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Abstract: Timely and accurate fault location in active distribution networks is of vital importance to
ensure the reliability of power grid operation. However, existing intelligent algorithms applied in fault
location of active distribution networks possess slow convergence speed and low accuracy, hindering
the construction of new power systems. In this paper, a new regional fault localization method based
on an improved northern goshawk search algorithm is proposed. The population quality of the
samples was improved by using the chaotic initialization strategy. Meanwhile, the positive cosine
strategy and adaptive Gaussian–Cauchy hybrid variational perturbation strategy were introduced
to the northern goshawk search algorithm, which adopted the perturbation operation to interfere
with the individuals to increase the diversity of the population, contributing to jumping out of the
local optimum to strengthen the ability of local escape. Finally, simulation verification was carried
out in a multi-branch distribution network containing distributed power sources. Compared with
the traditional regional localization models, the new method proposed possesses faster convergence
speed and higher location accuracy under different fault locations and different distortion points.

Keywords: fault location; northern goshawk algorithm; distribution network; distributed power
supply; zoning

1. Introduction

Distribution networks are located at the end of the power system and connect with
users directly. It is particularly important to ensure the operational stability of the distri-
bution network. Under the influence of the double carbon background, more and more
distributed generation (DG) systems are being connected to distribution networks and,
in this situation, the direction of the system power flow would no longer be unique. The
traditional distribution network is transformed into a multi-directional complex active
distribution network (ADN), and the structure of the distribution network would be more
complex, leading to the increase in the difficulty of fault location, which brings great chal-
lenges to the stable operation of the ADN [1,2]. Thus, it is of great research significance to
study the fault localization methods suitable for ADNs [3–9].

Due to the access of DGs, when a fault occurs, the fault characteristics of ADNs are
quite different from those of traditional distribution networks [10], which can be mainly
summarized as follows: (1) The location of access points and the access capacity of DGs
affect the direction of the system power flow and the amplitude of the fault current [11].
(2) The outputs of each DG are uncertain, causing uncertainty in the fault transient process.
(3) The low-voltage distribution network possesses more branches and their line parameters
are unevenly distributed, increasing the complexity of fault analysis [12]. Against the
background of automated upgrades of distribution network equipment, the research of
fault localization methods based on the current information uploaded by feeder terminal
units (FTUs) has become a hot spot [13].
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A variety of distribution network fault localization methods have been put forward,
which can be classified according to the localization results: Fault routing, fault ranging,
and fault segment localization [14]. And the realization of research methods is mainly
based on matrix algorithms and intelligent algorithms. The matrix algorithm [15] combines
the distribution network topology with the current information uploaded by the FTU to
generate the fault discrimination matrix and locates the fault section through matrix opera-
tion; the intelligent algorithm is based on the theory of “minimum fault diagnostic set” and
converts the fault section localization problem into a mathematical optimization problem,
which could be solved using intelligent algorithms. The authors of [16] use the multiverse
algorithm to locate faults in distribution networks, which improves the algorithm through
the introduction of the adaptive elite strategy and adaptive mutation operation and, though
the localization ability of the method is not bad, it requires a lot of computational resources
and has some limitations in treating some specific faults. The authors of [17] propose a
localization method based on the vulture search algorithm, which improves the algorithm’s
optimization ability by introducing the crossover operator, the non-uniform variation oper-
ator, and the somersault foraging strategy. However, the high computational cost in fault
localization limits its application. The matrix algorithm and the chaotic binary particle
swarm algorithm were used to solve the distribution network fault localization problem
in [18], which establishes the causal association matrix and criterion of zones and nodes
based on the actual structure of the distribution network. Nevertheless, the convergence
and stability of the algorithm need to be further considered since they determine whether
the method could be effectively applied in ADNs. The authors of [19] apply an improved
algorithm based on the quantum ant colony algorithm to solve the distribution network
fault location problem; the authors of [20] verify that introducing the improved sine–cosine
algorithm into the local development stage of the algorithm increases the population diver-
sity at the late iteration stage, prevents the algorithm from falling into a local optimum, and
effectively improves the algorithm’s solution accuracy and convergence speed; the authors
of [21] propose an improved differential evolution algorithm, self-adaptive differential
evolution with Gaussian–Cauchy mutation (SDEGCM), which introduces two strategies,
Gaussian–Cauchy mutation and parameter self-adaptation, to improve the performance
of the algorithm; the authors of [22] employ a Hunger Games search algorithm based on
Gaussian–Cauchy variants, however, the selection and adjustment of the parameters of
the above four algorithms have a large impact on the results, and sufficient parameter
optimization and testing are needed for specific problems.

To solve the problem, this paper proposes a zonal fault localization model for distribu-
tion networks based on the improved northern goshawk optimization (INGO). The chaotic
initialization strategy was used to improve the quality of the sample population, and the
sinusoidal cosine strategy and the adaptive Gaussian–Cauchy hybrid variance perturbation
strategy were introduced into the northern goshawk search algorithm (NGSA), which used
perturbation operations to interfere with the individuals to improve the diversity of the
sample population, contributing to jumping out of the local optimum to strengthen the
ability of local escape. Finally, the effectiveness and reliability of the proposed method
were verified by comparing with the northern goshawk optimization (NGO) algorithm,
gray wolf optimization (GWO) algorithm, and whale optimization algorithm (WOA).

2. Distribution Network Zonal Fault Localization Model
2.1. Distribution Network Zoning Models and Systems

Distribution system problems include the short circuit, overload, ground fault, and
other fault problems. Zonal fault localization in distribution networks means dividing
the distribution network into a series of zones and monitoring and analyzing the flow
of electrical energy in each zone to help locate the positions where faults occur quickly.
This zonal fault localization method can help improve the accuracy and efficiency of
fault diagnosis and shorten the fault-processing time, ensuring the stable operation of the
power system.
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Taking the dual-source distribution network shown in Figure 1 as an example, it is
stipulated that the state of the end nodes in each region represents the state of the whole
region. The first level of the hierarchical localization model uses an algorithm to locate the
region where the fault occurs according to the regional state, and the second level locates the
specific faulty zone within the region obtained from the localization. For example, a fault
occurs in zone 9 in the distribution network. The first level starts the regional localization
with the algorithm according to the state of each region and provides the localization results
for the Region 3 failure; the second level starts the specific segment localization according
to the state of nodes 8, 9 in Region 3 to determine the faulty zone.

Figure 1. Distribution network zoning model diagram.

2.2. Coding Methods

In order to accurately determine the direction and source of the fault current when a
fault occurs in a zone, this paper defines that the direction of current flow from the main
power supply to the load side is the positive direction. Ij denotes the uploaded value of the
fault current at node j. Ij = 1 when the FTU detects a forward fault current, Ij = −1 when
the FTU detects a reverse fault current, and Ij = 0 when the FTU does not detect a fault
current, as shown in Equation (1).

Ij =


1, positive fault current flowing at switch
0, no fault current flowing at the switch

−1, reverse fault current flowing at switch
(1)

2.3. Construction of Switching Functions

The switching function can realize the conversion of line fault state and switch fault
information. Considering the switching of distributed power supply, the switching function
can be defined as follows [19]:

I*
j =


u

M1

∏ Ku

(
1 − ∏

j,Su

Xj,Su

)×


j,d
N2

∏ Xj,d

−


d

M2

∏ Kd(1 − M1)

×


j,u
N1

∏ Xj,u

 (2)

where I∗j is the switching function value of node j, also known as the desired state value; Ku

and Kd are the power casting coefficients of the upstream and downstream regions of node j,
respectively, and the coefficients are set to 1 when there is a power supply input, otherwise,
they are set to 0; ∏ Xj,Su is the value of all zones or operations between node j and each
upstream power supply; ∏ Xj,Sd is the value of all zones or operations between node j
and each downstream power supply; ∏ Xj,Sd and ∏ Xj,Su are the values of the upstream
and downstream zones or operations of node j, respectively; M1 and M2 are the number
of power sources of node j upstream and downstream, respectively; N1 and N2 are the
number of the zones of the node upstream and downstream, respectively.
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2.4. Objective Function and Switching Function

The principle of localization based on the FTU fault current information is to minimize
the sum of the difference between the uploaded and actual values of the currents at
each node. The smaller the sum of the difference, the higher the similarity between the
solved fault situation and the actual fault situation. The objective function was defined by
Equation (3) [19].

F(X) =

j=1
N

∑
[∣∣∣Ij − I∗j

(
Xj
)∣∣∣+θ

∣∣∣Xj

∣∣∣] (3)

where θ is the factor preventing misjudgment and θ
∣∣Xj
∣∣ the factor preventing misjudgment

for node Xj. When the uploaded value of a zone is not equal to the actual value, there is a
possibility that the minimum value corresponds to a series of faults and, in order to make
up for this shortcoming, θ

∣∣Xj
∣∣ is introduced, and it is set to 0.5.

Taking Figure 1 as an example, when a fault occurs in zone X5 in Region 2, X = [X1,
X2, L, X16] = [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], and the values of switching functions for
node 1 and node 2 in Region 1 can be given by Equation (2) as follows:

I∗1 = (1 − 0)× (X1 | X2 | L | X16)− [(1 − X1 | X2 | X11 | X12 | X13) |
(1 − X1 | X2 | X3 | X4 | X5 | X6 | X14 | X15 | X16)] = 1

(4)

I∗11 = I∗12 = I∗13 = 0 (5)

Similarly, the switching function values of the nodes in Region 3, Region 4, and
Region 5 can be calculated as follows: I∗7 = I∗8 = I∗9 = I∗10= 0, I∗11 = I∗12 = I∗13= 0,
I∗14 = I∗15 = I∗16= −1. It could be found that the switching function values of the nodes in
the faulty region are not equal, while the switching function values of the nodes in the
non-faulty region are equal to that of the nodes at the end of their respective regions. To
further validate the partitioning basis, assuming different zone faults and multiple faults
occur in Region 3 and there is no information distortion, the switching function values of
all the nodes in the non-faulty regions can be calculated, as shown in Table 1.

Table 1. Switching function values for each node under different fault conditions.

Fault Area Region 1 Region 3 Region 4 Region 5

X3 I∗1 = I∗2 = 1 I∗7 = I∗8 = I∗9 = I∗10 = 0 I∗11 = I∗12 = I∗13 = 0 I∗14 = I∗15 = I∗16 = −1
X3, X4 I∗1 = I∗2 = 1 I∗7 = I∗8 = I∗9 = I∗10 = 0 I∗11 = I∗12 = I∗13 = 0 I∗14 = I∗15 = I∗16 = −1

X3, X4, X5 I∗1 = I∗2 = 1 I∗7 = I∗8 = I∗9 = I∗10 = 0 I∗11 = I∗12 = I∗13 = 0 I∗14 = I∗15 = I∗16 = −1

3. INGO-Based Fault Partition Localization Method
3.1. Northern Goshawk Optimization

Northern goshawk optimization [20] (NGO) was proposed in 2022 by Mohammad
Dehghani. It simulates the behavior of the northern goshawk during the hunting process,
which includes prey identification and attack, pursuit, and escape. In the optimization
algorithm for northern goshawks, the hunting process of northern goshawks can be divided
into two stages: the exploration stage (prey identification and attack) and the exploita-
tion stage (pursuit and escape). The mathematical model established based on the NGO
according to the different hunting stages can be summarized as follows:

(1) Exploration stage

In the first stage of northern goshawk hunting, it randomly selects a prey and then
quickly attacks it. The mathematical expression for the behavior of the northern goshawk
in this stage can be presented by Equations (6)–(8).

Pi = Xk, i = 1, 2, . . . , N, k = 1, 2, . . . , i − 1, i + 1, . . . , N (6)
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xnew,pl
i,j =

{
xi,j + r

(
pi,j − Ixi,j

)
, FPi < Fi

xi,j + r
(
xi,j − pi,j

)
, FPi ≤ Fi

(7)

Xi =

{
xnew,pl

i , Fnew,pl
i < Fi

Xi, Fnew,pl
i < Fi

(8)

where Pi is the location of the prey chosen by the i-th northern goshawk; Fpi is the value
of the objective function (the fitness value); k belongs to a random natural number in
[1, N]; xnew,pl

i is the new state of the i-th northern goshawk and xnew,pl
i,j is the fitness value

corresponding to it; R is a random number that belongs to [0, 1] and, furthermore, the
value of i could be either 1 or 2; r and i are random numbers that were used to generate the
stochastic NGO in the search and update the behavior of the random numbers.

(2) Exploitation stage

When the northern goshawk starts the process of capturing the prey, the prey tries to
escape at the same time. During the process of pursuing the escaped prey, the movement
speed of the northern goshawk is extremely fast, and it can capture the prey at any time
and in any place. Assuming that the northern goshawk in this hunt is in the attack position
of radius R, then the mathematical expression for the second stage can be presented by
Equations (9) and (10) [20].

xnew,p2
i,j = xi,j + R(2r − l)Xi,j (9)

R = 0.05(l − t
T
) (10)

Xi =

{
xnew,p2

i , Fnew,p2
i ≤ Fi

xi, Fnew,p2
i ≥ Fi

(11)

where t is the current number of iterations; T is the maximum number of iterations; xnew,p2
i

is the new state of the i-th northern goshawk in the pursuit stage; xnew,p2
i,j is the new state

of the i-th northern goshawk in the j-th dimension in the pursuit stage; and Fnew,p2
i is

the adaptation value in the new state. It can be seen that the NGO achieves parameter
optimization by searching for the optimal penalty parameter c and kernel parameter g of
the diagnostic model system, which could improve the classification accuracy. However,
the following limitations still exist:

(1) During the initialization of the sample population, the distribution of the initial
solution is random and uneven, and the quality of individuals in the population
varies, which can easily lead to a lack of population diversity, resulting in missing the
potential optimal solution.

(2) During the process of prey escape in the second stage, the northern goshawk chases
the prey at extraordinary speed, which can easily lead to the algorithm falling into the
local optimum [20].

3.2. Northern Goshawk Optimization for Binary

The value of zone state can be only 0 or 1, thus the position of the northern goshawk
needs to be represented in binary form. The position of the northern goshawk can be
updated according to the following equations [20].

Sinusoidal(Pi,d+1) = αP2
i,d sin(π × Pi,d) (12)

Pi,d+1 =

{
1, Sinusoidal(Pi,d) ⩾ 0.7

0, Others
(13)

where α = 2.3; Pi,d represents the updated position of individual i after d iterations.
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3.3. The Improvement of NGO

In order to improve the optimization performance of the NGO algorithm used in fault
location in ADNs, the following improvements were carried out:

(1) When the individual northern goshawk chooses another search area, the decision
would be made based on the information available at the previous stage. If the
northern goshawks in the population are all trapped in a localized search, they will
not be able to capture the prey during the global search optimization process accurately.
In order to compensate for this deficiency, the sinusoidal projection was introduced
to promote a more uniform distribution of the northern goshawk population in the
search space, which can solve the problem of “premature convergence” to a certain
extent. Meanwhile, the global detection ability of the algorithm could be further
enhanced by the crossover operation and the non-uniform variation operator. The
crossover operation is to swap the positions of northern goshawk population and
recalculate the fitness value, and when the fitness value of the new positions is better
than that of the previous northern goshawks, the previous northern goshawks would
be replaced, which increases the diversity of northern goshawk population after the
iteration. The non-uniform variation operator is to perturb the position of the northern
goshawks, which helps increase the diversity of the individual population, leading
to an increase in the search range and the search accuracy of the northern goshawk
algorithm. When the non-uniform variation strategy perturbs the position of the
northern goshawks, k dimensions would be randomly selected for each northern
goshawk to be perturbed. Once the new northern goshawk individuals generated
by the perturbation are better than the previous northern goshawk individuals, the
previous northern goshawk individuals would be replaced.

Pt+1 =


Pt − Pt ×

(
1 − r(1−

t
T )

b
)

, r ≥ 0.5

Pt +
(
1 − Pt)×(1 − r(1−

t
T )

b
)

, Others
(14)

where Pt+1 denotes the location of the northern goshawk at the (t + 1)-th iteration; Pt

denotes the position of the northern goshawk at the t-th iteration; T denotes the maximum
number of iterations, for example, T = 100; r is the search range of the northern goshawk
population; b = 2 is a system parameter, which determines the degree of non-uniformity.

(2) The sine–cosine algorithm (SCA) [21] was introduced to avoid trapping in the local
optimum, and the diversity of individuals could be maintained by using the oscillatory
change characteristics of the sine–cosine model working on the positions, which is
beneficial to the improvement of the global search capability of INGO.

For the basic sine–cosine algorithm, the step search factor r1 = a − at/Itermax (a is a
constant, and a = 1 in this paper; t is the number of iterations) has a linear decreasing trend,
which is not conducive to further balancing the global search and local development ability
of the NGO. Thus, a new non-linear decreasing search factor was defined, as shown in
Equation (15), which has a larger weight value and a more slowly decreasing speed during
the early stage, contributing to the improvement of the global optimization ability; it has a
smaller weight value and a more quickly decreasing speed during the later stage, where
the algorithm’s advantage in the local development could be enhanced, accelerating the
process of obtaining the optimal solution.

r′1 = a ×
(

1 −
(

t
Itermax

()η
)
()1/η

)
(15)

where r′1 is the step search factor after updating; Itermax is the maximum number of
iterations; η is the adjustment factor, and η ≥ 1; t is the number of iterations.
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(3) The NGO algorithm is easily trapped in the local optimum during the later iterations,
so the adaptive Gaussian–Cauchy hybrid mutation perturbation strategy [22] was
introduced to enhance the algorithm’s ability to develop locally and search globally,
improving the probability of obtaining the optimal prey location. Since the result of
the mutation perturbation operation has randomness, if the mutation perturbation
operation is carried out on all individuals, the complexity of the algorithm would
be inevitably increased. Thus, in this paper, the mutation perturbation is just carried
out on the optimal individual, and then the positions before and after the mutation
are compared and the best one is chosen to enter the next iteration. To increase the
diversity of the individuals and expand the population search range, Equation (14)
was defined.

Hb(t) = Xb(t) ∗ (1 + µ1 ∗ Gauss(σ) + µ2 ∗ Cauchy(σ)) (16)

where Xb(t) is the optimal position of individual X in the t-th iteration; Hb(t) is the optimal
position of individual X in the t-th iteration after the mixed Gaussian–Cauchy perturbation;
Gauss(σ) is the Gaussian variation operator; Cauchy(σ) is the Cauchy variation operator;
and the weight coefficients µ1 = t/Tmax, µ2 = 1 − t/Tmax, which change progressively in
a one-dimensional linear manner to ensure the balanced and smooth iteration. With the
continuous iteration of the algorithm, positions of most of northern goshawk individuals
would not change much. In this situation, the Gaussian distribution function coefficients
were used to perturb the population, which helps the algorithm to jump out of the local
optimum degrees of freedom and to overcome the inter-dimensional interference problem
in the high-dimensional space at the same time.

3.4. Fault Location Process

The flow chart of fault location based on the improved northern goshawk algorithm is
shown in Figure 2, and the specific steps can be summarized as follows:

(1) Read the fault current status information of sectional switches, contact switches,
circuit breakers, and other components detected by the FTU, then it is uploaded to
the SCADA system of the master station. Based on the information, the actual fault
current arrays of the switching nodes are generated according to the number of nodes.

(2) Initialize the INGO parameters, such as the number of populations, population
dimensions (i.e., total number of nodes), variable range values, and maximum number
of iteration generations.

(3) Initialize the binary northern goshawk population, in which each individual repre-
sents a set of faulty operating states of the feeder line segment [23–26].

(4) Calculate the fitness value and update the position of the northern goshawk individuals.
(5) Introduce adaptive Gaussian–Cauchy hybrid perturbation variant perturbation strat-

egy and sine–cosine strategy. Then, determine whether the maximum value is reached
and, if not, return to step 4.

(6) Determine the fault area and generate initialized individuals by use of the exhaustive
enumeration method, then calculate the adaptation value.

(7) Determine the fault zone, then check whether the fault region and the fault zone match.
If they match, the fault region is determined, and the process is over; otherwise, return
to step 6.
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Figure 2. Program flow chart.

4. Calculus Analysis

To verify the validity of the method proposed in this paper, a mathematical model
of the IEEE 33-node ADN structure was built on the Matlab platform, which is shown in
Figure 3. X1–X33 represent the 33 feeder segments, 1–33 represent the 33 switching nodes,
and K1–K3 represent the access switches of each distributed power source. Due to the
access of distributed power supply, the complexity of fault location increases. During the
simulation experiment, the distributed power supply was connected to the ADN from
random nodes and the number of the distributed power supplies varies. Meanwhile, it
needs to be noted that the data for the troubleshooting algorithms in this paper came from
a local data center and control center in Jilin Province, China.
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Figure 3. Thirty-three-node distribution network zoning model.

4.1. Simulation Test Analysis

Assuming that a fault occurred in zone 7 in Region 6 in Figure 3, all three distributed
power sources were in operation and the fault current information was not distorted.
Firstly, the fault current information uploaded by the FTU can be calculated according to
Equation (3), as [1,1,1,1,1,1,0,0,0,0,−1,−1,−1,0,0,0,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,
−1,−1,0,0,0,0], and then the current information of the end nodes in each region could be ex-
tracted as [1,1,−1,0,−1,0,−1,−1,−1,−1,0], using the improved northern goshawk algorithm
to search for faulty areas, with the corresponding results obtained as [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0].
It can be deduced that a fault occurred in one of the zones in Region 6. Then, the INGO
algorithm was applied and the results of the fitness vs. number of iterations are shown
in Figure 4. The localization result was obtained as [1,0,0,0], i.e., the failure in zone 7 is
consistent with the assumption.

Figure 4. Convergence curve of fault location without distortion of information.

In order to illustrate the fault tolerance of the proposed method better, the distortion
of information was further added to the faulty nodes. It is assumed that faults occurred in
zone 9, zone 12, and zone 22 at the same time and that the state of node 3 changed from
1 to 0, the state of node 18 changed from −1 to 0, the state of node 32 changed from 0 to
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−1. Then, the convergence curve of fault location when node information was distorted
could be calculated and obtained, as shown in Figure 5. Meanwhile, the state matrix
[0,0,1,0,0,1,1,1,0,0,0,0,0] could be obtained, which means that faults occurred in Region 3,
Region 6, and Region 7, respectively. On this basis, the state values of the zones in Region 3,
Region 6, and Region 7 could be further calculated, and the results were [0,1,0], [0,0,1,0],
and [0,1], respectively. It can be reasonably deduced that faults occurred in zone 9, zone 12,
and zone 22, which is in accordance with the hypothetical positions of faults set.

Figure 5. Convergence curve of fault location when node information was distorted.

From Figure 4, it can be seen that the convergence curve presents a straight line after
the first iteration, which means that the method proposed in this paper finds the optimal
solution at the beginning of the iteration, and then the system convergence reaches a stable
state. Similarly, it can be seen from Figure 5 that the convergence curve presents a straight
line after the third iteration, indicating that the method proposed in this paper could find the
optimal solution after two iterations. Thus, one conclusion could be drawn firmly that the
INGO algorithm zonal localization model proposed in this paper is able to accurately locate
the faults in ADNs within the maximum number of iterations, under the preset double
faults without information distortion and triple faults without information distortion.
Moreover, the method also has a great advantage in terms of the convergence speed.

4.2. Performance Comparison with Other Typical Algorithms

In this paper, the northern goshawk optimization (NGO) algorithm, gray wolf op-
timization (GWO) algorithm, and whale optimization algorithm (WOA) were chosen to
carry out the comparative experiment. Single-point and multi-point fault comparison
simulation experiments with different numbers and locations of distributed power sources
connected to the distribution network were conducted. Meanwhile, the positioning ac-
curacy rate and the average number of generations of convergence were taken as the
algorithm’s performance evaluation indexes. Since the above algorithms are all stochastic
optimization algorithms, each algorithm was repeated 20 times in the experiment, then the
average values of the performance evaluation indexes of each algorithm were calculated
and obtained.

4.2.1. Single-Point Fault

Taking the IEEE 33-node ADN model in Figure 3 as an example, in order to simu-
late the distributed power supply access to the distribution network with different num-
bers and access locations, four experiments were set as shown in Table 2. For example,
[K1,K2,K3] = [0,0,0] represented that none of the distributed power sources were connected
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to the distribution grid and, when a fault occurred in zone X11, the FTU equipment recorded
the information as [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], and the out-
put positioning information was [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].
The comparison curves of the algorithm iterations are shown in Figure 6a. Similarly,
and the simulation results of the experiments [K1,K2,K3] = [1,0,0], [K1,K2,K3] = [0,1,1],
[K1,K2,K3] = [1,1,1] are shown in Figures 6b and 6d, respectively.

Table 2. Single Point of failure simulation example.

[K1,K2,K3] Faulty
Area

FTU Equipment Reporting
Information

Positioning Output
Results

Positioning
Results

[0,0,0] X11 [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] X11

[1,0,0] X19 [1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,
1,−1,−1,0,0,0,0,0,0,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,] X19

[0,1,1] X9 [1,1,1,1,1,1,1,1,0,0,−1,−1,−1,0,0,0,−1,
−1,−1,−1,−1,−1,−1,0,0,0,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] X9

[1,1,1] X28 [1,1,1,1,1,1,0,0,0,0,−1,−1,−1,0,0,0,−1,
−1,−1,−1,1,1,−1,−1,−1,−1,−1,−1,−1,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] X28
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4.2.2. Multi-Point Faults

Taking the IEEE 33-node ADN model in Figure 3 as an example, in order to simu-
late the distributed power supply access to the distribution network with different num-
bers and access locations, four experiments were set as shown in Table 3. For example,
[K1,K2,K3] = [1,1,1] represented that three distributed power supplies were connected to



Electronics 2024, 13, 1202 12 of 16

the distribution network and, when faults occurred in zone X10, zone X28, and zone X32,
the information recorded by the FTU equipment was [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,−1,−1,1,1,0,0]
and the output positioning information was [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,1,0]. The comparison curves of the algorithm iterations are shown in Figure 7d. Simi-
larly, and the simulation results of the experiments [K1,K2,K3] = [0,0,0], [K1,K2,K3] = [1,0,0],
[K1,K2,K3] = [0,1,1] are shown in Figures 7a and 7c, respectively.

Table 3. Multi-point fault simulation example.

[K1,K2,K3] Faulty Area FTU Equipment Reporting
Information

Positioning Output
Results

Positioning
Results

[0,0,0] X9,X20,X26 [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0] X9,X20,X26

[1,0,0] X15,X21,X32 [1,1,0,0,0,0,0,0,0,0,1,1,1,−1,0,0,−1,−1,
−1,−1,0,0,0,0,0,0,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0] X15,X21,X32

[0,1,1] X10,X21,X32 [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,
0,0,0,0,−1,−1,−1,−1,1,1,1,−1,−1]

[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0] X10,X21,X32

[1,1,1] X10,X28,X32 [1,1,1,1,1,1,1,1,1,0,−1,−1,−1,0,0,0,−1,
−1,−1,−1,1,1,−1,−1,1,1,1,−1,−1,1,1,−1,0]

[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,0,0,1,0] X10,X28,X32

Electronics 2024, 13, x FOR PEER REVIEW 13 of 16 
 

 

  
(c) (d) 

Figure 7. Comparison of algorithms for multi-point fault location with different numbers of DGs 
accessing the distribution network: (a) [K1,K2,K3] = [0,0,0]; (b) [K1,K2,K3] = [1,0,0]; (c) [K1,K2,K3] = 
[0,1,1]; (d) [K1,K2,K3] = [1,1,1]. 

4.2.3. Multiple Points Containing Distortion Faults 
Due to the complex and uncontrollable environment of the distribution network in 

actual operation, the FTU equipment nodes are often exposed to harsh environments, 
which may lead to the phenomena of data loss and data distortion when the detection 
equipment node transmits fault current information. When a fault occurs in the actual 
active distribution network, the FTU device at the node may not be able to upload the 
corresponding fault information owing to the fault, and there would be false alarms, 
omissions, and misreporting. In simulation experiments, under the premise of single-
point and multi-point faults occurring in the distribution network, the FTUs were set to 
upload the fault current information aberration points, and the distribution network 
containing distributed power supply was analyzed for fault tolerance. For example, when 
[K1,K2,K3] = [0,0,0], a fault occurred in zone X11, and the single-point distortion position 
was node 8, the algorithm iteration comparison curves were calculated and obtained, as 
shown in Figure 8a. Similarly, when [K1,K2, K3] = [1,0,0], a fault occurred in zone X9, and 
the multi-point distortion positions were node 6 and node 12, the algorithm iteration 
comparison curve were calculated and drawn as shown in Figure 8b; when [K1,K2, K3] = 
[0,1,1], faults occurred in zone X15 and X27, and the multi-point distortion positions were 
node 3 and node 33, the algorithm iteration comparison curves were calculated and drawn 
as shown in Figure 8c; when [K1,K2,K3] = [1,1,1], faults occurred in zone X13 and X25, and 
the multi-point distortion positions were node 5 and node 23, the algorithm iteration 
comparison curve were calculated and drawn as shown in Figure 8d. 

  

Figure 7. Comparison of algorithms for multi-point fault location with different numbers
of DGs accessing the distribution network: (a) [K1,K2,K3] = [0,0,0]; (b) [K1,K2,K3] = [1,0,0];
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4.2.3. Multiple Points Containing Distortion Faults

Due to the complex and uncontrollable environment of the distribution network in
actual operation, the FTU equipment nodes are often exposed to harsh environments, which
may lead to the phenomena of data loss and data distortion when the detection equipment
node transmits fault current information. When a fault occurs in the actual active distri-
bution network, the FTU device at the node may not be able to upload the corresponding
fault information owing to the fault, and there would be false alarms, omissions, and
misreporting. In simulation experiments, under the premise of single-point and multi-point
faults occurring in the distribution network, the FTUs were set to upload the fault current
information aberration points, and the distribution network containing distributed power
supply was analyzed for fault tolerance. For example, when [K1,K2,K3] = [0,0,0], a fault
occurred in zone X11, and the single-point distortion position was node 8, the algorithm
iteration comparison curves were calculated and obtained, as shown in Figure 8a. Similarly,
when [K1,K2,K3] = [1,0,0], a fault occurred in zone X9, and the multi-point distortion
positions were node 6 and node 12, the algorithm iteration comparison curve were cal-
culated and drawn as shown in Figure 8b; when [K1,K2, K3] = [0,1,1], faults occurred in
zone X15 and X27, and the multi-point distortion positions were node 3 and node 33, the
algorithm iteration comparison curves were calculated and drawn as shown in Figure 8c;
when [K1,K2,K3] = [1,1,1], faults occurred in zone X13 and X25, and the multi-point distor-
tion positions were node 5 and node 23, the algorithm iteration comparison curve were
calculated and drawn as shown in Figure 8d.

Figure 8. Comparison of algorithms for fault location with distortion-containing informa-
tion at multiple points with different numbers of DGs connected to the distribution network:
(a) [K1,K2,K3] = [0,0,0]; (b) [K1,K2,K3] = [1,0,0]; (c) [K1,K2,K3] = [0,1,1]; (d) [K1,K2,K3] = [1,1,1].
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From Figures 6–8, it can be found that the INGO algorithm has an obvious advantage
over the algorithms of NGO, GWO, and WOA in terms of convergence speed, and the
optimal solution can be found in about five iterations for INGO. Though the algorithms
of WOA, SCA, and FFOA are able to search for the optimal solution in some cases, owing
to their weak global optimization ability, average numbers of iterations of 6, 24, and 75
were needed, respectively, before finding the optimal solution. To prevent the occurrence
of contingency, INGO, NGO, GWO, and WOA were carried out another 100 times. The
accuracy and average numbers of iterations of each algorithm were measured in different
cases, and the results are shown in Table 4.

Table 4. Localization results of different algorithms.

Fault
Location

Distortion
Position

INGO NGO GWO WOA

Average
Number of
Iterations

Accuracy
Average

Number of
Iterations

Accuracy
Average

Number of
Iterations

Accuracy
Average

Number of
Iterations

Accuracy

11 None 5 100% 8 100% 10 100% 11 100%
11 X21 6 99% 8.6 96.5% 13 98.5% 12 98%

11,18 None 5 100% 9 100% 12 98% 15 98%
11,18 X5, X26 8.2 96% 10 95% 13 94% 14.5 94%

11,18,27 X12 8 94% 11.2 96% 14 92% 16 93.5%
15,19,28 X7, X15, X32 10.6 90% 12.3 90% 17 89% 19 89.5%

Table 4 shows that as the complexity of the fault type increases, the average number of
iterations of the NGO, the SWO, and WOA for fault location increases while the accuracy
rate decreases. Among the three algorithms, NGO performed best in terms of the average
number of iterations and the solution accuracy. Compared to the previous three algorithms,
for IGNO, the dimensionality is reduced and the computing speed and the accuracy of
results are improved. For example, compared with NGO, there is an average increase of
4.5% in the accuracy of the solution process for INGO. Moreover, INGO performs better
than other optimized search algorithms in terms of computing speed and accuracy, for
example, compared with NGO, the computing speed of INGO is improved by 31.9%, which
presents huge engineering application value.

5. Conclusions

For the multi-branch distribution network containing distributed power supplies, it is
difficult to take into account the localization speed and localization accuracy in multi-point
faults with the occurrence of multi-point data distortion. To solve the above problem, this
paper proposes a new regional fault localization method based on an improved northern
goshawk search algorithm. Simulation experiments have proved that this method could
realize the timely and accurate fault location in ADNs under different fault conditions. The
main conclusions could be drawn as follows:

(1) In the proposed method, the chaotic initialization strategy is used to improve the
quality of the sample population, and the sinusoidal cosine strategy and the adap-
tive Gaussian–Cauchy hybrid variance perturbation strategy are introduced into the
NGSA, which uses perturbation operations to interfere with the individuals to im-
prove the diversity of the sample population, strengthening the ability of local escape
and realizing the obtainment of the optimal solution of fault location in ADNs.

(2) Simulation test analysis indicates that the INGO algorithm zonal localization model
proposed in this paper could be able to accurately locate the faults in ADNs within the
maximum number of iterations, under the preset double faults without information
distortion and triple faults without information distortion.

(3) Through performance comparison with NGO, GWO, and WOA, INGO has a greater
advantage in computing speed and fault localization accuracy. For example, compared
with NGO, there is an average increase of 4.5% in the solution accuracy and 31.9% in
computing speed for INGO.
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