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Abstract: Researchers worldwide have been focusing on accurately predicting the remaining useful
life of electronic devices to ensure reliability in various industries. This has been made possible by
advancements in artificial intelligence (AI), machine learning, and Internet of Things (IoT) technolo-
gies. However, accurately forecasting device life with minimal data sets, especially in industrial
applications, remains a challenge. This paper aims to address this challenge by utilizing machine
learning algorithms, specifically BP, XGBOOST, and KNN, to predict device reliability with limited
data. The remaining life dataset of electronic components is obtained through simulation for training
and testing the algorithms, and the experimental results show that the algorithms achieve a cer-
tain level of accuracy, with the error rates being as follows: BP algorithm, 0.01–0.02%; XGBOOST
algorithm, 0.01–0.02%; and KNN algorithm, 0–0.07%. By benchmarking these algorithms, the study
demonstrates the feasibility of deploying machine learning models for device life prediction with
acceptable accuracy loss, and highlights the potential of AI algorithms in predicting the reliability of
electronic devices.

Keywords: neural networks; machine learning; BP algorithm; XGBOOST algorithm; KNN algorithm;
remaining life prediction

1. Introduction

In recent years, electronic devices have been an indispensable factor in the develop-
ment of modern technology [1], and their wide applications have promoted technological
progress and innovation and are omnipresent in our lives. From smartphones [2], tele-
visions [3], and computers to automobiles [4], aerospace [5] technology, medical equip-
ment [6], and industrial machinery, the electrical device reliability of electronic devices
has always been an important issue in electronic engineering [7]. Among electronic de-
vices, power electronic devices have numerous and crucial applications across various
fields. As to power electronic devices, multilayer ceramic capacitors (MLCCs) are versatile
components widely used in various electronic applications, but their adoption in power
electronics remains limited compared to other technologies like aluminum electrolytic
capacitors (AECs). The AEC, in particular, is known for its widespread usage in power
electronics due to its reliability and cost-effectiveness. However, AECs are also susceptible
to certain issues such as aging, temperature variations, and voltage instabilities. Therefore,
ensuring the reliability of power electronic devices is crucial to ensuring the regular oper-
ation of equipment and avoiding losses. Reliability issues involve the performance and
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lifespan of electronic devices under normal operation and extreme conditions [8]. In the
design, production, and use of electronic devices, many factors can lead to reliability prob-
lems, including physical performance, material quality, process technology, environmental
conditions [9], and so on. Artificial intelligence (AI) technology has rapidly advanced
in recent years, revolutionizing numerous fields through its capabilities in automation,
prediction, and decision-making. This transformative technology has found applications in
a wide range of industries, from healthcare and finance to agriculture and transportation.
These AI algorithms represent the latest advancements in the field of artificial intelligence
and are opening up new possibilities. The rapid development of this technology is driving
innovation in many fields, including healthcare, finance, transportation, agriculture, and
more. Recently, researchers have begun to explore the applications of machine learning
in engineering, one of which is predicting the lifetime of electronic devices [10]. However,
there are still many technical challenges in predicting the lifetime of electronic devices.

During operation, electronic devices are subject to various environmental stresses,
such as temperature, electrical power, and humidity, which collectively influence the
product’s lifespan [11]. Accurately predicting the lifecycle of devices can better address
faults in systems, circuits, and equipment. However, predicting the lifespan of capacitors
is a challenging task due to the labor-intensive nature of lifespan data collection, as it
consumes significant time and cannot yield large amounts of lifespan data [12]. Therefore,
predicting the lifespan of capacitors faces challenges related to data quality and availability,
feature selection, and engineering [13]. In recent years, the use of machine learning for
predicting the performance of electrical devices and materials has garnered increasing
attention from researchers worldwide due to its superiority in prediction accuracy [14],
time efficiency, and cost-effectiveness. Wang [15] developed two physics-guided machine
learning frameworks that combine physics-based models and ML algorithms to improve
the ability to predict lifespan. Liu [16] developed a machine learning-based fatigue life
prediction for ultra-high cycle fatigue. First, 173 sets of VHCF experimental data of high-
strength steels were collected to train the ML model. Sensitivity coefficient analysis showed
that inclusions size and maximum stress were the most strongly correlated parameters with
fatigue life and were selected as input features for the final model training. The resulting
ML model predicted S-N curves that were very close to the actual S-N curves. Among the
three algorithmic models, random forest, XG boost and Gradient Boost, the Gradient Boost
model performs well and has the highest accuracy in predicting the VHCF life of high-
strength steels. Zhang [17] proposed a new machine learning prediction method where
the training database contains ultra-high cycle fatigue lives of different metallic materials
obtained from fatigue tests, and two fatigue life prediction models were constructed based
on gradient boosting and random forest algorithms. The vanishing gradient problem is a
common issue in deep learning, where the gradients of the loss function become extremely
small as they propagate back through the layers of a neural network during training. This
can hinder the convergence of the model and result in slower training or even complete
failure to learn.

Compared with deep learning, traditional machine learning has the advantages of
relatively less data requirements [18–21], low computing resource consumption, and gener-
alization capabilities [22–25]. Among them, the BP (Back Propagation) algorithm [26,27],
KNN (K-nearest neighbor) algorithm [28] and XGBOOST algorithm [29–31] are popular
machine learning algorithms used for different purposes. First, the BP algorithm is an
artificial neural network algorithm commonly used for supervised learning tasks such as
classification and regression. It minimizes the overall error by backpropagating errors in
the network and adjusting the weights of connections between neurons [32]. Secondly,
the KNN algorithm is an instance-based non-parametric algorithm commonly used for
classification and regression. It works by finding the k nearest neighbors of a given query
point and then predicting a label or value based on the majority vote or average of the
neighbors. Finally, the XGBOOST algorithm is a gradient boosting algorithm that has
performed well in various machine learning competitions [33]. It combines multiple weak
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predictive models (usually decision trees) into a strong predictive model by iteratively
adding new models, thereby minimizing the overall error. The algorithm is known for its
excellent predictive performance and flexibility in using numerous hyperparameters [34].
The advantages of using a BP neural network, XGBOOST and KNN algorithms to predict
equipment life are as follows: These algorithms can effectively extract features from input
data [35], handle non-linear relationships, and consider complex patterns in data sets
to achieve accurate life predictions [36]. Additionally, these algorithms can handle both
numeric and categorical variables, ensuring robustness and flexibility in the forecasting
process [37,38].

This paper studies the failure and life prediction of electronic components under
complex environmental factors in view of the urgent problems that need to be solved in
the prediction of electronic component failure and life. The focus of the research is to
use three types of machine learning models to predict the life of electronic components,
namely BP, KNN and XGBOOST, and conduct ablation experiments on the three machine
learning models. Among them, the life span of CAK45A-series solid tantalum capacitors
is predicted (regression problem). The experimental results show that the error between
the predicted value and the simulated value using the BP model to predict the life of the
CAK45A-series solid tantalum capacitors was controlled at 0.01–0.02%, the error between
the predicted value and the simulated value using the XGBOOST model to predict the life
of the CAK45A-series solid tantalum capacitors was also controlled at 0.01–0.02%, and the
error between the predicted value and the simulation value obtained using the KNN model
for the life of CAK45A-series solid tantalum capacitors was also controlled at 0.01–0.07%.
Compared with the KNN model, using BP and XGBOOOST to predict the life of electronic
components is more accurate. In short, by predicting the life of electronic components,
electronic components can be maintained or replaced in a timely manner to avoid losses
caused by capacitor failure. By predicting the life of a capacitor, appropriate measures can
be taken before the end of its life is approached to extend the reliability and service life of
the equipment.

2. Design and Analysis

In this experiment, we studied the typical failure mechanisms of capacitive electronic
components, and analyzed and compared the principles and applicable conditions of
three technologies: a BP multi-layer feedforward neural network, KNN algorithm and
XGBOOST algorithm. Based on the impact of simulation errors, we determined which
network prediction model to use as the life prediction model. For the simulation of
electronic components, we tried two software tools, Comsol 6.0 and Icepak, and finally
we chose Icepak for simulation. Comsol is an excellent multiphysics simulation software
with versatile capabilities. However, ANSYS 2022 Icepak has the professional capability
of multi-physics field coupling, taking into account the influences of heat conduction,
convection, radiation, and heat transfer mediums simultaneously. This allows engineers to
conduct comprehensive thermal analysis of complex systems, predicting more accurately
the temperature distribution and heat dissipation performance of devices. We then tested
the actual lifespan of the electronic components and saved the results of each test to create
a self-constructed dataset. Finally, the study used self-built data sets as training data to
construct three corresponding machine learning prediction models and make predictions.
The methods used in the study and the construction process of the data set are shown in
Figure 1.
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Figure 1. Research methods and workflow diagram.

Common failure modes of capacitors include breakdown, open circuit, changes in
electrical parameters (such as excessive capacitance, increased dissipation factor, decreased
insulation performance, or increased leakage current), leakage, corrupted or broken leads,
and cracked or arced insulation. Capacitor failure can occur for various reasons, including
differences in materials, structures, manufacturing processes, performance, and operating
environments. In this study, we focus on changes in electrical parameters, specifically the
decrease in capacitance and the increase in dissipation and leakage current.

In the case of electrolytic capacitors, the capacitance slowly decreases in the early
stages of operation. The continuous repair and thickening of the anodic oxide film by
the working electrolyte under load attributes to this. However, in later stages of usage,
electrolytic capacitors experience a significant increase in dissipation due to the depletion
of electrolytes, leading to the thickening of the solution. The increased viscosity results in
an increase in the equivalent series resistance of the working electrolyte, causing noticeable
capacitor loss. Additionally, the high viscosity of the electrolyte makes it difficult for the
oxidized film layer to fully contact uneven surfaces after corrosion treatment, resulting in a
decrease in effective plate area and a sharp drop in capacitance. These changes indicate
that the capacitor is approaching the end of its service life. Furthermore, excessive viscosity
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of the working electrolyte at low temperatures can also lead to increased loss and a rapid
decrease in capacitance. Figure 2 shows the main problems that currently affect the life of
electronic components.
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Factors such as low manufacturing process levels, inadequate formation of the oxide
film, outdated slicing processes, significant damage to and contamination of the oxide
film, poor formulation of the working electrolyte, low raw material purity, and difficulty in
the long-term stability of the electrolyte’s chemical and electrochemical properties can all
contribute to excessive leakage current and eventual failure. The severe contamination of
chloride ions in electrolytic capacitors can cause decomposition of the oxide film, leading
to perforation and further increasing the leakage current. Additionally, a high impurity
content facilitates current conduction. The presence of copper and silicon impurities
affects the transformation of aluminum oxide to a crystalline structure. In summary, metal
impurities can increase leakage current in electrolytic capacitors, reducing their lifespan.

This study used Icepak for simulation to predict the life of the components and
compared it with the life of the actual tested components, and the error between the results
obtained through simulation and the real measurements was not more than 5%. Figure 3
shows the problems that occurred in the electronic components after the actual test. To
examine whether there were any anomalies in the sample tantalum core, the tantalum
capacitor core was solid-sealed and ground, and a metallographic section was made for
observation. The metallographic section is shown in Figure 3a. Upon examination, a
breakdown point was identified at a single corner of the specimen slice, depicted in thee
right part of Figure 3a. This point of breakdown is situated on the surface of the tantalum
core corner, with no notable irregularities present in other regions of the sample. For
another failed tantalum capacitor device, after opening the sample, the internal overall
appearance was revealed, with local discoloration and a small pinhole observed through
scanning electron microscopy, as shown in Figure 3b. After magnifying the discolored areas
above, obvious surface cracks can be observed, as shown in Figure 3c.
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3. Results

This study utilized three models for predicting the lifespan of electronic components,
namely the BP (Back Propagation) model, XGBoost model, and KNN (K -nearest neighbors)
model. The sensitive parameter data, life and failure data were input into the prediction
models for training. The sensitive parameter data included the Capacitance Value, Loss
Angle, and leakage current. The sensitive variables input into the models consisted of
raw data collected from a self-constructed dataset. The model dependent variable was the
predicted life expectancy. The dataset was divided into training and testing sets in an 8:2
ratio for regression prediction of electronic component lifespan. PyCharm 2022.2.4 was
employed as the training software.

The model is a nonlinear regression model based on the BP neural network (Figure 4a).
The model has three layers, with 20 neurons in the input layer and relu activation function,
10 neurons in the hidden layer with relu activation function, and 1 neuron in the output
layer representing a predicted value. The described nonlinear regression model based on
the BP neural network with specific architecture details, including the number of layers,
neurons per layer, and activation functions, showcased a well-designed framework for
tackling regression problems. Through its sophisticated design and training mechanisms,
the model can effectively learn from data, extract meaningful insights, and provide valuable
predictions in various applications. The optimizer of the model is RMSprop, with a learning
rate of 0.001. RMSprop may be computationally more efficient than Adam because it does
not need to maintain additional momentum terms. In cases where computational resources
are limited, it may be more appropriate to choose RMSprop. Also, in some cases, RMSprop
may converge faster than SGD. Therefore, RMSprop was chosen over Adam or SGD to
better fit the characteristics of the dataset and to perform better in experiments. The loss
function of the model was the mean-squared error (mse), and the evaluation criteria were
the mse and Mean Absolute Error (mae).
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Figure 4. Lifetime prediction of cak45 tantalum capacitor using BP algorithm. (a) Structure diagram
of BP algorithm. (b) Error histogram. (c) Prediction results (the red squares represent the predicted
values). (d) Prediction error. (e) Mae change curves for the training and validation sets during
the training process. (f) Mse variation curves of the training set and validation set during the
training process.

The model selects 10,000 iterations as the maximum number of data fittings. During
the training process, the system will return a history object that stores information about
the loss, mae, and mse. We observed the training effect by checking the mae, val_mae, mse,
and val_mse data in history, and the predicted data of the test set. The output was all the
results of the test set. Figure 4a shows the predicted results of the BP algorithm. The CAK45
solid tantalum capacitor has a total of 50 data points. We used 40 randomly selected data
points as the training dataset and the remaining 10 as the test dataset for model training
and testing. Figure 4b describes the histogram of the errors between the true values and
the predicted values, Figure 4c describes the regression analysis graph of the true values
and the predicted values, and Figure 4d describes the error values between the true values
and the predicted values. The maximum error among the 10 data points was 0.02%. As
seen in Figure 4e,f the average absolute value error and mean square error of the training
data and validation data during the training process decreased gradually with the increase
in the number of training times, and finally tended to zero.

The focal point of this study revolves around a sophisticated nonlinear regression
framework hinged upon the XGBOOST neural network architecture, depicted eloquently
in Figure 5a. Designed specifically for regression tasks, this model operates on the Mean
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Squared Error (MSE) loss function, steering its trajectory towards optimal predictive per-
formance. Embarking on a journey of 10,000 iterations, the model meticulously crafted
an ensemble of decision trees, each contributing to the collective wisdom of the algorithm.
To safeguard against the perils of overfitting, the model’s complexity was meticulously
controlled. A judicious choice was made to limit the maximum depth of each decision tree
to 5, thereby fostering a leaner and more generalizable model architecture. This strategic
decision to opt for shallower trees served as a bulwark against overfitting, ensuring that
the model refrained from memorizing noise within the training data and instead focused
on capturing underlying patterns. Furthermore, the model’s training regimen incorporated
prudent measures to enhance its robustness and resilience. A random sampling ratio of
0.8 was judiciously selected, signifying that 80% of the training data were utilized in the
training of each decision tree. This deliberate choice served to mitigate variance and fortify
the model’s generalization capabilities, enabling it to perform admirably on unseen data.
Delving deeper into the intricacies of model refinement, the gamma parameter emerged as
a critical linchpin in controlling the growth dynamics of individual decision trees. With a
carefully chosen value of 0.1, gamma exerted its influence by regulating the weights for
further splits at the leaf nodes of the tree. By constraining tree expansion, larger gamma
values played a pivotal role in staving off overfitting, thereby imbuing the model with a
heightened degree of resilience against spurious correlations present in the training data.
The training journey of this XGBOOST model was meticulously documented, capturing
vital metrics such as the Mean Absolute Error (MAE) and MSE at every juncture. These
metrics served as beacons, guiding the model towards convergence and offering insights
into its performance trajectory. Central to this experimentation lay the CAK45 tantalum
capacitor dataset, comprising 50 meticulously curated data points. Out of these, 40 were
judiciously earmarked for training purposes, while the remaining 10 were held in reserve
for rigorous testing. It was within this controlled environment that the model’s predictive
prowess was put to the test, with the test set serving as a litmus test for its generalization
capabilities and real-world applicability. In summary, this XGBOOST-based regression
model represents a meticulous synthesis of cutting-edge techniques and prudent method-
ologies, poised to revolutionize the realm of predictive modeling. Its ability to navigate
the complex terrain of regression tasks with precision and resilience underscores its po-
tential as a stalwart ally in the quest for predictive excellence. Figure 5b depicts the error
histogram between the true and predicted values, Figure 5c shows the regression analysis
plot between the true and predicted values, and Figure 5d depicts the error value between
the true and predicted values. The maximum error among the 10 data points was 0.02%.

The model at hand is a sophisticated nonlinear regression system founded on the
K-nearest neighbors (KNN) neural network architecture, as illustrated in Figure 6a. This
model is specifically designed for regression tasks, aimed at predicting continuous values.
Within this framework, a crucial parameter, ‘n_neighbors’, is finely tuned to a value of
5, delineating the count of neighboring data points to be considered in the KNN model.
Throughout the rigorous training regimen, meticulous attention was given to capturing
crucial metrics such as the Mean Absolute Error (MAE) and Mean-Squared Error (MSE).
The training efficacy was closely monitored by scrutinizing the MAE, validation MAE
(val_mae), MSE, and validation MSE (val_mse) data logged in the historical records. Addi-
tionally, the predictive prowess of the model was rigorously evaluated against a dedicated
test set. The dataset under study, the CAK45 solid tantalum capacitor dataset, boasts a total
of 50 meticulously curated data points. For model training and validation, a prudent split
was employed, with 40 data points earmarked for training and the remaining 10 reserved
for rigorous testing. Figure 6b encapsulates the essence of the model’s predictive accuracy
through an insightful error histogram, juxtaposing the true and predicted values. Com-
plementing this, Figure 6c unveils the regression analysis, painting a vivid picture of the
model’s efficacy in approximating the true values. Meanwhile, Figure 6d delves deeper into
the nuances of prediction errors, offering a granular depiction of the disparities between
the true and predicted values. Amongst the test dataset’s 10 meticulously selected data
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points, the maximum error is a minuscule −0.07%, a testament to the model’s remarkable
precision and fidelity in capturing the underlying patterns within the dataset.
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4. Discussion

In the realm of predictive modeling, precision is paramount, and the study under
scrutiny meticulously curated three distinct sets of life result outputs from various machine
learning models for comprehensive comparison, as elegantly illustrated in Figure 7. It is
within this analytical center that the performance disparities amongst the backpropagation
(BP) algorithm, the XGBOOST algorithm, and the K-nearest neighbors (KNN) algorithm
come to light. Remarkably, both the BP algorithm and the XGBOOST algorithm showcased
an impressive error range of 0.01% to 0.02%. This narrow margin of error underscores
the finesse with which these models approximate the elusive concept of capacitor life
expectancy. Their consistent and precise predictions instill confidence in their utility within
real-world applications, where accuracy is paramount. In contrast, the KNN algorithm
exhibited a slightly broader error range spanning from 0.01% to 0.07%. While still falling
within the realms of acceptability, this variance hints at a slightly lower level of consistency
and predictability compared to its counterparts. Despite this, the KNN algorithm remains a
viable contender, especially in scenarios where interpretability and simplicity are prioritized
over pinpoint accuracy. In summation, although all three algorithms yield predictions
within the acceptable range, the XGBOOST algorithm and the BP algorithm emerged as the
torchbearers of accuracy in the realm of capacitor life prediction. Their ability to navigate
the intricate landscape of data with precision and finesse sets them apart, positioning
them as stalwarts in the arsenal of predictive modeling tools. However, it is imperative to
acknowledge the nuanced trade-offs between accuracy, interpretability, and computational
complexity when selecting the optimal algorithm for a given task.
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5. Conclusions

The crux of this research endeavored to tackle the formidable challenge of prognos-
ticating electronic component failures and accurately estimating their lifespans amidst
the labyrinthine intricacies of complex environmental conditions. Harnessing the power
of machine learning, this study embarked on a journey to predict component lifetimes,
leveraging meticulously collected real-world data on capacitor lifespans to construct a
robust and self-contained dataset. Central to this endeavor was three distinct machine
learning models: the backpropagation (BP) algorithm, the XGBOOST algorithm, and the
K-nearest neighbors (KNN) algorithm. Each model was meticulously tailored to discern
the lifespan of electronic components under specific environmental parameters. Through a
rigorous comparative analysis, these models were pitted against each other to ascertain
the most dependable and accurate predictor of component lifetimes. The experimental
findings reflect a promising landscape wherein all three models demonstrate commend-
able performance, yielding predictions that fall within reasonable margins of error. This
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bears well for the application of machine learning in bolstering the safety and reliability
of electronic components. By forecasting the lifespan of these components with a high
degree of accuracy, machine learning models stand as stalwart sentinels, capable of pre-
empting potential faults and enabling timely interventions to fortify equipment safety and
operational reliability. Moreover, the integration of machine learning into decision-making
processes heralds a paradigm shift, reducing the sway of human subjective biases and aug-
menting the objectivity and efficiency of decision-making frameworks. By sifting through
copious amounts of capacitor operational data and erecting robust prediction models, this
research opens avenues for more scientific and effective equipment management, operation,
and maintenance practices. In essence, the fusion of machine learning with prognostic
modeling heralds a new era of safety and reliability in electronic component utilization.
Armed with predictive insights gleaned from comprehensive data analysis, stakeholders
are empowered to chart a course towards enhanced equipment performance and longevity,
thereby ushering in a future where operational uncertainties are mitigated, and equipment
reliability is elevated to unprecedented heights.

Author Contributions: Conceptualization, Y.Q. and Z.L.; methodology, Y.Q.; software, Y.Q.; validation,
Y.Q.; formal analysis, Y.Q.; investigation, Y.Q.; resources, Z.L.; data curation, Z.L.; writing—original draft
preparation, Y.Q.; writing—review and editing, Z.L.; visualization, Y.Q.; supervision, Z.L.; project
administration, Z.L. All authors have read and agreed to the published version of the manuscript.
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