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Abstract: Neural radiation field (NeRF)-based novel view synthesis methods are gaining popularity
for their ability to generate detailed and realistic images. However, most NeRF-based methods
only use images to learn scene representations, ignoring the importance of depth information. The
Zip-NeRF method has achieved impressive results in unbounded scenes by combining anti-aliasing
techniques and mesh representations. However, the method requires a large number of input images
and may perform poorly in complex scenes. Our method incorporates the advantages of Zip-NeRF
and incorporates depth information to reduce the number of required images and solve the scale-free
problem in borderless scenes. Experimental results show that our method effectively reduces the
training time.And we can generate high-quality images and fine point cloud models using few
images, even in complex scenes with numerous occlusions.

Keywords: NeRF; scene representation; novel view synthesis; depth priors; point cloud generation;
rendering accelerations

1. Introduction

The objective of novel view synthesis is to produce images from a different perspective
using a collection of captured scene images. To achieve precise synthesis outcomes, it is
essential to take into account the fundamental 3D geometry of the scene. Several scene rep-
resentations have been suggested to tackle this problem. Creating accurate photo-quality
composite images and reconstructing realistic 3D scenes have been major challenges, espe-
cially for complex real-world scenes. While numerous studies have focused on simulating
uncomplicated single-object scenes, achieving a satisfactory outcome with these methods is
challenging for genuine scenes with a multitude of obstructed objects, intricate light and
shadow variations, realistic light reflections, and rich texture details.

Neural Radiation Field (NeRF) [1] has become a popular approach in the field of
novel view synthesis. However, existing NeRF methods have some issues, such as flawed
rendering models that can result in excessive blurring and aliasing. Meanwhile, NeRF only
focuses on colour attributes and does not fully consider how to use depth information to
enhance scene reconstruction quality and composite image quality. This limitation restricts
its ability to restore real scene details and complex lighting effects.

Combining depth information to enhance the quality of novel view synthesis is an
extremely effective method. With the advancement of technology, collecting depth data has
become easier, and even mobile phones can be used to collect depth information, making
the acquisition of depth data more convenient and less costly. Meanwhile, in the case of
image-only, methods such as Colmap [2] provide ways to reconstruct dense point clouds.
Therefore, it is also possible to generate the corresponding depth map of the image based
on the dense point cloud reconstructed by these methods and the estimated camera pose.

Depth information is a crucial cue for accurately reconstructing spatial geometry,
unlike colour information. Some novel view synthesis methods attempt to use depth
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information, but they often have limitations in expressing and optimising depth knowledge.
For instance, it is challenging to use depth maps directly for end-to-end learning, and depth
alone is difficult to link closely with colour information. Furthermore, if the depth maps are
of low quality or there are few input viewpoints, it can be challenging to generate detailed
images using these methods.

Therefore, this paper proposes the Dip-NeRF framework to address the tasks of novel
view synthesis and 3D scene reconstruction in complex real-world scenes. The main
contributions of this study are as follows:

1. We improve the Zip-NeRF method by adding depth information to the loss function
and sampling strategy. We measure the confidence of the depth information based
on the texture richness of different scenes by weighting the depth loss using image
features, which effectively reduces the appearance of artifacts and enhances the
definition of object edges.

2. We propose a parameter named depth scale to solve the scale inconsistency problem
of Zip-NeRF in unbounded scenes and achieve the unification of its standardised
coordinate system with the real scene coordinate system.

3. We evaluate our method on a simulation dataset and real dataset, respectively, and
compare it with the advanced method, and the results show that our method has
improved PSNR, SSIM, and other metrics. Meanwhile, we generate smooth free-
view roaming videos and high-density point clouds from the scene representations
obtained by learning, which can be used in subsequent research work.

Our model provides a new approach to 3D reconstruction. It is capable of generating
new views from any perspective and is therefore suitable for virtual tours with free view-
point roaming. Our further work involves experimenting with VR technology for highly
realistic live tours, allowing users to explore different locations from the comfort of their
homes. Meanwhile, the scenes generated by our approach can be applied to a variety of
fields such as autonomous driving, game production, architectural design, and cultural
heritage preservation.

2. Related Work
2.1. NeRF with Few Views

The Neural Radiance Field (NeRF) model is a view synthesis method that used a
multilayer perceptron (MLP) to parametrise the mapping from spatial coordinates to
colours and densities. It was first introduced in ECCV 2020 by Mildenhall et al. [1].
Compared to other methods for image synthesis and scene representation, the NeRF
model appears more realistic.

However, the use of NeRF typically requires a large number of images and may result
in artefacts caused by defective density distributions when there are too few images. Recent
studies have attempted to reduce the number of datasets required for NeRF from several
perspectives. Recent research aims to reduce the number of datasets required for NeRF
from different perspectives. One approach is to use geometric information, such as texture
meshes [3–6], voxels [7,8], or point clouds [9–12], to represent the scene. Another approach
is image-based rendering [13–16], which typically employs a mesh model of the scene
reconstructed using offline Structure of Motion (SfM) and Multi-View Stereo Surveying
(MVS) methods [17–23].

Chen et al. [24] proposed a generalised deep neural network that reconstructs the
radiation field by learning a generic network that combines planar scanning costly volume
and physically-based volume rendering to achieve efficient reconstruction of the radiation
field from a small number of input views. Wang et al. [25] achieved high-resolution
image synthesis of complex scenes by interpolating sparse nearby viewpoint images and
extracting appearance information from multiple source views at rendering time using the
network architecture. Some researchers [26–28] completed missing information using data,
a priori recovered from training scene fields. These methods are effective when there are
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enough training scenes and the training and test views are not far apart. However, they
have limitations and cannot be applied well to all scenarios.

Our approach performs well even when the scene is large and the distance between
views is also large. Other methods may struggle to render good results due to the small
overlapping area of the line of sight. However, the method accurately determines the
positions and distances of objects in the scene using depth information. This results in
high-fidelity new view images and high-quality dense point clouds. The experiments
demonstrate the outstanding performance of the method under sparse view conditions.

In contrast, our method can be applied effectively to most scenarios and requires only
a small number of images for high-quality rendering, making it less demanding than other
methods. It also performs well in extremely complex real-world scenarios, comparable to
current advanced methods.

2.2. 3D Scene Reconstruction

In recent years, various 3D scene reconstruction techniques have been developed,
such as multi-view scene reconstruction [29–33] and LiDAR-based methods [34–36]. The
former estimates depth using parallax and then uses implicit computation methods to
obtain fine object surfaces before completing explicit dense reconstruction. However, the
depth estimated by this method may not be exactly the same as the real value, resulting in
some errors. The second method utilises LiDAR to acquire precise point cloud and depth
information, which is then processed using surface reconstruction algorithms to generate a
mesh model. However, the point cloud data collected by LiDAR may contain voids and
noise due to object occlusion, specular reflection, and moving objects, resulting in voids
and distortions in the reconstructed scene.

With NeRF proposed, neural radiation-based scene reconstruction methods provide
new ideas for 3D scene reconstruction techniques, which have rapidly attracted widespread
attention. Traditional scene reconstruction methods can result in the presence of holes in the
reconstructed model, texture overlap, and the loss of many details due to voxel resolution
limitations. But, NeRF can synthesise photo-level novel view images, so the reconstructed
model is richer in detail, and it achieves excellent 3D reconstruction results by optimising
the underlying continuous volumetric scene function using the input view set.

Some methods [37,38] split large-scale scenes during training and combine them
to reconstruct them together during prediction. Zhang et al. [39] improved the original
NeRF by splitting the scene into different positional encodings at near and far distances,
thus enabling distance-independent reconstruction. However, these methods are still
computationally demanding and are not flexible for use in practical situations.

Barron et al. [40] proposed a multiscale representation for improving the anti-aliasing
ability of the NeRF, which resulted in an improved representation of scene details and
reduced jagged artefacts. They [41] then overcame the challenges encountered by NeRF
models when dealing with unbounded scenes, improving rendering quality and producing
realistic synthetic views. The recent approach achieves excellent results in unbounded
scenes by combining antialiasing methods with mesh representation.

Kerbl et al. [42] proposed a method called 3D Gaussian Splatting for point cloud data
reconstruction and volume rendering. This method represents each point in the point cloud
as a Gaussian function and projects it onto a 3D voxel grid. The advantages of this method
include a shorter training time, high-quality reconstruction results, flexible adaptation to
the density distribution of the point cloud, and the ability to generate photorealistic images.
However, it may not perform well with reflective materials and complex geometries,
and it struggles with the boundary and surface details of the point cloud, and has high
computational complexity.

Instead, our approach involves projecting the point cloud into a depth map to avoid
excessive resource consumption, which also allows for a more direct connection to the
image. Our approach avoids the significant blurring and obnoxious spikiness that can be
associated with 3D Gaussian Splatting when viewed from a side perspective.
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Our method is based on the improved Zip-NeRF method, which combines the advan-
tages of various methods and introduces depth priors, and the reconstructed scene is rich
in texture and detail with very high quality. And a highly accurate 3D point cloud can be
generated, which can be conveniently used for subsequent research work.

2.3. NeRF with Depth

Previous research has shown that depth information is crucial for novel view synthesis.
In recent years, several approaches have used depth to supervise NeRF. Supervising depth
using point clouds obtained from LiDAR or SfM accelerates the convergence of the model
and generates a more accurate view. This approach achieves the same results as the baseline
NeRF model using fewer training views.

Deng et al. [27] utilised SfM to estimate a sparse 3D point cloud with depth supervision.
This enabled the model to obtain more accurate ray depth estimates with the help of
point cloud depth information. Roessle et al.’s work [28] also employed SfM-extracted
point clouds. However, they used a depth completion network to generate depth maps.
Lee et al. [43] followed a similar approach. These methods can utilise depth information
to enhance model convergence, but they may generate numerous invalid sampling points
in the air. To optimise sampling, NeFF et al. [44] proposed the DoNeRF method, which
guides sampling through a deep neural network. This significantly reduces computational
costs while improving the efficiency of model training and prediction. However, the
practical application of this method is limited by the accuracy of the depth prior. To
address this issue, Wei et al. [45] introduced additional conditions on the confidence of
depth information to limit the sampling range, reducing the impact of erroneous depth
information. Wang et al. [46] propose a simple yet effective constraint, a local depth ranking
method, on NeRFs such that the expected depth ranking of the NeRF is consistent with that
of the coarse depth maps in local patches. And they further propose a spatial continuity
constraint to encourage the consistency of the expected depth continuity of NeRF with
coarse depth maps. However, all these methods also have some limitations.

Li et al. [47] utilise depth information to regularise the 3D Gaussian radiation field,
compensating for errors in geometric information caused by insufficient input views. This
approach enables the learning of subtle local depth variations by normalising the depth
map on a local scale, thereby enhancing detail representation. However it can lead to
voids and cracks, and it performs poorly when dealing with specular regions and relies
on monocular depth estimation, so inaccurate depth information may affect the results. In
contrast, our method avoids creating voids and performs well even in specular regions.
Additionally, our method allows for trade-offs in confidence in depth information without
being limited by inaccurate depth information.

Our method uses a depth completion network that has been enhanced to gener-
ate a depth map. The depth map is then used in dynamic sampling and depth loss.
Unlike directly using depth loss, our approach also extracts image features and deter-
mines depth loss weights based on texture richness. This results in significantly improved
processing outcomes.

3. Method

We add depth information to the Zip-NeRF method to reduce the blurring and aliasing,
which is present in many NeRF methods, allowing our method to render better novel views
with few images in less time, reducing the amount of time and resources required for data
acquisition and training.

Figure 1 shows the general framework of our method. First, we input the point cloud
and process it by projecting the point cloud to generate a depth map (Section 3.1). Then, we
input the image and use the depth information for dynamic sampling (Section 3.3), which
is then fed to the MLP for training. At the same time, we extract the corresponding feature
maps from the image and weight the feature information with the depth loss (Section 3.4).
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Finally, the image from the novel view is rendered. Our output image and depth map can
be used to generate a high-quality point cloud (Section 3.5).

Figure 1. This is the general framework of our method. The input data are images, corresponding
camera poses, and a point cloud. First, we obtain the corresponding depth images by projecting
the point cloud based on the camera poses, and then we use the depth information to constrain the
sampling interval. We then use the images to generate feature maps, and use the features to weight
the depth loss in order to render high-quality images of the new perspective. Note that our input
point cloud is colourless and is therefore represented in blue for ease of display.

3.1. Data Preprocessing

Considering the usability of the method in real life and the accuracy of the depth data,
our method uses LiDAR data collected from a real scene. However, processing the collected
point cloud into a depth map presents several challenges. Figure 2 shows the complete
data preprocessing flow.

Firstly, the acquired LiDAR point cloud often contains noise and voids. To address this
issue, we apply a statistical outlier removal filter and low-pass filtering to eliminate floaters and
sparse outliers. This processing effectively reduces error values in the generated depth map.

Secondly, generating depth maps by projecting point clouds directly from the camera
position requires high accuracy of the camera position, but since the initial information
obtained by the device during acquisition and processing may not always reflect the
completely correct position, we refer to SfM’s method for adjusting the camera position to
be more accurate, which effectively improves the quality of the depth maps as well as the
results of our method.

However, when the point cloud is directly projected into a depth map, the resulting
map exhibits perspective distortion, and it displays content from occluded areas that should
not be visible. This is because, although the point cloud has a high point density, the points
in the front cannot completely cover the points in the back when projected onto the image.
Therefore, we remove the hidden points from the point cloud based on the corresponding
camera position before projecting it into the depth map.

Finally, as the depth maps after the above processing are sparse and there are many
places where the true depth values cannot be displayed, we have enhanced the depth
completion method [48] to fill in the missing values in the generated depth maps. It is
worth noting that such processing can cause the depth map to become blurred at the edges,
making it difficult to retain detail. Therefore, we made a small but critical change to the
depth completion method so that it only changes the empty areas in the depth map that
originally had a depth value of 0. This processing significantly improved the quality of our
depth maps. A comparison of the visualisation before and after depth completion is shown
in Figure 3.
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Figure 2. The data preprocessing process consists of several steps. Firstly, the collected dense point
cloud is filtered to remove any noise and moving objects. Next, we filter out any regions of the point
cloud that are not visible due to occlusion in the current viewpoint using the hidden point removal
method based on the camera position. Then, we project the point cloud to obtain the corresponding
depth image. Finally, we improve the depth completion method and use it to obtain the final depth map.
Note that our input point cloud is colourless and is therefore represented in blue for ease of display.

Figure 3. To demonstrate the effectiveness of our improved depth completion method, we present a
comparison of the visualisation of a depth map before (a) and after (b) the application of the method.
The figure clearly illustrates that the method is highly effective in filling the gaps in the depth map,
resulting in a significant improvement in its quality.

3.2. Depth Scale

Zip-NeRF proposes a new scale characterisation method to solve the spatial and depth
jaggedness problems in the NeRF model so as to improve the quality of the rendered images.
However, numerous experiments have shown that the predicted scales in unbounded
scenes are inconsistent with the scales of real scenes. This inconsistency prevents the final
generated depth maps from accurately representing the true depth values. As a result, the
predicted depth map cannot be used to generate a point cloud with a uniform scale, nor
can the input depth values be used to improve the method.

Therefore, we propose the concept of a depth scale. A separate optimiser is designed
for the depth scale and its initial value is set to 1. During the training process, the depth
scale multiplies the predicted depth values. The input depth map has uniform true-scale
depth values, so with the depth loss proposed in Section 3.4, the predicted depth values
after multiplying the depth scale can converge to the depth values of the input depth map.
Meanwhile, the depth scale can be fixed to a specific value to ensure a consistent scale
between the depth values of the input depth map and the predicted depth values after
multiplying the depth scale. The optimisation of the depth scale is then halted and used in
the dynamic sampling presented in Section 3.3. This is a simple yet effective process that
guarantees that the depth values generated by the final prediction are consistent with the
depth values of the real scene.
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3.3. Dynamic Sampling

The original NeRF was sampled coarsely between fixed near and far planes to max-
imise the coverage of sampling points on each ray. However, the majority of the scene
space does not correspond to any object surface, and the sampling points in these regions
have volume density values predicted by the network that are close to zero, resulting in
no contribution to the final results. Furthermore, a significant proportion of the scene is
occupied by invalid sampling points, which hinders efficient resource utilisation.

Additionally, there is a sample imbalance between the limited number of valid sam-
pling points located near the object’s surface and the numerous invalid sampling points
that are not in the vicinity of the object’s surface. This imbalance may impede the network
model’s quick convergence.

The dynamic sampling method enables effective use of the depth prior in order to limit
the sampling range to near the depth value. This allows for the concentration of sampling
points near the most likely surface of the object, ensuring rendering quality while reducing
the number of invalid sampling points. Consequently, the convergence of the network
model is sped up, and the airborne floaters problem in the rendered scene is alleviated.
It also improves the quality of the predicted image and depth maps. Figure 4 illustrates
how the method adjusts the near and far planes of each ray based on the depth prior. This
ensures that each ray is sampled only in the vicinity of the corresponding depth prior. The
equations for the near and far planes are

Near =

{
D̂ep − θ, D̂ep > θ

0, D̂ep ≤ θ
, (1)

Far = D̂ep + θ, (2)

where D̂ep is the depth value of the input depth image and θ is a settable sampling range
constraint, which was set to 1 in all experiments.

We use the spatial anti-aliasing proposed by the Zip-NeRF method; cones are used
for sampling instead of rays. The addition of the dynamic sampling method significantly
reduces the probability of invalid sampling and speeds up the convergence of the network
model. This is a key factor in our method, achieving excellent results in a short time.
Figure 5 shows that the dynamic sampling method is very effective.

However, based on extensive experiments, it has been shown that using input depth
information to constrain the sampling interval from the beginning can lead to errors
in finding the correct depth within the interval. This is due to the difference in scale
between the Zip-NeRF method and the real scene. Thus, we adopted the strategy of
harmonising the two scales by using the parameter depth scale proposed in Section 3.2
before implementing dynamic sampling. We stopped its change after a certain number
of steps, and the depth information was then introduced to restrict the sampling interval,
which is a straightforward and effective approach.

Figure 4. (a) The original NeRF sampling method is used for wide range sampling without depth
priors. (b) A dynamic sampling approach is employed, which removes several sampling points away
from the object’s surface and only acquires sampling points near it.
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Figure 5. Here we show a toy 3D ray with an exaggerated pixel width (viewed along the ray as an
inset) . (a) It is divided into 4 frustums denoted by colour. We multisample each frustum with a
hexagonal pattern. (b) It is intercepted by the depth information and only a shorter part of it remains.
We multisample this part with a hexagonal pattern.

3.4. Loss Function

In recent years, many NeRF methods have included depth loss in their loss function.
However, it is important to note that regions with significant variations in the image often
have corresponding depth values in the real scene that are difficult to measure. Thus, prior
to computing the depth loss, we extracted the feature map from the image and weighted
the depth loss based on the feature values. We relied more on the colour information of the
image in strong texture regions and more on the depth information in weak texture regions.

We use w f eat as the feature weight, which is calculated by extracting feature values
from the image:

w f eat = 1 −
(

f − min(f)
max(f)− min(f)

)
, (3)

where f = feat
1
3 , which is obtained by taking the cube root of the extracted feature values

from the image. This adjustment amplifies the impact of the features on the depth loss.
Additionally, we observed that using only pure depth loss may be too simplistic, and

therefore we introduced parallax loss. This is because depth loss is more likely to represent
global depth and focuses on overall representation ability, while parallax directly reflects
the distance between pixels, helping the network to better learn the details and structure of
local regions. As our dynamic sampling method already effectively guides the network for
depth prediction, we have designed the depth loss as a simple mean-squared loss:

Ld = ∑
r∈R

w f eat(µ∥D̂ep(r)− Dep(r)∥2
2 + ∥D̂isp(r)− Disp(r)∥2

2), (4)

The parameter µ balanced our depth loss with parallax loss, and in all experiments
we set µ = 0.01. D̂ep is the depth value of the input depth image, D̂isp is the parallax
value obtained from D̂ep, where D̂isp = (1/(1+ D̂ep)). Dep and Disp represent calculated
depth and parallax values.

With the above treatment, our total loss function is

L = Lc + λLd, (5)

where Lc denotes other losses in the Zip-NeRF method, Ld denotes the depth loss, and λ is
the hyperparameter used to balance the supervision of depth and colour.

It is important to note that depth information may not always be completely reliable
due to limitations and issues in the acquisition and processing processes. Therefore, we
limit the use of depth information to regions with depth values greater than 0.
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3.5. Point Cloud Generation

Most novel view synthesis algorithms are limited to synthesising new perspective
images and rendering videos of the scenes. The method presented in this study generates
a dense and precise point cloud using a rendered high-quality image of a new viewpoint
and a depth map. While other methods, such as Colmap, also generate point clouds, our
method produces a denser point cloud with better precision and accuracy after filtering.
This is demonstrated in Figure 6.

The proposed depth scale in Section 3.2 ensures consistency between the depth value
in the rendered depth map and the scale of the real scene. This allows the point cloud
generated by our method to be unified with the scale and position of the real scene’s
point cloud, enabling it to be directly used for further work such as sparse point cloud
complementation and model generation.

Figure 6. High-quality point cloud generated using our methodology.

4. Results
4.1. Experimental Setup

The model used in this study is based on the Zip-NeRF method, with the addition of
a proposed depth loss to the loss function. The overall model architecture is essentially
identical to the Zip-NeRF method, with some additional modifications that we describe in
Section 3 and here.

In the experiments, two rounds of proposal sampling with 64 samples in each round
are used, followed by 32 samples in the final NeRF sampling round. We have experimentally
demonstrated that using such a number of samples can improve the speed of sampling
while ensuring the quality of rendering. By using depth information to constrain the
sampling interval, we can appropriately reduce the number of samples to improve the
efficiency of our method. MipNeRF360 and ZipNeRF also employ this type of sampling. It
is worth noting that a smaller number of samples is acceptable if the depth information used
is reliable. Our proposal sampling rounds were both subject to our anti-aliased interlaminar
loss. The first round had a rectangular pulse width of r = 0.03, while the second round
had a pulse width of r = 0.003. Additionally, we used a loss multiplier of 0.01 in both
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rounds. In the comparison experiments, we uniformly used 32 samples for both coarse and
fine sampling.

We add the weight of the depth scale when predicting the depth, which solves the
problem that the obtained depth value is not consistent with the scale of the real scene
in a simple way, and we induce the depth prediction with the input trustworthy depth
information by dynamic sampling and by adding the depth loss in the loss function.

Considering the uniqueness of the depth scale and the special requirements for the
variation in its values, we do not use the same learning rate that decays with the step size
as for the other parameters but use a separate optimiser for the iterations. Its learning
rate is set to 0.01 for the first 5000 training sessions; we set its learning rate to 0.001 when
the step size is between 5000 and 10,000, and we stop its optimisation when it exceeds
10,000 sessions.

All experiments were conducted on a single NVIDIA GeForce RTX 2080 Ti GPU.

4.2. Dataset

Since our method needs to include depth data, we verified the validity of our method
using a dataset collected by DoNeRF, which has very good quality, extremely fine textures,
high frequency detail, and a large depth range for our experiments. The dataset was
rendered using Blender, with bit poses randomly sampled in the view cell. Each scene in
the original dataset consists of 300 high-quality images and depth maps.

To validate the effectiveness of our method under sparse viewpoint inputs, we pur-
posely used only 11 images selected from the original training set as the new training set
and 20 images as the new test set. For our comparison experiments, we primarily utilised
two scenarios: a classroom and a hairdresser’s shop.

However, to ensure the validity of our results, we also collected data from real-life
environments using LIDAR and cameras. This dataset is of exceptional quality, with a
rich texture and a variety of challenging conditions, including occlusion, light and shadow
changes, and specular reflections. It provides an accurate representation of the complex
scenes found in real-world environments.

Our real scene is large and contains a large number of objects. Therefore, 96 high-
quality images are used for our real dataset, of which 86 are used as the training set and 10
as the test set. Depth maps are generated by data preprocessing as described in Section 3.1.

4.3. Evaluation Metrics

Peak Signal-to-Noise Ratio (PSNR) is a widely used metric for the objective assessment
of images, based on a calculation of the error between corresponding pixels.

Structural Similarity (SSIM) [49] is an evaluation metric used to measure the simi-
larity of two images, which models distortion as a combination of brightness, contrast,
and structure.

Learning Perceptual Image Block Similarity (LPIPS) [50] is a metric for assessing image
similarity based on deep learning. It compares deep features extracted by a neural network.

The time required to train each method is described in hours.

4.4. Comparison

Table 1 compares the prediction results of our method and other advanced methods.
Our method was compared with NeRF, DoNeRF, and Zip-NeRF in the experiments, and
our method had a clear advantage in all metrics. To show the advantage of our method in
terms of the training time required, in addition to the 200,000 training epochs used by each
method, we also compared our method with only 10,000 and 50,000 training epochs, and
the experimental results proved that by using only forty minutes of time, our method can
produce a very excellent result that can be compared with other advanced methods, which
effectively mitigates the problem of the long training time required for NeRF.
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Table 1. Quantitative comparison results for the three datasets, where the bold values are the best.
The test results of different methods show that our method trained with only 40 min of time gives
better results than the other methods. This shows that our method is more efficient. Additionally,
when trained for the same number of epochs as the other methods, our method produces significantly
better results than the baseline methods.

Classroom Barbershop Tool Average

Method SSIM↑ PSNR↑ LPIPS↓ Time
(h)↓ SSIM↑ PSNR↑ LPIPS↓ Time

(h)↓ SSIM↑ PSNR↑ LPIPS↓ Time
(h)↓ SSIM↑ PSNR↑ LPIPS↓ Time

(h)↓

NeRF 0.945 28.135 0.159 5.73 0.894 25.768 0.186 5.68 0.698 22.059 0.425 5.07 0.846 25.321 0.257 5.49
DoNeRF 0.950 28.218 0.127 5.00 0.888 25.639 0.183 4.88 0.543 16.064 0.565 4.76 0.794 23.307 0.292 4.88
Zip-NeRF 0.960 28.121 0.084 13.36 0.940 28.536 0.085 13.58 0.817 24.731 0.160 13.25 0.906 27.129 0.110 13.40
Ours(1w epochs) 0.982 33.008 0.040 0.67 0.938 29.422 0.106 0.68 0.836 25.175 0.139 0.71 0.919 29.202 0.095 0.69
Ours(5w epochs) 0.984 33.540 0.032 3.33 0.946 29.978 0.084 3.42 0.863 26.290 0.097 3.40 0.931 29.936 0.071 3.38
Ours 0.985 34.125 0.031 13.33 0.949 30.169 0.073 13.67 0.881 27.574 0.068 13.20 0.938 30.623 0.057 13.40

Figure 7 shows the rendering results of our method compared to other advanced
methods. Each scene comprises a panorama and a local view for comparison purposes. Our
method demonstrates excellent results for both panoramic and local views. The original
NeRF does not incorporate an additional prior to guide model training or prediction,
resulting in the significant blurring of newly rendered views using sparse sample points.
DoNeRF uses depth information to train the sampling Oracle network, which assists the
model in identifying optimal sampling locations. However, when the number of input
images decreases, the prediction accuracy of the sampling Oracle network also decreases,
resulting in a blurred new view. Although Zip-NeRF shows good results, it lacks depth
information constraints, leading to missing and blurred details. Our method introduces a
depth prior in the sampling method and the loss function to effectively guide the model
to render high-quality images despite the reduced input images. It should be noted that
DoNeRF exhibits poor performance on real scene datasets due to its heavy reliance on
accurate depth information, whereas our approach can produce good results without
requiring high-quality depth information.

Figure 7. Comparison of results between our method and other advanced methods. Each scene has a
panorama and a partial view for comparison. Additionally, our method shows the best results for
both panoramas and partial views.
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4.5. Ablation Study

Experiments were conducted on relevant datasets to verify the effectiveness of dy-
namic sampling, depth loss, and feature weighting. Table 2 shows that while the method
using only some of these techniques does work, the hybrid approach is the most effective
in all metrics, including SSIM, PSNR, and LPIPS.

Table 2. Ablation studies performed on our model, where the bold values are the best. The table shows
a quantitativite comparison of Dip-NeRF without dynamic sampling and depth loss (w/o D.S., LD),
without dynamic sampling and feature weighting (w/o D.S., feat), without dynamic sampling
(w/o D.S.), and without feature weights (w/o feat).

Method SSIM↑ PSNR↑ LPIPS↓

Ours (w/o D.S., LD) 0.817 24.731 0.160
Ours (w/o D.S., feat) 0.876 27.118 0.078

Ours (w/o D.S.) 0.868 26.795 0.084
Ours (w/o feat) 0.877 27.179 0.074

Ours 0.881 27.574 0.068

The ablation study clearly shows that the omission of dynamic sampling and depth
loss leads to significant blurring and ghosting. Additionally, the lack of dynamic sam-
pling methods results in a large number of invalid samples, which significantly impacts
convergence speed and hinders the generation of high-quality rendered images within a
short period. And, the absence of depth loss causes a focus solely on image information,
disregarding depth information that could serve as a constraint. Furthermore, utilising a
simple depth loss function without incorporating feature weights can result in indistinct
occlusions near occluded objects and loss of detail due to the overbearing influence of
depth information. As a result, it is imperative to differentiate the reliability of depth
information in various regions by incorporating feature weights. Additionally, neglecting
dynamic sampling methods increases the distance between sampling points and affects the
convergence of the model. This can also make it difficult to accurately estimate the surface
location of objects, resulting in blurred rendered images and the appearance of airborne
floaters in the scene. If feature weights weighted according to depth loss are not used,
some details may become blurred due to a possible lack of accurate depth information.
Additionally, smoothed regions that should be more dependent on depth information may
have uneven colours due to the excessive influence of the image.

Figure 8 shows the experimental results of the ablation study on a real scene dataset.
The results demonstrate the effectiveness of dynamic sampling, depth loss, and feature
weights in both the overall and detail parts. Notably, the use of dynamic sampling prevents
significant blurring in the details.

Figure 8. Experimental results of the ablation study on the Tool real scenarios dataset. The results
include a panoramic and a local view for comparison, with the PSNR values for each result highlighted
in bold red.

5. Discussion

Our method outperforms the baselines in both qualitative and quantitative compar-
isons. In the sparse view condition, our method shows significant advantages on several
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public datasets, as well as the real datasets we created. The evaluation metrics demonstrate
a significant improvement in the time it takes to compare the results of a 40-min training
session to the results of a several-hour training session with baselines.

The NeRF method does not incorporate any additional a priori information to guide
model training or prediction. This lack of guidance leads to inefficiency and poor results,
particularly in sparse perspectives. In contrast, DoNeRF utilises depth information to train
the sampling Oracle network. This approach helps the model to determine the optimal
sampling location. However, the depth prediction network utilises only a single depth
value as a training target, which may cause issues with transparent objects and specular
surfaces. Additionally, it heavily relies on depth information, resulting in poor outcomes
if the depth information is inaccurate. Although ZipNeRF shows better results, it lacks
the constraints of depth information. This makes it unable to fully fit the surface and
more susceptible to changes in illumination. Additionally, it uses a sampling method that
increases the computational cost, making it difficult to train in a short period of time to
achieve good results. In contrast, our method utilises depth-informed constrained sampling,
which greatly improves efficiency while addressing the interference of transparent objects
and specular surfaces, producing excellent results quickly and enabling the generation of
high-quality dense point clouds.

Although our method is more efficient and produces higher-quality images than base-
lines, it still heavily relies on accurate depth information. Low-quality depth information
may lead to incorrect sampling and failure to achieve the desired results, although we
reduce the trustworthiness of the error depth by feature weights.

Additionally, our method is currently limited to static scenes, but we plan to extend its
application to dynamic scenes in the future. To accomplish this objective, it is essential to
consider dynamic NeRF techniques that integrate depth and spatio-temporal information
for the reconstruction of lifelike 3D environments.

6. Conclusions

We present Dip-NeRF, which incorporates previous advances in three areas: scale-
aware anti-aliasing NeRF, fast grid-based NeRF training, and NeRF incorporating depth.
The method utilises fast dynamic sampling with depth information and constraints to
achieve lower error rates than previous techniques, allowing for less time to be spent on
training. The experimental results demonstrate that the method is effective in reducing
training time and generating high-quality new-view images and dense point clouds using
a small number of images, even in complex scenes with a large number of occlusions.
Although our method enables the rapid synthesis of high-quality new perspective images
and point cloud models using a small number of input images, it relies on depth a priori
information. Therefore, the quality of the synthesised images may degrade if the depth
maps are of poor quality or if the depth a priori information is incorrect. Depth inaccuracies
can arise due to transparent objects, occlusions, and light reflections in real scenes, which
can affect the quality of the input depth map. Our method is robust to such inaccuracies,
but they can still lead to a decrease in prediction accuracy. Future work should evaluate
the credibility of the depth information before using it. Additionally, a larger sampling
range and smaller depth loss weights should be applied to the depth-unreliable regions to
further improve the model’s robustness in cases of unreliable depth a priori information.
Additionally, our method demonstrates outstanding performance in static scenes, even in
real-world scenarios with numerous occlusions and intricate lighting conditions. However,
it may not perform as well in dynamic scenes with significant variations. Acquiring data
in real-world settings is challenging due to the need to ensure scene stability and account
for changes in lighting, moving objects, and other factors. Based on our current method,
we can combine spatio-temporal information to reconstruct dynamic 3D scenes and point
cloud models more accurately. This will provide better technical support for future work.
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