples and features, ultimately selecting LightGBM as the classifier.
This approach successfully identified phishing accounts within the Ethereum blockchain
system. Wen et al. [26] proposed two phishing detection frameworks: a feature learning-
based framework and a phishing obfuscation framework based on inserted transaction
records. Within the feature learning-based framework, they mined transaction records to
extract multiple transaction features, including account and network features, combining
these with machine learning models for phishing detection. Experiments demonstrated the
effectiveness of this framework in phishing detection. Furthermore, a phishing obfuscation
framework based on inserted transaction records was designed to achieve unidirectional
phishing obfuscation by inserting malicious transaction records into accounts, thereby
validating the robustness of the detection framework.

The latter category employs graph embedding techniques to reduce the dimensionality
of high-dimensional graph data, constructing transaction graphs to obtain nodes’ embed-
ding representations. For instance, Grover et al. [27] introduced Node2vec. This method
maximizes the preservation of neighborhood possibilities in a node network by learning
the mapping of nodes to a low-dimensional feature space. This approach effectively ex-
plores different neighbors and retains the local structural features of the data. Building
on this, Wu et al. [28] proposed a novel network embedding algorithm, trans2vec. Unlike
Node2vec, trans2vec does not randomly select the next node as part of the node sequence.
It obtains edge weights based on the total amount of transactions between two nodes and
the time of the last transaction, proving more suitable for Ethereum phishing detection.
Chen et al. [21] viewed accounts and transactions as nodes and edges, respectively, and
proposed an Ethereum phishing scam detection method using GCN and an autoencoder.
This method effectively aggregates the network’s node features and spatial structure and
can be extended to general feature engineering, emphasizing the importance of topological
structure for node representation. Compared to some baseline methods, this approach
demonstrated optimal performance.

Wen et al. [7] depart from graph embedding methods, introducing the hybrid deep
learning model LBPS, which is LSTM (Long Short-Term Memory)—FCN (Fully Convolu-
tional Network) and BP neural network-based phishing scam accounts detection model.
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This method provides a novel approach for feature extraction from transaction records. It
utilizes a BP neural network to capture implicit relationships among features extracted
from transaction records. It employs an LSTM-FCN neural network to capture the temporal
features in all transaction records of the target accounts. Experimental results indicate
that LBPS outperforms baseline model methods and existing approaches, with an F1-score
of 97.86%.

3. Methods

In this section, as illustrated in Figure 1, the proposed framework is elucidated in detail,
comprising four main modules: basic feature module, edge embedding representation
module, time trading feature module, and phishing node classification module based on
GCN. The real Ethereum dataset, collected by Lin et al. [29], is utilized. It was sourced
from the Ethereum block explorer and analytics platform Etherscan (etherscan.io, (accessed
on 1 March 2024)) via its API, gathering historical transaction data of target accounts.
Considering the vast scale of total transaction records, the K-order subgraph sampling
method [30] is employed to capture the local structure of target accounts. After the data
processing is completed, we select a set of target nodes and their neighboring nodes, extract
all transaction data between them, and sort these data by transaction time. Subsequently,
we input the time series data into a GRU to obtain adjustable dimension data, that is,
edge embedding representations. This operation is shown in the red area of Figure 1.
By repeating the above steps for the target nodes, we can obtain all edge embedding
representations between the target node and its surrounding neighbor nodes. Next, we
employ an attention mechanism to capture the information acquisition weights of the
edge embedding representations. Multiplying the edge embeddings by the weights and
then aggregating them yields the target node’s time trading features, as shown in the time
trading features module in the blue area of Figure 1. Finally, the obtained time trading
features are concatenated with the node’s basic features to achieve a complete feature
representation of the node, and a graph convolutional neural network is used to detect
the node.
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3.1. Basic Features

Blockchain is characterized by decentralization, immutability, openness, and anonymity.
Hence, on the Ethereum platform, due to its openness, transaction records of all nodes
(users) are accessible. However, the anonymity aspect precludes obtaining specific features
of nodes. The initial dataset encompasses four features: from, to, transaction amount,
and timestamp. Based on the acquired initial dataset, a 12-dimensional feature set was
devised as the basic features for the target nodes. These basic features include total
transaction count, outgoing transaction count, incoming transaction count, total neighbor
count, average transaction amount, total transaction amount, average outgoing transaction
amount, average incoming transaction amount, total outgoing transaction amount, total
incoming transaction amount, the amount of the last outgoing transaction, and the amount
of the previous incoming transaction.

3.2. Edge Embedding Representation

In the basic feature module, temporal information is noted to be overlooked. Conse-
quently, this module introduces temporal information to diversify the feature set further. It
processes a large volume of temporal transaction information between two nodes into fixed-
dimensional data to obtain node embedding representations better in subsequent steps.

Specifically, a target node is first selected, and all transaction information between
it and one of its neighboring nodes is gathered: timestamps and transaction amounts.
Notably, the transaction amount is positive for transactions initiated by the target node
and negative for received transactions, enhancing phishing scam detection performance by
incorporating transaction direction. Assuming target node o and neighbor node h, after
processing and ascendingly sorting transactions between the node pair <o, h>, the time
sequence can be obtained. The formula can be defined as follows:

Time Sequence = [t1, a1, t2, a2, t3, −a3, · · · , tn, an] (1)

where tn represents the timestamp of the nth transaction and an represents the amount of
the nth transaction, with the sign indicating transaction direction.

The obtained time series data are inputted into the GRU, as it selectively updates and
forgets information, demonstrating the capacity to model dependencies in time series data
over extended periods. This allows the GRU to capture deep temporal features between
nodes. Compared to LSTM, it has a more straightforward structure, making it easier to train
and perform better with less data. Below are the mathematical expressions and parameter
descriptions of the GRU [31], starting with the reset gate:

rt = σ(Wr· [ht−1, xt]) (2)

where rt is the reset gate vector at time step t, σ is the sigmoid function, Wr is the weight
matrix of the reset gate, ht−1 is the hidden state of the previous time step, and xt is the
input of the current time step. Next is the update gate:

zt = σ(Wz · [ht−1, xt]) (3)

where zt is the update gate vector at time step t and Wz is the weight matrix for the update
gate. Next is the candidate hidden state:

∼
ht = tanh(W · [rt × ht−1, xt]) (4)

where
∼
ht is the candidate’s hidden state at time step t and W is the weight matrix for the

candidate’s hidden state. Next is the final hidden state:

ht = (1 − zt) × ht−1 + zt ×
∼
ht (5)
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where ht is the final hidden state at time step t, which is the weighted sum of the hidden state

from the previous time step ht−1 and the current candidate’s hidden state
∼
ht. After inputting

the time series into the GRU, we can obtain the EER (edge embedding representation). The
formula is defined as follows:

EER = GRU([t1, a1, t2, a2, t3, −a3, · · · , tn, an])
= [ta1, ta2, ta3, · · · , tam]

(6)

where tam represents the mth dimensional edge embedding representation between
nodes o and h, with m being the set dimension of edge embedding representation. The
GRU captures the deep temporal relationships of ordered transaction times and directed
amounts between nodes in this module. The obtained fixed-dimensional m-edge embed-
ding representation lays the foundation for subsequent analysis and processing.

3.3. Time Trading Features

In Ethereum, the transaction network differs from other modes, as nodes do not
carry representative information. Research indicates that reliance solely on manually
designed features does not comprehensively reflect the nodes’ state, necessitating more
node feature capture. In Ethereum, a node often engages in multiple transactions with
other nodes. The aim is to integrate these transactions into the feature representation of
the node. Hence, edge embedding representations for any two nodes have been obtained
in previous modules. The subsequent challenge lies in aggregating all edge embedding
representations for a target node. The key to solving the aggregation issue is obtaining the
weight for each edge. The adopted approach utilizes an attention mechanism to capture
the information of edge embedding representations and derive weights, detailed by the
following formula:

weight = so f tmax(GRU([t1, a1, t2, a2, t3,−a3, · · · , tn, an])) (7)

Upon obtaining all of the weights of the target node o, we can multiply the edge
embedding representation and the weights and then aggregate them to obtain the TTF
(time trading features) of the node o. The formula is as follows:

TTFo = ∑
h∈No

EERh·weighth (8)

where TTFo represents the time trading features of node o, No denotes the neighbor-
ing edges of node o, edge h ∈ No, EERh is the embedding representation of edge h,
and weighth is the weight of edge h.

3.4. Phishing Scam Detection Based on GCN

Following these steps, the nodes’ basic and time trading features have been acquired.
Next, these two are concatenated to form a comprehensive feature representation of the
node. To determine whether a node is a phishing node and to further integrate the topolog-
ical information of the node into its features, three distinct types of graph convolutional
neural networks will be utilized for experimentation: GCN, SAGEConv, and GAT.

GCN is a commonly used neural network for graph-structured data [32]. Its core
concept involves updating the feature representation of a node by aggregating its features
and those of neighboring nodes. The fundamental formula of GCN is as follows:

H(l+1) = σ

(
∼
D

− 1
2 ∼

A
∼
D

− 1
2

H(l)W(l)

)
(9)

where H(l) represents the node feature matrix at layer l;
∼
A = A + IN , where A is the

adjacency matrix of the graph and IN is the identity matrix. This operation introduces
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self-connections, allowing nodes to consider their features while aggregating the features

of neighbors.
∼
D is the degree matrix of

∼
A, W(l) is the weight matrix at layer l, and σ is the

activation function.
SAGEConv iteratively aggregates and updates the feature representations of nodes

to capture neighbor information within the graph structure [33]. Unlike traditional GCN,
SAGEConv designs a learnable aggregation function to aggregate the features of neighbor-
ing nodes, enabling GraphSAGE to better scale to large-scale graph data. The computation
in a SAGEConv layer can be divided into two steps: aggregating the features of neighbor
nodes and updating the features of the target node. The fundamental formula is as follows:

hl
N(v) = Aggregatel

({
hl−1

u , ∀u ∈ N(v)
})

(10)

hl
v = σ

(
W l ·CONCAT

(
hl−1

v , hl
N(v)

))
(11)

where hl
v represents the feature vector of node v at layer l; N(v) denotes the set of neighbor

nodes of node v; Aggregatel is the aggregation function at layer l, used for aggregating the
features of neighbor nodes; W l is the trainable weight matrix at layer l; σ is the activation
function; CONCAT represents the concatenation operation, used to concatenate the features
of node v itself with the aggregated neighbor features.

GAT introduces an attention mechanism, dynamically determining the contribution
of neighbor nodes on the feature update of the central node by calculating the attention
coefficients between nodes [34]. This mechanism allows GAT to handle irregular graph
data and adaptively determine the importance between nodes, enhancing the expressive
capability of the model for the graph structure. The formula is as follows:

h′i = σ

 ∑
j∈N(i)

αijWhj

 (12)

αij = so f tmax
(

LeakyReLU
(

aT[Whi ∥ Whj
]))

(13)

where hi represents the feature vector of node i, h′i represents the updated feature vector
of node i, N(i) denotes the set of neighbor nodes of node i, W is the trainable weight
matrix, αij is the attention coefficient between nodes i and j, a is the trainable weight vector
of the attention mechanism, and ∥ denotes the concatenation operation.

4. Metrics

Phishing scam detection is a binary classification problem. Accuracy, precision, F1-
score, recall, AUC-ROC, and AUC-PR will be used to evaluate the performance of the
proposed model. These metrics depend on four terms: true positive (TP), true negative
(TN), false negative (FN), and false positive (FP) [35]. These correspond to the number
of positive cases correctly predicted by the model, the number of negative cases correctly
predicted by the model, the number of positive cases predicted as negative by the model,
and the number of negative cases predicted as positive. The specific formulas are as follows:

Accuracy =
TP + FN

TN + FN + TP + FP
(14)

Precision =
TP

TP + FP
(15)

F1 − Score = 2 × Recall × Precision
Recall + Precision

(16)

Recall =
TP

FN + TP
(17)



Electronics 2024, 13, 1012 8 of 16

The closer the ROC curve is to the top left corner, the better the performance of
the classifier. AUC-ROC is an important metric for measuring the quality of classifiers;
the larger the AUC value, the better the model performance. The PR curve reflects the
relationship between precision and recall of the model. AUC-PR measures how many true
positives the model can capture while maintaining a high precision rate. The loss function
used is Cross Entropy Loss, which measures the difference between the model’s predicted
probability distribution and the true label’s probability distribution. The formula can be
defined as follows:

Loss = −(ylog p + (1 − y)log(1 − p)) (18)

where y is a binary variable indicating whether the category is correct or not; p represents
the probability of the model correctly predicting the category.

5. Experiments and Results
5.1. Data Description

The dataset employed real Ethereum data acquired by Lin et al. [29], comprising
445 nodes identified as phishing nodes by Etherscan and an equal number of unlabeled
random nodes. Additionally, K-order sampling was utilized to capture the local information
of accounts. This sampling method generates a directed K-order subgraph centered around
each target account. Considering the potential for illicit transactions in the preceding node
and the subsequent three nodes of the target node, the dataset collated qualifying subgraphs
for 890 target nodes, eventually amalgamating into a large-scale network with 86,623 nodes.
The dataset was partitioned into 70% for training and the remainder for testing.

5.2. Experimental Environment

The experimental section was implemented using the Python programming language.
The runtime and testing environment included a 13th Gen Intel(R) Core (TM) i9-13900HX
2.20 GHz CPU, sourced from Intel Corporation, Santa Clara, CA, USA, NVIDIA GeForce
RTX 4060 Laptop GPU and 16.0 GB RAM, sourced from NVIDIA Corporation, Santa Clara,
CA, USA. Windows 11 operating system, version 22H2, is developed and produced by
Microsoft Corporation, headquartered in Redmond, WA, USA, and PyTorch version 1.13.1.

To comprehensively evaluate the performance of the proposed phishing scam detec-
tion model, it was compared with traditional deep learning models, deep learning models
integrating attention mechanisms, and classic machine learning models, as well as meth-
ods like LightGBM [36], Deep Walk [37], and Node2Vec [27]. During the experimental
process, particular attention was paid to two key factors: timestamp mapping [38] and
GRU aggregation dimensions. The impact of these factors on model performance is signifi-
cant. Through in-depth analysis of timestamp mapping at different time steps and diverse
settings for GRU aggregation dimensions, this study revealed these factors’ influence on
the model’s overall performance. This process optimized the precision of phishing scam
detection and enhanced its efficiency, providing more effective technical support for com-
bating phishing scams. Moreover, to understand the significance of each module, ablation
experiments were designed using only basic features and only time trading features [39].
The hyperparameters of the graph convolution-based deep learning model used are shown
in Table 1.

Table 1. Graph convolution model parameters.

Settings Hyperparameters

Graph convolution layers
Layer 1: GraphConv (17, 128)
Layer 2: ReLU ()
Layer 3: GraphConv (128, 17)

FC layer Layer 1: Linear (17, 2)

Configuration Epoch = 500; learning rate = 0.001; batch size = 256;
optimizer = ‘Adam’; loss = ‘Cross Entropy Loss’
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5.3. Results
5.3.1. Performance of Different Parameters

To explore the impact of time step length and GRU aggregation dimension on model
performance, experiments were initially conducted with the SAGEConv model, focusing
on different time step lengths and aggregation dimensions. Figure 2a displays the trend of
model metrics on the test set with varying time step lengths. The X-axis represents time
in seconds, incrementing by 1800 s per time step. It is evident from the graph that when
the time step length reaches 3600 s, all metrics attain peak performance. However, as the
time step length increases, a general downward trend in metrics is observed, reaching the
lowest performance at 10,800 s. This phenomenon indicates that excessively low or high
time step lengths may adversely affect model performance. Therefore, when selecting the
time step length, careful consideration of model performance is imperative to ensure an
appropriate time interval, allowing the model to capture and utilize temporal transaction
information more accurately for optimal detection effectiveness.
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In contrast, Figure 4b shows similar trends of metrics for the GATConv model, while 
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Figures 3a and 4a demonstrate the metric trends for the GCNConv and GATConv
models under different time step lengths. Observations indicate that most evaluation
metrics for these two models peak when the time step length is set to 3600 s. Although
the recall value reaches its optimum at 9000 s (for GCNConv) and 7200 s (for GATConv),
considering the overall performance of the models, 3600 s is determined as the optimal
time step length for all three graph convolutional models. This decision is based on a
comprehensive model performance evaluation, ensuring balanced and superior detection
results without compromising other critical metrics.
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Figure 2b details the trend of various metrics for the SAGEConv model on the test set
as the aggregation dimension changes. The results show that the model exhibits high perfor-
mance at smaller aggregation dimensions, reflecting the efficiency of the GRU in aggregating
temporal transaction information. When the aggregation dimension increases from 15 to 25,
the fluctuation in model performance remains minimal, within a range of 0.02. This suggests
that the model is robust against fluctuations in higher aggregation dimensions.

In contrast, Figure 4b shows similar trends of metrics for the GATConv model, while
the GATConv model in Figure 3b exhibits a different pattern, particularly when the ag-
gregation dimension exceeds 15, where the overall performance of the model tends to
decline, indicating that an increase in aggregation dimension adversely affects model per-
formance. Notably, at an aggregation dimension of 5, most metrics for all three models
reach their performance peak. Therefore, after considering various metrics and model
performances, 5 is ultimately selected as the optimal aggregation dimension for all three
graph convolutional models.

5.3.2. Performance of Different Models

For a comprehensive evaluation of the performance of the proposed model, it was
compared with traditional deep learning models, classic machine learning models, and
methods such as random walk. Specific comparison results are presented in Table 2. Three
graph convolution-based deep learning methods were employed, including GCN, SAGE-
Conv, and GAT. These methods achieved satisfactory results, with SAGEConv performing
optimally, attaining an AUC-PR value of 0.949, AUC-ROC value of 0.956, F1-score of 0.958,
precision value of 0.972, and accuracy value of 0.955. These metrics demonstrate superior
performance compared to other models, except for the recall value, which is 0.945, lower
than the value of 0.986 of GNB (Gaussian Naive Bayes). Deep learning includes three mod-
els: CNN (convolutional neural network), LSTM, and Attention-CNN. Table 2 shows that
the overall performance of deep learning models surpasses traditional machine learning
models and random walk methods but falls short of graph convolution-based deep learning
models. This may be due to the inability of traditional deep learning models to learn the
topological relationships between nodes, resulting in inferior performance. Among these,
the Attention-CNN model performs relatively better than the GAT model. Random walk
methods, Node2Vec, and Deep Walk show average performance, with Node2Vec perform-
ing relatively better as its AUC value exceeds traditional machine learning methods. This
might be attributed to the biased selection of the next node by Node2Vec, allowing for
better perception of the information preceding and succeeding a node. Among machine
learning methods, the widely used LightGBM achieved an F1-score of 0.884, performing
well compared to traditional machine learning and random walk methods.
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Table 2. Performance of different models in detecting phishing scams.

Method Models Accuracy Precision F1-Score Recall AUC-ROC AUC-PR

Graph convolution
SAGEConv 0.955 0.972 0.958 0.945 0.956 0.949
GCNConv 0.936 0.951 0.941 0.932 0.937 0.923
GATConv 0.925 0.957 0.930 0.904 0.927 0.917

Deep learning
CNN 0.914 0.956 0.918 0.884 0.917 0.908
LSTM 0.906 0.942 0.912 0.884 0.909 0.896

Attention-CNN 0.925 0.938 0.931 0.925 0.925 0.908

Random walk
Node2Vec 0.764 0.784 0.757 0.731 0.878 0.861
Deep Walk 0.730 0.750 0.721 0.694 0.798 0.790

Machine learning

LightGBM 0.873 0.878 0.884 0.890 0.871 0.842
RF 0.854 0.869 0.866 0.863 0.853 0.825

SVM 0.622 0.593 0.720 0.959 0.554 0.575
GNB 0.588 0.567 0.740 0.986 0.584 0.592

Furthermore, confusion matrices were utilized to analyze the SAGEConv, GCNConv,
and GATConv models, with the corresponding results depicted in Figure 5, respectively.
The numbers in the confusion matrices include the true positive rate and false negative rate
for phishing scam classification. The numbers on the diagonal represent the quantity of
correctly classified samples. In contrast, the numbers off the diagonal indicate the quantity
of samples where predicted classifications differ from actual classifications, i.e., the quantity
of misclassified samples. Analysis of the confusion matrices reveals that SAGEConv
exhibits commendable performance on the Ethereum dataset, while the performances of
GCNConv and GATConv are comparatively less satisfactory.
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in Figure 6a,b. Due to excessive fluctuations in the original accuracy and loss curve data 
for SAGEConv, which did not adequately reflect the convergence trend, an exponentially 
weighted moving average [40] was employed to reduce data fluctuations, resulting in 
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For a more intuitive demonstration of model performance in phishing detection, ac-
curacy and loss curves on the training and test sets of the Ethereum dataset are provided.
Given the optimal performance of SAGEConv, only its results are displayed, specifically
in Figure 6a,b. Due to excessive fluctuations in the original accuracy and loss curve data
for SAGEConv, which did not adequately reflect the convergence trend, an exponentially
weighted moving average [40] was employed to reduce data fluctuations, resulting in
graphics that more accurately reflect the change in trends. Exponentially weighted moving
average denotes the exponentially decreasing weighting coefficients over time, with coeffi-
cients for values closer to the current moment being larger. The smoothed curves indicate
that loss and accuracy have stabilized, suggesting effective model training.
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tional deep learning methods. Figure 7a,b show the accuracy curves of different models 
for the training and test sets. It can be observed from the figure that the accuracy curve of 
LSTM for the training set is higher than other models, including SAGEConv, after conver-
gence. However, in the test set, the curve of LSTM is only higher than that of CNN, while 
the accuracy of SAGEConv is higher. This indicates that LSTM may be overfitting on the 
training set, resulting in insufficient generalization performance. In contrast, although 
SAGEConv performed averagely on the training set, it performed well on the test set, in-
dicating that the model has good generalization ability and robustness. 
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Figure 8a,b showcase the loss curves of different models for the training and test sets. 
It can be observed that LSTM achieves less loss from the start, with no significant change 
in loss as training epochs increase. This further suggests a potential overfitting issue with 
LSTM, resulting in mediocre classification effects. Conversely, the loss with SAGEConv 
gradually decreases with the increase in training epochs, ultimately converging and fi-
nally achieving better performance. 

Figure 6. Accuracy and loss curves of SAGEConv in training and test sets.

In addition, comparative curves for accuracy and loss for the training and test sets are
also provided between graph convolution-based deep learning methods and traditional
deep learning methods. Figure 7a,b show the accuracy curves of different models for the
training and test sets. It can be observed from the figure that the accuracy curve of LSTM
for the training set is higher than other models, including SAGEConv, after convergence.
However, in the test set, the curve of LSTM is only higher than that of CNN, while the
accuracy of SAGEConv is higher. This indicates that LSTM may be overfitting on the
training set, resulting in insufficient generalization performance. In contrast, although
SAGEConv performed averagely on the training set, it performed well on the test set,
indicating that the model has good generalization ability and robustness.
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Figure 8a,b showcase the loss curves of different models for the training and test sets.
It can be observed that LSTM achieves less loss from the start, with no significant change
in loss as training epochs increase. This further suggests a potential overfitting issue with
LSTM, resulting in mediocre classification effects. Conversely, the loss with SAGEConv
gradually decreases with the increase in training epochs, ultimately converging and finally
achieving better performance.

Figure 9a,b present the ROC and PR curves of different models for the test set, demon-
strating the SAGEConv model’s performance superiority. Figure 9a,b show that the top
three highest AUC-ROC and AUC-PR values belong to graph convolution-based deep
learning models, indicating that network models integrating node topological structures
can detect phishing scams more effectively. Specifically, the top-performing model is SAGE-
Conv, with an AUC-ROC value of 0.9561 and an AUC-PR value of 0.9485. This surpasses
the other two graph convolution-based models and exceeds traditional deep learning
models, machine learning models, and random walk methods.
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Overall, deep learning models perform better at handling this binary classification
problem compared to random walk methods and machine learning models. Among ran-
dom walk algorithms, Node2Vec is considered to have commendable performance among
non-deep learning methods, revealing that in dealing with graph-structured data, ran-
dom walk-based methods might hold more advantages over traditional machine learning
methods. This suggests that random walk algorithms like Node2Vec can more effectively
capture interactions and hidden patterns between nodes, providing a beneficial analytical
tool for graph-structured data analysis of complex relationships and structural features of
graph data.

5.3.3. Performance of Different Feature Fusion Methods

To validate the effectiveness of each module, the basic feature module and time trading
feature module were removed separately, and the corresponding experimental results
under the SAGEConv model are presented in Figure 10. The results indicate a decline in
model detection performance following the removal of either module. Specifically, after
the removal of the time trading feature module, the AUC-ROC of the model decreased
by 3.5%, the AUC-PR by 4.7%, and the F1-score by 3%. This phenomenon is mainly
attributed to the ability of the GRU to effectively learn and extract a significant amount of
temporal transaction information between two nodes, thereby forming representative edge
embeddings. This result highlights the importance of temporal transaction information
in phishing scam detection and points to the critical role of time trading features within
the model.
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A noticeable decline in performance metrics was observed after removing the basic fea-
ture module, underscoring the importance of manually designed features for the detection
task. Especially in environments like Ethereum, where nodes inherently lack features, man-
ually designed features become crucial in imparting explicit meanings to nodes. However,
based on previous research, reliance solely on manually designed features is inadequate for
further enhancing detection performance. This is primarily because integrating structural
relationships and temporal information between nodes into the feature design process is
challenging. This calls for a more considerate utilization and incorporation of interaction
patterns and temporal dynamics between nodes in feature design to capture and utilize
information within the Ethereum network more comprehensively. Therefore, the basic
feature module and time trading feature module complement each other, both being indis-
pensable. Together, they form a complete feature framework that fully leverages the basic
characteristics of nodes and delves into the temporal transaction dynamics between nodes,
offering a new solution for effective phishing scam detection.

6. Conclusions

To reduce the frequency of phishing scams in blockchain and attract more investors,
this paper proposes a multiscale feature fusion method combined with a graph convolu-
tional network to enhance the performance of phishing scam detection on Ethereum. This
model integrates manually extracted basic features and aggregated temporal transaction in-
formation features and fuses them with the topological structure of the transaction network,
yielding a more comprehensive, effective, and in-depth set of features, further enhancing
the performance of Ethereum phishing detection.

Specifically, the basic features of nodes were first designed based on the Ethereum
transaction dataset. Next, by employing the GRU, temporal transaction information be-
tween nodes was mined to obtain embedding representations of all edges between a node
and its first-order neighbors. In the time trading feature module, weights were assigned to
the embedding representations of each edge using an attention mechanism, aggregating
structural and temporal transaction information into the nodes. Finally, combining the
nodes’ basic and time trading features, a graph convolution-based deep learning model
was used to classify nodes. The model’s effectiveness was evaluated using a real-world
Ethereum dataset, demonstrating superior performance compared to existing methods.



Electronics 2024, 13, 1012 15 of 16

While this study has achieved promising results on the dataset in question, the gener-
alization and scalability of its capabilities remain to be assessed. Therefore, future research
plans involve deploying the model in blockchain phishing scam detection scenarios. This
will not only validate the robustness of the model but also lay a practical foundation for
further optimization and enhancement of the model’s performance. Currently, phishing
scams remain a significant challenge in the blockchain domain, and it is hoped that more
researchers and blockchain platform practitioners will join this line of research, working col-
lectively to contribute to the construction of a safer and more reliable blockchain ecosystem.
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