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Abstract: Several cases of Industrial Internet of Things (IIoT) attacks with zero-day vulnerabilities
have been reported. To prevent these attacks, it is necessary to apply an abnormal behavior detection
method; however, there are three main problems that make it hard. First, there are various industrial
communication protocols. Instead of IT environments, many unstandardized protocols, which are
usually defined by vendors, are used. Second, legacy devices are commonly used, not only EOS
(End-of-service), but also EoL (End-of-Life). And last, the analysis of collected data is necessary for
defining normal behavior. This behavior should be separately defined in each IIoT. Therefore, it is dif-
ficult to apply abnormal behavior detection in environments where economic and human investment
is difficult. To solve these problems, we propose a deep learning based abnormal behavior detection
technique that utilizes IIoT communication patterns. The proposed method uses a deep learning
technique to train periodic data acquisition sequences, which is one of the common characteristics
of IIoT. The trained model determined the sequence of packet is normal. The proposed technique
can be applied without an additional analysis. The proposed method is expected to prevent security
threats by proactively detecting cyberattacks. To verify the proposed method, a dataset was collected
from the Korea Electric Power Control System. The model that defines normal behavior based on the
application layer exhibits an accuracy of 79.6%. The other model, defining normal behavior based
on the transport layer, has an accuracy of 80.9%. In these two models, most false positives and false
negatives only occur when the abnormal packet is in a sequence.

Keywords: industrial IoT; industrial 4.0; anomaly detection; industrial control system; security with
deep learning

1. Introduction

The manufacturing industry has changed significantly. In Information Technology,
The Internet of things (IoT) era was an advent. With the pace of it, the industrial control
system (ICS) has also been developing into industrial IoT (IIoT) from factory automation.
Standardization of the ICS, which represents the fourth industrial revolution, such as RAMI
4.0, is actively progressing simultaneously. With these changes, the ICS has been changed
to an open structure which increases the possibility of unconsidered cyberattacks.

Most cyberattacks are low-level and indiscriminate attacks in a normal IT environment.
These can be easily prevented using signature-based countermeasures; however, in an ICS
environment, complex cyberattacks are performed over a longer duration by specialized
hacker groups. The aim of these hacker groups is serious physical and financial damage
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to the target system even if it takes a lot of cost and effort. Therefore, it is hard to prevent.
Since the Stuxnet attack against Iran’s nuclear power plants in 2010, several APT attacks
using zero-day vulnerabilities have been reported [1]. The threat of targeted ransomware
attacks on an ICS is increasing [2], including Colonial Pipeline ransomware attacks.

To respond to such advanced attacks, research on abnormal behavior detection is es-
sential. To find abnormal behavior in traffic, normal behavior should be defined. Anomaly
detection has a lower detection rate than signature-based detection methods; however, it
can detect a zero-day attack which has no signature. Anomaly detection is essential for
preventing zero-day attacks, a important issue in ICS. However, huge effort is required to
analyze the specific characteristics of the system to define normal behavior for anomaly
detection. It is possible to develop abnormal behavior detection equipment through suffi-
cient economic investment in a large-scale ICS, even if it takes a long time to analyze the
characteristics of each system. However, it is almost impossible to apply it to a small-scale
factory because of an economic problem.

To solve this problem, we propose an ICS network anomaly detection method based
on acquired data in [3]. This method focuses on detecting an anomaly in the data area.
However, this method has a shortcoming in that it is difficult to detect false data injection
attacks. It also requires a long preprocessing time to parse entire protocol fields. Therefore,
in this paper, we propose a novel anomaly detection method based on communication
patterns to overcome the shortcomings of our previous study. The proposed technique
automatically calculates the data acquisition cycle of the target ICS and uses it to define
normal behavior. Because this method uses general ICS characteristics, it is applicable to
most ICSs. An RNN based long short-term memory (LSTM) deep learning algorithm is
trained with the automatically analyzed data acquisition sequence to detect anomalies. The
main contributions of this study are as follows:

• As the proposed method defines normal behavior based on the general characteristic
of ICS communication being periodic, it is not dependent on communication protocols
and can be applied to various ICS environments.

• Defining normal behavior is performed automatically; it can be applied without any
knowledge of the domain, thereby reducing the cost of analysis and preventing a
wrong normal behavior definition because of human error.

• The proposed technique is verified using an attack dataset based on the analysis of the
ICS Cyber Kill Chain.

The proposed scheme uses the periodicity of communication, which is a general
characteristic of ICS communication, to define normal behavior. Therefore, it can be applied
to all ICSs where periodic communication is performed, regardless of the communication
protocol. This is discussed in detail in Section 3. It is possible to apply the proposed method
even with insufficient domain knowledge because it can automatically analyze patterns in
communication traffic. An advantage is the prevention of human errors in defining normal
behavior. The communication pattern analysis is presented in detail in Section 4. To verify
the proposed method, we used to collect traffic from an operating Korea Electric Power
Control System as our dataset. The attack dataset was based on an analysis of each step in
the ICS Cyber Kill Chain. The network traffic observed in each attack step was derived and
added to the dataset to create an attack dataset. This is discussed in detail in Section 5.

The remainder of this paper is structured as follows. Studies on intrusion detection
methods in ICSs are discussed in Section 2. The characteristics of an ICS network are
mentioned in Section 3. Based on these characteristics, the proposed method is explained
in Section 4. The proposed method is evaluated in Section 5, and the results are discussed
in Section 6. Finally, we present the conclusions and future work directions in Section 7.

2. Related Works

To prevent cyberattacks on ICSs, many researchers have attempted to develop various
countermeasures for ICSs, such as encryption and authentication in field networks [4–7].
However, due to commercial problems, it is difficult to replace legacy equipment which
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does not support secure communication using encryption and authentication [8]. Most
legacy systems operate with non-secure ICS communication protocols that do not have
security measures such as encryption and authentication. Therefore, an intrusion detection
system for ICSs is required. Research on anomaly detection methods is actively conducted
to prevent zero-day attacks without frequently updating the attack signature database in
ICSs [9].

Studies on anomaly detection for the ICS are classified with two concepts. These two
concepts are classified based on defining normal behavior. One uses data patterns to detect
false data injection (FDI), such as the injection of control commands or the fabrication of
measured data. This attack causes unpredictable device operations. The other focuses on
detecting abnormal network behavior, such as the appearance of a hacked node using
characteristics of network traffic.

Current studies to prevent FDI can be divided into two methods, machine learning-
based and invariant rule mining-based approaches. The machine learning-based studies
in this field are [3,10–12]. In [10], an anomaly detection method that analyzes the noise
pattern of sensors was proposed. This method is highly accurate because it relies on the
hardware characteristics of the sensors. In [11], an autoencoder based anomaly detection
method was proposed. It groups the related network features and learns a normal pattern
for each group. Autoencoders are suitable for anomaly detection because they can be
learned without a labeled dataset, and they can reduce a high-dimensional feature space
to a lower dimension. In [12], a deep learning-based anomaly detection method with
association rule mining was proposed. In a previous study, the author of [3] demonstrated
that an autoencoder can learn the data changing patterns and the relationships between
data by training data in the same operation and presented an autoencoder based anomaly
detection method using these characteristics. Some studies have defined rules based on
data relationships [13–15]. The method proposed in [13] detects anomalies by analyzing
data relationships. It has a low false positive because it relies on the physical characteristics
of the measured data. However, it cannot detect data that has no analyzed invariant rule.
These studies have only focused on transmitted data. Therefore, although they are effective
in detecting false measured data and control commands, they cannot detect other attacks.

Other methods for anomaly detection in ICSs use network traffic characteristics. These
detection methods are based on learning the major features of a packet, the sequential com-
munication pattern with data mining, and so on. References [16,17] tried to train learning
models with the major fields of a packet. In [16], an anomaly detection method that utilizes
the relationships between the major fields of a packet was proposed. The proposed method
extracts the major fields of each protocol layer and learns the relation using a convolutional
neural network (CNN). A method that converts packets into two-dimensional images
and classifies attacks and the normal using a CNN algorithm is proposed in [17]. This
method can be applied to several domains; however, an attack dataset is required because
CNNs involve a supervised learning algorithm. In [18], the ICS communication patterns
were analyzed, and a detection method based on sequential communication patterns was
proposed. In [19], an ensemble method to detect anomaly in CPS was proposed. The model
is composed of 5 different supervised learning models, Logistic Regression, Naïve Bayes,
SVM (Support Vector Machine), KNN (K-nearest Neighbor), and MLP (Multi-Level Per-
ceptron). To apply these studies, it is necessary to select proper features by analyzing the
network traffic and training the learning models because it has high dependency on the
target system. Owing to these shortcomings, a long-time analysis of each system is required
for applying these studies to several systems. This requires a considerable amount of time
and effort.

To overcome these problems, a novel method that can be applied without any ad-
ditional analysis of each network is needed. To develop such a method, we analyze the
network communication pattern of an ICS. This is described in Section 3.
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3. Classification of ICS Network Communication

An ICS is constructed with several field and control devices. The measured values are
transmitted to the control devices from the field devices, and the control devices change the
operation of the field devices using control commands. Most of the traffic is data acquired
from the field devices for monitoring. The traffic for control is comparatively rare. Therefore,
it is possible to predict incoming network traffic because ICS network communication is
static, which is impossible in a general IT network. Network communication in an ICS can
be classified as shown in Figure 1.
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Figure 1. Target of the proposed anomaly detection method.

There are two main types of ICS network communications: that caused by a manual
operation and that driven by an event. Event-driven communication is automatically per-
formed under certain conditions without any administrator intervention. For supervision
and control, two types of event-driven communications can be used together. Basically, the
ICS is designed for automation with minimal administrator intervention. Manual operation
occurs in unusual situations, such as faulty devices. In general, most of the communications
in an ICS are periodic transmissions, whereas the others are the administrator’s manual
operations or value fluctuations [20,21]. ICS communication traffic has a static pattern
because it is designed to perform only supervision and control. As periodic data acquisition
is a general ICS characteristic, it can be used to define the normal behavior of most systems.

Some studies have used periodic communication to define normal behavior [22,23].
In [2], a communication profile was generated by using the difference in arrival times
and by training a support vector machine for anomaly detection. This method can be
used in various domains because it utilizes limited features (packet length and time inter-
val); however, an SVM, one of the supervised learning methods, requires attack data for
training. In [23], an automatic communication period analysis was proposed; however,
it does not consider errors such as network delays. To overcome these shortcomings, we
propose an anomaly detection method based on communication patterns that considers
network delays.

4. Proposed Method

An ICS is composed of low-power devices. It is difficult to apply techniques that
require high computing power. Deep learning technique requires high computing power
for training, and the proposed technique is designed in two phases: a training phase that
trains the deep learning model and an execution phase that detects anomalous behavior.
Due to the two-phase design, training can be performed in devices with a high computing
power, and the execution can be performed in low-power devices. In addition, it can
prevent adversarial attacks that cause the deep learning model to be abnormal by contam-
inating the training data [24]. Details of the two phases are presented in Figure 2. Deep
learning technique has several known problems, e.g., it requires a large amount of data for



Electronics 2024, 13, 1520 5 of 17

training model, fails to distinguish causality from correlations, and always assumes a stable
environment. Despite these problems, deep learning to ICS abnormal behavior detection
can be used. At first, the training data is easy to acquire in ICS networks in which a lot of
communication occurs. The ICS network traffic is usually stable if there is no attack. The
data transmitted in ICS has a relation with each other. Therefore, deep learning technique
is possible to apply ICS abnormal behavior detection.

In the training phase, data preprocessing and communication pattern analysis are
performed before the training model. During preprocessing, traffic is separated based on
the IP, packet parsing, grouping with function code, and target data object. After that,
the analysis for periodic communication patterns is performed in Communication Pattern
Analyzer. At the last of the training phase, the deep learning model is trained using only
the packets that have performed periodic communication.

In the execution phase, preprocessed packet data are injected into the learned deep
learning model, and abnormal behavior is detected based on the prediction of the deep
learning model. The preprocessing is also conducted in the execution phase; however, the
step for grouping packets is not performed. Instead, it generates a sequence of packets
to be used as an input for the deep learning model. Subsequently, a packet sequence is
injected into the deep learning model, and its result is compared with the actual data to
determine whether the incoming packet is normal.

As shown in Figure 2, if the training phase and execution phase are distinguished,
deep learning models can be trained in a high-performance environment. It is good for
high performance where availability is important. The proposed method can be used in
various domains owing to this advantage.

Because the proposed method trains only periodic data transmission, the learned
deep learning model cannot predict manual operation and non-periodic control command
packets. These packets are usually associated with an abnormal status in a manufacturing
process. In other words, a false positive rarely occurs because manual operation and control
command packets are scarcely observed in a stable state. The details of each phase are
described below.
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In the training phase, the deep learning model is trained for the detection model. In
this phase, data preprocessing and communication pattern analysis are performed to learn
the periodic data. In the case of a single communication section, the packet sequence is not
affected by the network delay. However, in the case of several communication sections,
the packet sequence can be twisted owing to a network delay. To prevent this problem,
packets are separated for each communication section, and the packet sequence of each
communication section is used for training. Details of the training phase are presented in
Figure 3.

First, data preprocessing is performed in the training phase for communication pattern
analysis before training the deep learning model. In the preprocessing stage, the time,
source IP, destination IP, function code, and target data object are parsed from the packet,
and the communication section is separated based on the source IP and destination IP.
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Then, grouping is performed based on the function code and data object for communication
pattern analysis.

Communication pattern analysis is performed for each group after preprocessing.
Then, a periodic data communication sequence of the communication section is generated
by combining the periodic transmission sequence of each group. Two observations from
the periodic data communication used in the periodicity analysis are as follows:

• Observation 1. If the dataset has a periodic communication, then none of the periods
is smaller than the largest delta time.

• Proof. If not, there is a P, where P is a period, and P < largest delta time. Let the delta
time, DT, be the largest delta time, composed of T1 and T2. If T1 follows period P, the
packet should arrive at T1 + P < T2. If not, the packet that follows period P should
arrive before T1 + P. These two cases are contradictory because there is no packet in
T1 and T2. Therefore, the existence of a period P that is smaller than the largest delta
time is impossible.

• Observation 2. The data acquisition sequence is not switched in the same communica-
tion section.

• Proof. Network delay is composed of processing delay, queueing delay, transmission
delay, and propagation delay. These four delays have a similar effect on each packet
because the ICS network is static. The propagation delay, processing delay, and trans-
mission delay are always the same for all packets. The changes in queueing delays
are very small because the target network is very static. Therefore, a jumbled data
acquisition sequence does not exist in any single communication section.
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The communication pattern analyzer uses the above two features for periodicity
analysis. The detailed operation of the communication pattern analyzer includes four steps,
as shown in Figure 4.

Figure 4 depicts the traffic acquiring a and b data objects over time. 1⃝ is the data
acquisition details over time in a single communication section, generated via packet
separation during preprocessing. Periodicity analysis is difficult because of the data coming
in simultaneously. Therefore, grouping is performed based on the function code and
data object in step 0. This clearly reveals the periodicity of each datum and helps in the
periodicity analysis. As the example deals with only two data acquisitions, 2⃝, which is
divided into two parts, is derived. In step 1, from 2⃝ to 3⃝, the periodicity of each data
object is checked, and aperiodic data are removed. In step 2, a one-dimensional graph ( 4⃝)
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that displays only periodic data acquisition is derived by combining all the data objects of
the 2-dimensional graph ( 3⃝) from which the aperiodic transmission has been removed.

In step 1, from 2⃝ to 3⃝, we assume the expected value to be the period of data
acquisition and check whether the period of data acquisition is the expected value. In the
case of data object b in Figure 4, db1 is set as the expected period to check the periodicity
because db1 is longer than db2. Here, because db1, which is the maximum value of the simple
delta time, includes delays from the network condition, we use the centroid of the cluster
that contains db1. Therefore, the delta times are clustered, and the centroid of the cluster
that contains the maximum delta time is inferred as the period of data acquisition. If data
communication is periodic, this centroid should be one of the periods.
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When it is determined that the traffic follows the expected period, the previous process
is repeated to check whether another period exists. To prevent that a packet is checked
with duplicate, the checked packet is skipped. After this process is complete, the remaining
packets are excluded from the training dataset because periodicity is not observed. As this
algorithm assumes that packets are captured for a sufficient period, a long-time packet
capture is necessary if the data acquisition cycle is long.

Due to this analysis, the training dataset has only periodic data. Therefore, it is
possible to train the data pattern using LSTM, a type of RNN based deep learning algorithm
specialized in learning time-series data. It can be used for long sequence learning by solving
the vanishing gradient problem of the Vanilla-RNN. Among the various structures of the
LSTM model, we use a many-to-one LSTM model here. This model learns the relationship
with the previous and next data and returns one output. In the case of a unidirectional
LSTM, in which training is performed in one direction, there is a problem, namely that
training is difficult when there is a data pattern that rarely exists. Therefore, for the learning
of the proposed technique, in this study, the model is constructed with a bidirectional LSTM
rather than a unidirectional LSTM. Figure 5 shows the many-to-one bidirectional LSTM
used in the proposed method.

The many-to-one bidirectional LSTM performs a prediction by considering both data
arriving before and after, as shown in Figure 5. This is advantageous when learning the
pattern of a communication section in which communication with a short period and com-
munication with a long period exist together. When the input sequence (xt−2, xt−1, xt, xt+1)
is sequentially input to the model, yt is output through the forward and backward layers.
Because the model is trained such that yt and xt have the same value, an abnormality
detection is possible by understanding whether yt and xt coincide in the execution phase.

In the execution phase, the trained LSTM model is used to determine whether the
packet is normal. Packet parsing and packet separation are performed for each commu-
nication section. Subsequently, the sequence packets are generated for use as an input in
the LSTM model. Unlike the training phase, this sequence includes all aperiodic commu-
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nication. The LSTM model’s prediction and the actual packet are matched to distinguish
between normal and abnormal packets. The operation of the execution phase is presented
in Figure 6.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 5. Many-to-one bidirectional LSTM. 

The many-to-one bidirectional LSTM performs a prediction by considering both data 
arriving before and after, as shown in Figure 5. This is advantageous when learning the 
pattern of a communication section in which communication with a short period and com-
munication with a long period exist together. When the input sequence (𝑥 , 𝑥 , 𝑥 , 𝑥 ) 
is sequentially input to the model, 𝑦  is output through the forward and backward layers. 
Because the model is trained such that 𝑦  and 𝑥  have the same value, an abnormality 
detection is possible by understanding whether 𝑦   and 𝑥   coincide in the execution 
phase. 

In the execution phase, the trained LSTM model is used to determine whether the 
packet is normal. Packet parsing and packet separation are performed for each communi-
cation section. Subsequently, the sequence packets are generated for use as an input in the 
LSTM model. Unlike the training phase, this sequence includes all aperiodic communica-
tion. The LSTM model’s prediction and the actual packet are matched to distinguish be-
tween normal and abnormal packets. The operation of the execution phase is presented in 
Figure 6. 

The execution involves preprocessing for generating the input prediction through the 
deep learning model and the determination of abnormal behavior. When a normal data 
sequence is input into the deep learning model, the prediction and the actual packet is 
matched. Therefore, the abnormality criterion of the proposed method is whether the out-
put of the deep learning model matches the actual data. If the outputs of the deep learning 
model and the packet are the same, then it is determined as normal. If not, it is considered 
abnormal. 

 
Figure 6. Procedure of proposed ICS anomaly detection method—execution phase. 

Figure 5. Many-to-one bidirectional LSTM.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 5. Many-to-one bidirectional LSTM. 

The many-to-one bidirectional LSTM performs a prediction by considering both data 
arriving before and after, as shown in Figure 5. This is advantageous when learning the 
pattern of a communication section in which communication with a short period and com-
munication with a long period exist together. When the input sequence (𝑥 , 𝑥 , 𝑥 , 𝑥 ) 
is sequentially input to the model, 𝑦  is output through the forward and backward layers. 
Because the model is trained such that 𝑦  and 𝑥  have the same value, an abnormality 
detection is possible by understanding whether 𝑦   and 𝑥   coincide in the execution 
phase. 

In the execution phase, the trained LSTM model is used to determine whether the 
packet is normal. Packet parsing and packet separation are performed for each communi-
cation section. Subsequently, the sequence packets are generated for use as an input in the 
LSTM model. Unlike the training phase, this sequence includes all aperiodic communica-
tion. The LSTM model’s prediction and the actual packet are matched to distinguish be-
tween normal and abnormal packets. The operation of the execution phase is presented in 
Figure 6. 

The execution involves preprocessing for generating the input prediction through the 
deep learning model and the determination of abnormal behavior. When a normal data 
sequence is input into the deep learning model, the prediction and the actual packet is 
matched. Therefore, the abnormality criterion of the proposed method is whether the out-
put of the deep learning model matches the actual data. If the outputs of the deep learning 
model and the packet are the same, then it is determined as normal. If not, it is considered 
abnormal. 

 
Figure 6. Procedure of proposed ICS anomaly detection method—execution phase. Figure 6. Procedure of proposed ICS anomaly detection method—execution phase.

The execution involves preprocessing for generating the input prediction through
the deep learning model and the determination of abnormal behavior. When a normal
data sequence is input into the deep learning model, the prediction and the actual packet
is matched. Therefore, the abnormality criterion of the proposed method is whether the
output of the deep learning model matches the actual data. If the outputs of the deep
learning model and the packet are the same, then it is determined as normal. If not, it is
considered abnormal.

Because the learning model trains only periodic transmissions, false positives are
possible when the normal sequence involves a non-periodic transmission. However, as the
proposed method targets the ICS where periodic transmission includes most of the network
traffic, a false positive is rarely observed. If the network is highly periodic, a lower false
positive rate can be achieved through retraining. Details of the retraining are discussed in
Section 6.

5. Evaluation
5.1. Dataset

To verify the proposed anomaly detection method, a dataset was developed by collect-
ing network traffic from the Korean Electric Power System. A total of 70% of the collected
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data were used as a normal training dataset to train the detection model, and the remaining
30% were used to build a normal test dataset for testing. The attack dataset, which includes
abnormal behaviors for verification of the model, is generated by changing the normal test
dataset. In the case of the normal training dataset, the collected data were used without
any changes because there was no abnormality during the network traffic collection period.
The normal test dataset is used to measure the accuracy of the pattern analysis and check
the false positive rate of the detection model. As there was no abnormality during the
collection period, it was built using the remaining 30% of the traffic, as it is similar to the
normal training dataset. The attack dataset is used to evaluate the abnormality detection
capability of the proposed detection model. It was constructed by changing the normal test
dataset. The details of the datasets are as follows:

• Normal training dataset: Used for LSTM learning of the proposed method (70% of
collected traffic/42 GB)

• Normal test dataset: Used for pattern analysis accuracy and false positive analysis of
the proposed technique (30% of collected traffic/18 GB)

• Attack dataset: Used to evaluate the anomaly detection ability of the proposed tech-
nique (Add attack to normal dataset/20 GB)

Network traffic collected over a week in the Korean Electric Power System was used to
construct the normal training dataset and the normal test dataset. Approximately 60 GB of
network traffic was collected over a week, which was confirmed as normal network traffic
without any issues during the actual operation. The collected network traffic is composed of
several periodic data exchanges between 15 sub-systems and one upper-level system, using
the inter control center communications protocol (ICCP) as the communication protocol.
Manufacturing message specification (MMS), which has multiple lower layers because of
the use of OSI 7 layers, was used for the ICCP. Therefore, the ICCP packet can be fragmented
in multiple layers. In the collected traffic, several TCP and COTP fragmentations were
observed. Because of a number of similar communication sections, an experiment was
conducted by selecting one representative communication section. The transmission details
of the representative communication section are described below.

As shown in Table 1, there are seven communication patterns in the traffic in total.
The PDU and service of the MMS are command sets provided by the protocol. It is similar
to the function code in other protocols such as DNP3 and Modbus. Most of the collected
traffic consists of periodic data acquisition using the Information Report service of the
Unconfirmed PDU. The remaining collected traffic consists of the Identify service of the
Confirmed Request PDU and the Confirmed Response PDU. While using the Informa-
tion Report service of the Unconfirmed PDU, a considerable amount of fragmentation is
observed because most of them send a large amount of data at once.

Table 1. Details of the data transmission of the representative communication section.

PDU Service Data Object Period Fragmentation

Unconfirmed Information Report Data #1 4 TCP, COTP
Unconfirmed Information Report Data #2 4 TCP, COTP
Unconfirmed Information Report Data #3 4 TCP, COTP
Unconfirmed Information Report Data #4 4 TCP, COTP
Unconfirmed Information Report Data #5 4 TCP, COTP
Unconfirmed Information Report Data #6 4 TCP, COTP

Confirmed Request Identify - 60 -

The attack dataset was constructed by changing the normal test dataset. An attack
dataset is classified into four types according to the added abnormal behavior to the normal
test dataset. The four types are abnormal command transmission, abnormal command
transmission after dropping normal packets, an attack against network equipment (for
example, denial of service (DoS)), and abnormal data access.
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To generate actual abnormal behaviors, we analyzed the ICS Cyber Kill Chain, which
is shown in Figure 7 [25]. As ICS operates as a closed network that is disconnected from
the outside, direct penetration is difficult. According to the ICS Cyber Kill Chain, the
attack targeting the ICS occurs in two stages. In Stage 1, the attacker attacks the vulnerable
corporate network connected to the ICS network and gains access rights to the internal
network of the ICS. Then, in Stage 2, the attacker directly attacks the ICS using these access
rights. Because the proposed scheme in this study aims to detect attacks on the ICS internal
network, the attack traffic is generated by focusing on Stage 2.
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In Stage 2, attacks targeting the ICS internal network can be observed during the
deliver, install/modify, and execute ICS attack steps. In the deliver step, an attack is
performed through the attack path in Stage 1. In this step, the file transfer command of the
communication protocol used by the target ICS can be utilized. The install/modify step is
the process of installing the transferred file and changing the operation of the target system.
In this process, commands, such as those for the control of the target device and execution
of a specific process of the target device, can be utilized. The execute ICS attack step is
the process of executing the already installed malicious code. The same install/modify
commands can be used in this step. In the MMS Confirmed Request/Response PDU,
services are used for the aforementioned attacks. The Obtain File service is related to file
transfer. The Take Control and Relinquish Control services can control the device. The Start,
Stop Resume, Rest, and Kill services are used to execute and terminate processes. When
an attacker uses these services, detection is impossible with security solutions in general
IT environments that do not support ICS protocols. Therefore, in this study, we focus on
finding abnormal communication using an ICS communication protocol.

If a compromised node exists, an attack can be caused by transmitting abnormal con-
trol commands using the aforementioned services to damage the physical manufacturing
process. In this case, other MMS commands, such as Read and Write, can be used. There-
fore, we generate an attack dataset, which includes transmitting an abnormal file attack,
executing an abnormal process attack, and accessing unauthorized data attacks using read
and write operations. The attack traffic is composed of four types, as shown below:

• Attack Data #1: Inject unused function code
• Attack Data #2: Swap unused function code
• Attack Data #3: Jumble up the packet sequence
• Attack Data #4: Unauthorized data access

Attack Data #1 is an anomaly in which an unused function code is found in the training
phase. It corresponds to an attack where the attacker attempts to install a malicious code
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using the aforementioned services related to files and processes. Attack Data #2 is an
anomaly in which a normal packet is dropped, and a packet containing a function code
that is not used in the training phase is transmitted. This attack differs from Attack Data
#1 in that an attacker intercepts a packet in the middle; in other words, the normal packet
is dropped, and the malicious packet is sent. Attack Data #3 is an anomaly where the
sequence is mixed differently from the training sequence. This is a situation in which a
normal packet block or drop occurs. It can occur because of a service failure in network
devices caused by attacks such as a distributed DoS attack. The final type, Attack Data #4,
is the case in which unauthorized data are accessed, or attempts are made to access data
not observed in the training data. It is similar to performing a reconnaissance attack to
obtain information on the target system.

5.2. Preprocessing and Training

To verify the proposed method, the LSTM model was implemented using TensorFlow
V2.16.1, and the experiment environment consisted of an Intel i7-8700 CPU, 16 GB memory,
and GTX 1060 6 GB GPU. TShark 2.6.8 was used to parse the packet data. Subsequently,
the other steps, from preprocessing to training and executing the model, were developed
using Python 3.9. If the LSTM model is trained in high-performance devices, the trained
model can be executed in low-performance devices such as field devices.

In the preprocessing of the proposed method, the fields of each packet were parsed
using TShark. Then, the packets were classified for each communication section, and
packets that had the same function code and data object were grouped. As the dataset
used in the experiment consists of MMS traffic, both PDUs and services were used instead
of the function code. If the packet parsing in preprocessing is changed, the proposed
method can be used in other protocols. Therefore, the proposed method is not dependent
on the protocol.

Subsequently, communication pattern analysis was performed for each group. In the
pattern analysis, the one-dimensional data are clustered; therefore, the K-means-based
algorithm uses X-means [26]. X-means is similar to K-means; however, it is suitable for
automation because it can run without a parameter that represents the number of clusters.
After the delta times are clustered using X-means, the centroid value of the cluster that
includes the maximum delta time is inferred as a period. Even if the centroid value is the
same as the period set in the system, the centroid value and the time between packets
are different because network delays may occur during the traffic transmission process.
Therefore, it is necessary to set an error range to determine the traffic periodicity. If this error
range is too small, the proposed method may incorrectly analyze the period because of
delayed packets. However, if it is too wide, aperiodic communication may be periodically
misrecognized. If the communication pattern analysis between target systems is not
performed well, it can be solved by adjusting the error range.

The LSTM model is trained with a sequence of periodic communications and saved.
TensorFlow is used to implement the LSTM model. To learn smoothly the patterns that
appear in a small number of sequences, a bidirectional LSTM was used. The following
hyperparameters were used:

• Learning Rate: 0.01
• Optimizer: Adam Optimizer
• Epoch: 50
• Sequence Length: five

As the data used for learning have periodicity, it is repeated continuously after a
certain period. Therefore, the epoch was set to 50 because it was predicted that sufficient
learning would be achieved even with a smaller number of training epochs. The length
of the sequence was arbitrarily set to five. A longer sequence can lead to higher accuracy.
However, it is not suitable for field devices because their memory occupancy is high.
The results of the experiment confirmed a good performance, even with an arbitrary
sequence length. It is possible to set the sequence length by using an open source to tune
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the hyperparameter such that a high accuracy would be achieved. In the execution phase,
the trained model is loaded after the preprocessing. The prediction and real packets are
compared. When the target packet and prediction of the model are different, it is determined
to be abnormal.

5.3. General Result

The data used in this experiment are composed of periodic data, as shown in Table 1.
In total, seven periodic communications are determined using the communication pattern
analysis algorithm. In the case of MMS packets, all Information Report packets of the
Unconfirmed PDU, and the Identify packet of the Confirmed Request PDU were determined
as periodic. Based on the result of the analysis based on TCP, most periodic communications
were well analyzed; however, it was incorrectly confirmed that there is no period in some
traffic. Table 2 presents the analysis of the communication pattern based on the application
layer (MMS) and the transport layer (TCP).

Table 2. Result of Communication Pattern Analysis.

Target Application Layer Transport Layer

Repo 1 Periodic Periodic
Repo 2 Periodic Periodic
Repo 3 Periodic Periodic
Repo 4 Periodic Periodic
Repo 5 Periodic Periodic
Repo 6 Periodic Periodic
Identify Periodic Periodic

TCP (length = 0) - Non-Periodic
TCP (length = max) - Partially Periodic

In Table 2, Repo 1 to 6 refer to data transmitted to the Information Report of the
Unconfirmed PDU and Identify refers to the Identify service packet of the Confirmed
Request PDU. TCP (length = 0) is a TCP packet with a length of 0, and TCP (length = max)
is a TCP packet whose length is set to the maximum segment size. Packets of the maximum
size are a part of the fragmented Information Report packet. As the last packet of TCP
fragmentation is reassembled along with the previous packets, it is interpreted as an MMS
packet. Therefore, the above analysis table deals with only TCP packets that have the
maximum length or a length of zero.

In the result of the communication pattern analysis based on the application layer, all
periodicities are identified. However, the communication analysis for each data based on
the transport layer had a problem in that it is not possible to identify accurately the period
of the TCP packets with a length of zero or the maximum length. First, a TCP packet with a
length of zero was confirmed as an ACK via a detailed analysis. An ACK, a zero-length
TCP packet, is sent in response to any type of data transmission. While analyzing only a
unidirectional communication section, it is difficult to distinguish the ACKs that correspond
to a specific packet. Hence, the period of the zero-length TCP packets was not analyzed
well. In the case of TCP (length = max), it is a part of a fragmented packet. When the
entire packet arrives, it is reassembled and identified as one MMS packet. However, it is
impossible to distinguish each datum with a divided TCP packet. Therefore, not all the
periods were recognized. Tables 3 and 4 present the test results in Model A, which analyzes
the communication pattern based on the application layer, and Model B, which analyzes
the communication pattern based on the transport layer.

To measure the performance of the proposed method, we used the accuracy, precision,
recall, and number of false positive cases. Each indicator consists of the calculations of
the true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The
details are as follows:
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• Accuracy =
TP + TN

TP + TN + FP + FN
• Precision =

TP
TP + FP

• Recall =
TP

TP + FN
• # o f FPCases = Number o f False Positive Cases

Table 3. Test result of proposed anomaly method (Application layer).

Dataset Accuracy Precision Recall # of FP Cases

Normal Data 100% - - -
Attack Data #1 72.5% 57.1% 93.2% 171 Cases
Attack Data #2 85.8% 71.8% 90.9% 48 Cases
Attack Data #3 78.7% 60.4% 88.4% 65 Cases
Attack Data #4 81.6% 65.5% 100% 121 Cases

Table 4. Test result of proposed anomaly method (Transport layer).

Dataset Accuracy Precision Recall # of FP Cases

Normal Data 90.5% - - 10 Cases
Attack Data #1 83.1% 72.4% 82.9% 254 Cases
Attack Data #2 83.1% 71.8% 82.4% 173 Cases
Attack Data #4 91.1% 78.8% 100% 202 Cases

In the case of Model A, which analyzed and trained the communication pattern based
on the application layer, all data were well identified as normal. However, the accuracy
was lower than that of Model B in the test that used attack data. By contrast, in the case of
Model B, which analyzed and trained the communication pattern based on the transport
layer, some of the normal data lead to incorrect alerts. However, its accuracy was higher
than that of Model A in most experiments. Model A was observed to have a lower FP rate
than Model B.

In the experiment that used normal data, Model A had no FPs. However, in the
experiment that used the test data, the accuracy was lower than expected. To find the
reason for it, we analyzed the FP and FN cases. It was confirmed that most of the FPs
and FNs occurred when attack data were included in the sequence. The detection model
outputs the expected value of the fourth packet out of a sequence consisting of five packets.
If the expected value does not match the actual value, the model decides that it is abnormal.
Therefore, because all five packets forming a sequence affect the expected value, the
probability of FPs and FNs is very high when there are abnormal packets in the sequence.
The FPs and FNs of the tests are shown in Table 5.

In both models, we confirmed that most of the FPs and FNs are related to attack data
in the sequence. In the case of Model A, all the FPs are related to attacks in the sequence.
Because the model is well trained, there were no false alarms in the test when the normal
test dataset was used. By contrast, in the case of Model B, there were ten FPs in the test that
used only normal data, unlike Model A. Some of these FPs were not related to the attack.

Table 5. False positives and false negatives related with attack.

Dataset
Model A (Application Layer) Model B (Transport Layer)

FP
Cases

FN
Cases

Related
FP Cases

Related
FN Cases

FP
Cases

FN
Cases

Related
FP Cases

Related
FN Cases

Attack Data #1 171 17 171 14 254 150 252 139
Attack Data #2 48 13 48 11 173 103 167 92
Attack Data #3 65 13 65 11 - - - -
Attack Data #4 121 0 121 0 202 0 193 0
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6. Discussion

An FP case analysis was performed to improve the performance of Model B. 10 FP
cases were observed. All of them included zero length TCP packets excluded in the training
phase. In a traffic where periodic and aperiodic data coexist, we performed aperiodic data
removal through X-means clustering. In this method, distinguishing whether a TCP ACK
corresponds to a periodic or an aperiodic request is difficult, thus TCP ACKs were omitted
from the training data.

However, since most of our data set was composed of periodic data transmission,
we determine that it was possible for the learning of the sequence with entire data. If the
model is trained with a large amount of normal data, it is anticipated that small amounts of
aperiodic ACKs will have no significant impact on learning from normal data. Therefore,
we experimented with two methods: a method to fine-tune the model using the sequences
that caused false positives, and another method to training the entire data, including
aperiodic data. The relearning results are shown in Figure 8.
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As a result of retraining with FP cases, the model was overtrained to them. After 2nd
epochs, previous learning was almost initialized as an untrained model. After ten epochs,
we observed all the trained FP cases to be correct, but the model confused a periodic
packet transmission as abnormal. To solve this problem, we trained the entire dataset
that contained aperiodic communication. Consequently, the detection model classified all
normal data as normal after 21 iterative trainings. Tables 6 and 7 show the evaluation result
of two models using attack data.

Table 6. Test result of the proposed anomaly method using the retrained model.

Dataset
Retraining with False Positives Retraining with Entire Normal Data

Accuracy Precision Recall Accuracy Precision Recall

Attack Data #1 84.2% 75.1% 82.9% 87.7% 80.1% 83.6%
Attack Data #2 85.7% 76.5% 82.4% 88.4% 81.0% 86.6%
Attack Data #4 96.5% 90.5% 100% 96.7% 91.2% 100%

Table 7. False positives and false negatives related with attack in the retrained model.

Dataset
Retraining with False Positives Retraining with Entire Normal Data

FP
Cases

FN
Cases

Related
FP Cases

Related
FN Cases

FP
Cases

FN
Cases

Related
FP Cases

Related
FN Cases

Attack Data #1 246 166 243 143 173 136 173 120
Attack Data #2 141 95 140 80 119 81 119 75
Attack Data #4 87 0 85 0 86 0 85 0
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As we anticipated the re-trained model is improved in the accuracies for all the attacks.
Retraining using all data improved the detection rate by approximately 5.15% compared
to the previous one. It also had higher accuracy than the fine-tuned model using only
FP cases.

In the case of a model fine-tuned to FP cases, the model identified the FP cases to be
normal. However, it falsely detected some of the patterns that were previously determined
as normal. New FP cases were observed in the fine-tuned model. In some of the new FP
cases, the attack packet was not included in the sequence. In the case of the model that
trained the entire dataset, the result confirmed that all of FP cases were related with attack
packets. In other words, all input of FP cases included the attack packet. Therefore, it is
confirmed that the performance of the model can be improved by re-training the entire data.

The comparison with other methods is very limited. The common anomaly detection
studies focus on detecting complicated attacks which cannot detect the proposed method,
such as FDI. However, the proposed method tries to detect replay attacks. Most other
approaches are not designed to detect replay attacks. It does not mean the proposed method
is outperformed by other methods. They have different focuses and detect different attacks.

7. Conclusions and Future Works

In this study, to detect an attack against an ICS, we proposed a novel anomaly detec-
tion method that defines normal behavior using a periodic communication pattern. The
proposed method can be used in most ICSs, independent of a communication protocol,
because it automatically regulates normal behavior based on the communication pattern’s
periodicity. Because the proposed method automatically defines normal behavior, it can re-
duce the cost of analysis and incorrect normal behavior owing to human error. In addition,
as the training phase and the execution phase of the detection model are separated, it is rel-
atively robust against the adversarial attacks that induce a false learning by contaminating
the training data.

To verify the proposed technique, a test was performed using the network traffic of
the Korea Electric Power Control System. Consequently, the model that defines the normal
behavior of the application layer found all the communication patterns and exhibited
excellent performance. In the other model, which defines the normal behavior of the
transport layer, where fragmentation occurred, the average detection rate was 80%. Most
FPs and FNs occurred before and after abnormal packets. This was confirmed to be because
of the characteristics of the time-series prediction model, that is, LSTM. In future studies,
we will consider methods for preventing the propagation of FPs and FNs because of such
abnormal packets. To reduce the effect of abnormal packets, a technique for removing
packets that are determined to be abnormal from the sequence can be used. However,
because a bidirectional LSTM deep learning model is used in this study, both previous
and subsequent packets affect the prediction. In other words, the prediction is affected
by a packet that has not yet been inspected. This problem cannot be solved by simply
removing the packet detected by an attack. Therefore, further research is necessary to
learn the patterns that are rarely observed in a unidirectional LSTM, which considers only
previous data for prediction.

The proposed method can be improved with domain knowledge. The improved model
is expected to have high accuracy.
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