
Citation: Li, Y.; Lei, Y.; Yan, Y.; Yin, C.;

Zhang, J. Design and Development of

Knowledge Graph for Industrial

Chain Based on Deep Learning.

Electronics 2024, 13, 1539. https://

doi.org/10.3390/electronics13081539

Academic Editor: Ping-Feng Pai

Received: 22 March 2024

Revised: 15 April 2024

Accepted: 16 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Design and Development of Knowledge Graph for Industrial
Chain Based on Deep Learning
Yue Li , Yutian Lei *, Yiting Yan, Chang Yin and Jiale Zhang

School of Computer Science and Technology, Donghua University, Shanghai 201620, China;
frankyueli@dhu.edu.cn (Y.L.); 2222843@mail.dhu.edu.cn (Y.Y.); 2222779@mail.dhu.edu.cn (C.Y.);
2222748@mail.dhu.edu.cn (J.Z.)
* Correspondence: 2222849@mail.dhu.edu.cn

Abstract: This paper aims to structure and semantically describe the information within the industrial
chain by constructing an Industry Chain Knowledge Graph (ICKG), enabling more efficient and
intelligent information management and analysis. In more detail, this paper constructs a multi-
domain industrial chain dataset and proposes a method that combines the top-down establishment
of a semantic expression framework with the bottom-up establishment of a data layer to build an
ICKG. In the data layer, a deep learning algorithm based on BERT-BiLSTM-CRF is used to extract
industry chain entities from relevant literature and reports. The results indicate that the model can
effectively identify industry chain entities. These entities and relationships populate a Neo4j graph
database, creating a large-scale ICKG for visual display and aiding cross-domain applications.

Keywords: industrial chain; knowledge graph; information extraction; entity recognition; NLP

1. Introduction

The industrial chain is one of the cornerstones of the modern economic system, de-
scribing the entire process of products and services from the starting point of raw materials
to the final consumer. Currently, many scholars are dedicated to constructing and refining
industry chains in various sectors. Among them, Lou et al. [1] proposed a framework for
the traditional Chinese medicine industry chain, which includes upstream, midstream,
and downstream segments. Lu et al. [2] conducted an in-depth analysis of the technical
efficiency and influencing factors of the energy industry chain in China. Yang et al. [3] ex-
plained how studying the carbon footprint in the industry chain would promote hydrogen
development in specific sectors. Song et al. [4] highlighted the importance and challenges
of the rice industry chain. The authors of [5] emphasized the comprehensive industry chain
perspective on mineral resource security, highlighting the importance of industry chains in
safeguarding the supply of strategic mineral resources and sustainable development.

A knowledge graph is a technological means capable of mining, organizing, and
efficiently managing knowledge from massive data, providing qualitative improvement
for information services, and offering users more intelligent and personalized services [6].
In various fields, knowledge graphs have shown a wide range of application prospects,
including search engine optimization in medical care [7–12] intelligent recommendation
systems [13–15], intelligent transportation and urban planning, financial risk manage-
ment [16–21], etc. Knowledge graphs can integrate scattered information within the in-
dustrial chain, establish comprehensive entity relationships, achieve efficient sharing and
management of information, and thereby break information silos. Utilizing knowledge
graphs can intelligently analyze the relationships between various links in the industrial
chain, helping to deepen the understanding of business processes and optimize deci-
sions. Knowledge graphs can also integrate data from multiple sources, enabling real-time
monitoring and prediction of potential risks in the industrial chain, thereby improving
the accuracy and efficiency of risk management. Based on knowledge graph-based data
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analysis, more comprehensive and accurate information support can be provided for
decision-making in the industrial chain, helping managers make wiser decisions.

The current industrial chain is becoming increasingly complex, covering multiple
stages including raw material procurement, manufacturing, logistics, inventory manage-
ment, and sales channels, with participants including manufacturers, suppliers, and logis-
tics companies [22]. However, these participants typically use different information systems
and data formats, leading to information asymmetry and inefficient processes [23–25]. Ex-
isting industrial chain datasets have limited coverage [26], are outdated, and struggle to
handle unstructured data. Traditional industrial chains also face issues such as information
asymmetry, supply chain risks, and inefficiencies [27]. Particularly when dealing with
complex texts, traditional entity recognition algorithms and relationship extraction rules
may encounter difficulties [28]. Texts often contain noise and ambiguity, making entity
recognition and relationship extraction even more complex.

To address these challenges, this research aims to construct a cross-disciplinary, com-
prehensive industrial chain dataset by integrating data from multiple sources with strong
real-time capabilities and various dimensions. This integration aims to enhance the compre-
hensive understanding of industrial chains and provide decision support. Simultaneously,
the introduction of knowledge graphs into industrial chains aims to promote digital trans-
formation, improve overall operational efficiency and management levels, and achieve
efficient sharing and management by eliminating information silos. In order to extract
knowledge more accurately, we plan to optimize the entity recognition algorithm and rela-
tionship extraction rules and use deep learning and natural language processing technology
to process unstructured data to improve the quality of data extraction. This comprehensive
strategy aims to address current challenges and promote the intelligent and informatized
development of industrial chains.

This paper collected a large amount of structured data and unstructured text related
to the industry chain and preprocessed these sample data to construct a comprehensive
industry chain dataset covering multiple domains. Based on this comprehensive dataset,
the study investigated a deep learning-based method for industry chain entity recognition,
comparing the effectiveness of different deep learning algorithms on the industry chain
dataset to obtain the best method for industry chain entity recognition. The experiments
showed that the BERT-BiLSTM-CRF model significantly improved the efficiency of in-
dustry chain entity recognition. Finally, the extracted standard data were stored in the
Neo4j graph database, successfully constructing a large-scale ICKG. This knowledge graph
provides strong support for cross-domain applications, including knowledge retrieval, in-
telligent question answering, smart decision-making, intelligent marketing, and intelligent
recommendation systems. The main contributions of our research are as follows:

• This paper integrated structured data (such as Shenwan Industry, Shenzhen Stock
Exchange, Shanghai Stock Exchange, etc.) and unstructured data (such as encyclo-
pedias, news, annual reports, etc.) to build a comprehensive industry chain dataset.
This comprehensive dataset helps provide more comprehensive and multidimensional
industry information and knowledge;

• The entity recognition algorithm based on the BERT-BiLSTM-CRF model proposed
in this paper performed excellently on the industry chain dataset. The macro-F1,
macro-P, and macro-R of the BERT-BiLSTM-CRF model were 97.10%, 96.80%, and
96.95%, respectively, showing the best performance among the three models. The
macro-F1 of this model is 0.44% higher than that of the BERT model and 24.78% higher
than that of the BERT-CRF model;

• This paper proposes a method of combining top-down and bottom-up approaches to
construct an ICKG. This ICKG serves as a core resource for cross-domain applications,
providing extensive and robust support for various fields, including knowledge re-
trieval, intelligent question answering, smart decision-making, intelligent marketing,
and intelligent recommendation systems.
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The remaining sections of the paper are arranged as follows: Section 2 outlines the
relevant research on entity recognition and relation extraction. Section 3 introduces the
concept and overall architecture of the ICKG. Sections 4 and 5, respectively, discuss the
construction and improvement of the model layer and data layer of the ICKG. Section 6
employs various deep learning models to perform entity recognition on the industrial
chain dataset and thoroughly analyze the experimental results. Finally, we summarize the
findings of the study and propose directions for future research.

2. Related Work

Named entity recognition (NER) is a technique used to identify entities from a large
amount of text [29]. NER can be mainly categorized into three types [28]. The first type
is rule-based or knowledge-based methods [30], which have the advantages of strong
interpretability and good adaptability in specific domains. Due to their reliance on manually
designed rules and domain expert knowledge, these methods do not require a large amount
of annotated data. However, their generalization ability is limited, making it difficult to
handle different languages and complex grammars, and the maintenance cost is high when
facing new domains or changes. Rule-based methods may perform poorly in processing
long texts or complex contexts due to their relatively weak capability of handling contextual
dependencies and complex grammars. The second type is learning-based methods [31],
which utilize machine learning algorithms, such as deep learning models, to learn patterns
for identifying named entities from text through a large amount of annotated data. Their
advantages lie in their strong adaptability, the ability to handle diverse language structures,
and the absence of manual rule design. The third type is neural network methods based on
feature inference [32], which infer named entities by learning features from the text. Their
advantages include efficient utilization of contextual information, adaptation to diverse
language structures, and no need for manual feature design. However, they depend heavily
on a large amount of annotated data, have higher model complexity, are relatively difficult
to interpret, and require more computational resources.

The goal of entity relation extraction models is to identify relationships between en-
tities from text [33]. Commonly used methods for entity relation identification include
rule-based methods [34,35], pattern-based methods [36], machine learning-based meth-
ods [37,38], and deep learning-based methods [39,40].

After a comprehensive analysis of relevant research work, this paper addresses the
following issues when constructing an ICKG: how to deal with data scarcity and labeling
difficulties; how to improve the model’s domain adaptability and generalization ability;
and explore how to more effectively utilize contextual information. This paper constructs
a comprehensive industrial chain dataset, and the proposed BERT-BiLSTM-CRF-based
model can significantly improve the efficiency of industrial chain entity recognition.

3. The Overall Architecture of the ICKG

The industrial chain refers to the entire production and delivery process of a product,
from the production of raw materials, processing and manufacturing, and distribution to
the final consumer. The industrial chain is typically divided into three parts: upstream,
midstream, and downstream. Upstream refers to the part of the industrial chain responsible
for providing raw materials, components, and primary processing. Midstream is the part of
the industrial chain responsible for processing, manufacturing, and assembly. Downstream
is the part of the industrial chain responsible for product distribution, sales, and final
consumption. Upstream provides raw materials and basic substances; midstream processes
and manufactures products; and downstream interacts with end-users, driving product
flow to the market. This division helps to understand and analyze the entire industrial
chain, thereby optimizing decisions related to supply chain management, product design,
and market positioning.

This paper employs data processing and structured extraction techniques to success-
fully construct a comprehensive dataset of the industrial chain. Entity recognition methods
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based on BERT-BiLSTM-CRF models and rule-based methods are utilized for knowledge
extraction, and the data are stored in the Neo4j graph database, forming a large-scale
ICKG. This knowledge graph provides powerful support for cross-disciplinary applica-
tions, covering various aspects such as knowledge retrieval, intelligent question-answering,
intelligent decision-making, intelligent marketing, and intelligent recommendation. The
overall architecture design is illustrated in Figure 1.
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Figure 1. Framework for constructing the ICKG.

The construction of the ICKG adopts a combined approach of top-down and bottom-
up methodologies, as illustrated in Figure 2, depicting the basic process of constructing the
pattern layer and data layer. The top-down construction of the pattern layer provides a
theoretical framework and abstract model, guiding the construction of the knowledge graph.
The bottom-up construction of the data layer ensures the authenticity and practicality of
the knowledge graph through the extraction and integration of actual data. The integration
of top-down and bottom-up approaches, through modeling and validation from multiple
perspectives, enhances the accuracy and credibility of the knowledge graph. This enables it
to meet the requirements of different domains and scenarios, flexibly applying it to various
practical situations.
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4. Construction of the Pattern Layer of the ICKG

This paper constructs the pattern layer of the ICKG through three steps: conceptual
semantic modeling, event semantic modeling, and general common-sense semantic mod-
eling. Conceptual semantic modeling aims to define and establish key concepts, entities,
relationships, and their logic within the business domain. Event semantic modeling follows
conceptual semantic modeling, relying on the defined conceptual model to derive seman-
tic relationships between events, actions, or processes. General common-sense semantic
modeling builds upon the first two steps, relying on the models of conceptual and event
semantics to add more universal concepts and relationships to the system’s knowledge base.
By top-down construction of the pattern layer of the ICKG through conceptual, event, and
general common-sense semantic modeling, comprehensive modeling and logical derivation
of key concepts, events, and universal relationships in the industrial chain are achieved,
enhancing the richness and universality of the knowledge graph.

4.1. Conceptual Semantic Modeling

The first layer of conceptual semantic modeling in the pattern layer aims to associate
entities with relevant concepts, with the goal of describing and representing concepts,
entities, and their relationships in the real world to better understand, analyze, and process
complex information and data. It helps organize complex concepts and information into a
structured format for knowledge sharing, automated reasoning, and data integration. In the
context of the industrial chain, conceptual semantic modeling involves modeling industry
standards, domain-specific terminology, and so on. As depicted in Figure 3, the conceptual
model adopts a hierarchical tree-like classification system and forms a concept dictionary by
hierarchically encoding the concept tree. The benefit of this design is that when renaming
concepts, only the concept dictionary information needs to be updated without the need
to update the data of indexes or relationships. Since concepts are associated with many
entities, any change in a concept will involve changes throughout the tree. Using a concept
dictionary effectively addresses this issue.
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4.2. Event Semantic Modeling

The second layer of semantic modeling in the pattern layer focuses on defining and
modeling events, determining relationships between events, and associating events with
entities to capture dynamic information in the knowledge graph. In the ICKG, this involves
defining and modeling events within the industrial chain, such as market changes and
company mergers.

The industrial chain encompasses numerous types of events, including supply chain
event modeling, market event modeling, environmental event modeling, marketing and
sales modeling, as well as service and after-sales modeling. Introducing each new event
type necessitates designing a new schema, which adds complexity to knowledge extraction
and management. To streamline this process, this paper establishes a set of standardized
event modeling specifications, as shown in Table 1. This standardized event modeling
framework defines uniform modeling patterns for different event types, categorizing
event attributes into different categories such as basic elements, temporal elements, spatial
elements, subject elements, and object elements.

Table 1. Industrial chain event schema model.

Element Type Attribute Name Attribute Type Value Examples

Basic Elements
Type String Product Launch, Mergers and Acquisitions,

Supply Chain Disruption

Description Text New Model Launch, Company Acquisition,
Supplier Bankruptcy

Level String High, Medium, Low

Temporal Elements
Occurrence_Time Datetime 15 January 2023 10:00:00

Duration Integer 2, 5, 10 (units in days)
Deadline Datetime 28 February 2023 23:59:59
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Table 1. Cont.

Element Type Attribute Name Attribute Type Value Examples

Spatial Elements
Location String Shanghai, Beijing, Shenzhen

Impact_Area String Global, Regional, Local
Coordinates Geographical Coordinates (31.2304◦ N, 121.4737◦ E)

Subject Elements
Subject String Company, Individual, Government

Participant String Investor, Supplier, Customer

Responsible_Party String Manufacturer, Distributor, Government
Agency

Object Elements
Product_Model String Tissue Paper
Raw_Material String Steel, Semiconductor

Transaction_Amount Currency 500,000

4.3. General Common-Sense Semantic Modeling

The third layer of the pattern layer focuses on general common-sense semantic model-
ing, which involves modeling the association, attributes, and events of general common
sense with specific industrial chains. This allows the system to better understand and infer
various relationships within the industrial chain. Such models can cover multiple aspects,
including industry interrelations, supply-demand relationships, market trends, and more,
ensuring that the knowledge graph not only relies on domain-specific information but also
comprehends a broader context.

This paper first determines the scope and objectives of modeling, clarifying the
common-sense knowledge content that the system needs to acquire and understand, in-
cluding the involved industrial chain links, related entities, events, etc. Next, it collects
and organizes common-sense knowledge within the industrial chain, including industry
standards, expert knowledge, document materials, case analyses, historical data, and other
sources. Knowledge is extracted and integrated from various sources and organized into
a form that the system can comprehend and utilize. Finally, based on the extracted and
integrated common-sense knowledge, a general common-sense model is established.

5. Construction of the Data Layer of the ICKG

This paper constructs the data layer of the ICKG from the bottom up through three
steps: entity relationship modeling, entity recognition and relation extraction, and knowl-
edge fusion. Entity relationship modeling is the process of defining and modeling entities
and their relationships within the industrial chain. This step clarifies the connections be-
tween various entities in the industrial chain, establishing a clear framework for subsequent
entity recognition and relation extraction, making them more targeted and accurate. The
second step involves identifying specific entities and relationships from text. Through this
step, textual information is transformed into structured data, enriching the content of the
ICKG. Finally, knowledge fusion integrates and combines knowledge obtained from differ-
ent sources to make the knowledge graph more complete and comprehensive. Knowledge
fusion helps address the limitations of a single data source, improving the accuracy and
credibility of the knowledge graph.

5.1. Entity Relationship Modeling

Entity relationship modeling defines and models entities in the knowledge graph,
determines their relationships, and specifies entity attributes. Its aim is to create a structured
representation of things and their relationships in the real world to better organize and
understand complex data structures. The main goal is to represent complex real-world data
structures in a clear and maintainable manner for data storage, querying, and analysis.

The schema architecture in the knowledge graph plays a role in defining and delin-
eating entities, attributes, and relationships. It abstracts and standardizes the data model
within the domain, providing the foundation for constructing and applying the knowledge
graph. By using types and properties, the schema specifies feasible categories and con-
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straints, enabling the knowledge graph to organize, query, and utilize domain knowledge
more effectively. The enterprise schema model is defined in Table 2.

Table 2. Enterprise schema definition.

Attribute Name Attribute Type Attribute Value

Id String 4873
Code String 300636
City String Jiangxi Province

Fullname String China Jiangxi Tonghe Pharmaceutical Co., Ltd.
Location String Shenzhen Stock Exchange

Comp_Name String Tonghe Pharmaceutical
Reg_Capital Numeric 350 million
Setup_Date Datetime 31 March 2017

As shown in Figure 4, the ICKG encompasses five types of entities: products, compa-
nies, industries, supply chains, and customers. It defines ten types of entity relationships,
including upstream material, higher-level industry, downstream product, product subcate-
gory, core product, business sector, purchase relationship, service relationship, procurement
relationship, and partnership relationships.
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5.2. Entity Recognition Methods

NER is the process of identifying named entities with specific meanings from text and
classifying them into predefined categories. This section analyzes and compares various
deep learning algorithms’ applications in entity recognition in the industrial chain context
from three aspects: semantic representation, context awareness, and sequence labeling.

5.2.1. Semantic Representations

The role of semantic representations is to convert textual data into vector representa-
tions with semantic information. Its main function is to map natural language text into a
high-dimensional vector space, where texts with similar semantics are represented closer
to each other in the vector space. In these models, each word or subunit is mapped to a
vector, and the entire text is represented by the combination of these vectors.
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This paper utilizes the Bidirectional Encoder Representations from Transformers
(BERT) model to learn semantic representations of textual data. The BERT model employs
bidirectional transformer encoders, which can consider context information simultaneously
during the pre-training phase, thereby better capturing the context and semantics of words.
This architecture can effectively capture long-distance dependencies, which is advantageous
for processing longer text sequences. During pre-training, BERT performs two tasks
simultaneously: the Masked Language Model (MLM) and Next Sentence Prediction (NSP).
This multi-task learning approach helps the model learn richer semantic representations.

5.2.2. Context-Aware Models

Context-aware models refer to models or components used to capture contextual
information from textual data. Their main function is to consider the context of textual data
before and after, enabling a more comprehensive understanding of the text content. The
role of context-aware models is to not only consider the current word or sentence when
processing textual data but also take into account the context before and after, leading to
more accurate understanding and processing.

This paper utilizes the Bidirectional Long Short-Term Memory (BiLSTM) model to
study its application effectiveness in entity recognition in the industrial chain context.
Long Short-Term Memory (LSTM) is a variant of Recurrent Neural Network (RNN) that
effectively addresses the vanishing gradient and exploding gradient problems in traditional
RNNs by introducing internal gate mechanisms, thus better capturing long-term depen-
dencies. BiLSTM extends LSTM by considering both past and future context information at
each time step. BiLSTM consists of two LSTMs, one responsible for extracting information
from the forward sequence and the other for extracting information from the backward
sequence. Their outputs are then concatenated to obtain richer contextual information.

5.2.3. Sequence Tagger

The main function of a sequence tagger is to label input sequence data by assigning a
label or category to each element in the input sequence (such as words, characters, etc.).
Conditional Random Field (CRF) is a probabilistic graphical model commonly used for
sequence tagging tasks. CRF models the label sequences in the sequence, considering the
dependency relationships between labels, thereby improving the accuracy of sequence
tagging. In industrial entity recognition, CRF models can utilize previously extracted
features (such as word embeddings, part-of-speech tagging, character-level features, etc.)
to predict the label for each word while considering the transition probabilities between
labels, thus ensuring the consistency and rationality of the recognition results.

5.3. Relation Extraction

The ICKG constructed in this paper includes five main entity types, including product,
company, industry, supplier, and customer. It defines ten types of entity relationships.
Firstly, focusing on the industry relationships of listed companies, based on publicly avail-
able results of industry classification for listed companies, we construct the business sector
of listed companies. These relationships demonstrate clear associations with the industries
in which companies operate, providing an important foundation for the establishment
of the ICKG. Secondly, according to the latest industry classification table, we establish
higher-level industry relationships between industries. These relationships describe the
hierarchical structure between different industries, revealing the hierarchical relationships
between industries and aiding in better understanding and analyzing the structure and
hierarchy of the entire industrial chain. Additionally, by formulating corresponding rules
and applying the method of rule pattern matching, we successfully extract rich relation-
ship information from the semi-annual and annual reports published by companies each
year. This information provides detailed descriptions of companies’ main businesses, the
association between products and raw materials, the connections between products and
downstream products, and the subdivision of product categories, among other aspects,
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thereby providing important information and perspectives for a deeper understanding of
the interactions between various links in the industrial chain.

5.4. Knowledge Fusion

The ICKG integrates information from different data sources to eliminate duplicates,
consolidate identical entities, and ensure the completeness and accuracy of the information
in the knowledge graph. Different descriptions of the same entity exist across different
data sources, and knowledge fusion eliminates this heterogeneity, thus unifying entity
information in the knowledge graph. Various links, entities, and relationships within the
industrial chain need to be comprehensively considered, and knowledge fusion helps
integrate information from multiple domains or stages to achieve a holistic view of the
entire industrial chain. This paper primarily conducts knowledge fusion on industrial
chain data from two aspects: semantic knowledge fusion and entity fusion.

5.4.1. Semantic Knowledge Fusion

Semantic knowledge fusion in the industrial chain mainly involves semantic mapping
and ontology fusion, which can enhance the consistency of data across different stages
of the industrial chain. For instance, when constructing a knowledge graph covering
the electronic product supply chain, it includes data such as different suppliers, part
information, production stages, and market demands from multiple sources. These data
employ different terminologies and standards to describe the same concepts. Supplier A
may describe a component as an “aluminum bracket”, while Supplier B may describe the
same component as an “aluminum support frame”. Through semantic mapping, these two
descriptions are mapped to a unified semantic model, ensuring consistent descriptions
of the components in the knowledge graph and establishing their associations. In the
electronic product supply chain, different stages may use different ontologies or knowledge
representation models to describe product specifications, production processes, quality
standards, etc. Production stages in the supply chain use a specific set of terms and concepts
to describe the manufacturing process and technical requirements, while sales stages use
different terms. Through ontology fusion, these different ontologies are integrated to
establish a common ontology representation model, ensuring consistent and interrelated
descriptions of product manufacturing and sales stages in the knowledge graph.

5.4.2. Entity Fusion

Entity fusion refers to identifying the correspondence between descriptions of the
same entity in different data sources and aligning them with the same entity. This includes
resolving differences in entity names, eliminating multiple descriptions of the same en-
tity, and associating dispersed entity information to ensure consistency of entities in the
knowledge graph. For example, in the aviation industry, there are multiple similar entities,
such as airlines, aerospace engineering organizations, aviation logistics service providers,
and aviation maintenance service providers. These entities describe different aspects of the
same industry, but they may differ in naming and description. In the process of construct-
ing the ICKG, it is necessary to standardize entity names, unify naming formats, or use
consistent naming conventions, such as unifying “aviation logistics service” and “aviation
cargo transportation” into “aviation logistics”. Next, text similarity algorithms are used to
analyze the descriptions of these entities to determine their degree of similarity. Entities
with high similarity in descriptions are identified and associated with the same entity,
indicating that they refer to the same domain or service. Finally, integrate other attribute
information about these entities, such as service scope, technical characteristics, customer
base, etc., to ensure they are associated with the same entity. Such entity alignment and
linking processes ensure the consistency of entities in relevant domains of the knowledge
graph, providing a consistent and reliable entity information foundation for comprehensive
analysis of the industrial chain. Table 3 below shows entity fusion between some similar
industries when constructing the ICKG.



Electronics 2024, 13, 1539 11 of 17

Table 3. Schematic representation of closely related industries.

Industry Related Industry

Solar Cells Wind Power Generation, Hydroelectric Power Generation
Medical Devices Pharmaceutical Manufacturing, Medical Equipment Components

Artificial Intelligence (AI) Machine Learning, Deep Learning
Catering Industry Fast Food Chain, Bar, and Entertainment

E-commerce Internet Finance, Online Payment
Environmental Technology Waste Management, Renewable Energy

Aviation Industry Aerospace Engineering, Air Logistics
Human Resources (HR) Training and Development, Recruitment Services

6. Experiment

This section discusses the application of deep learning algorithms to entity recognition
within industrial chains. Through deep learning models, the automatic identification and
extraction of entity information relevant to specific industrial chains from text data are
achieved, laying the foundation for constructing an ICKG.

6.1. Experimental Data and Experimental Environment

We utilized web crawling technology to collect various data sources related to in-
dustrial chains, including structured data from industries such as the Shenwan Industry
Index, the Shenzhen Stock Exchange, and the Shanghai Stock Exchange, as well as un-
structured data extracted from sources like encyclopedias, news, and annual reports. Our
dataset contains structured information from 9300 companies, including fields such as
comp_name, ts_code, chairman, manager, secretary, reg_capital, setup_date, province, city,
website, email, office, employees, etc. Additionally, we obtained unstructured text data
from these companies, including introductions, business scopes, main businesses, and
company essentials, totaling 37,200 texts. We conducted experiments using the Python
language and employed the BIO annotation method to label the positions of entity names
such as companies and products in the text. In the BIO labeling method, ‘B’ is used to mark
the beginning word of an entity, ‘I’ is used to mark words inside the entity, and ‘O’ is used
to mark words that do not belong to any entity. We manually annotated 108,462 sentences
from the crawled unstructured text, randomly selecting 80% as the training set, 10% as the
validation set, and 10% as the test set.

The experimental environment utilized a computational server equipped with NVIDIA
GeForce RTX 4090 and NVIDIA GeForce RTX 4060 GPUs sourced from NVIDIA Corpora-
tion, located in Santa Clara, CA, USA. TensorFlow 2.5.0, a deep learning framework, and
the Python 3.8.17 programming language were used for entity extraction experiments.

In industrial chain entity recognition experiments, adjusting experimental param-
eters is aimed at optimizing model performance and training process efficiency. These
parameters include the learning rate, number of iterations, maximum sequence length, and
batch size. The learning rate controls the speed of parameter updates, and an appropriate
learning rate can accelerate model convergence and improve performance. The choice of
iteration number depends on factors such as dataset size, model complexity, and training
time. Typically, increasing the number of epochs can enhance model performance but
may also increase the risk of overfitting. The maximum sequence length limits the length
of input sequences, helping to save computational resources and avoid inefficiencies in
handling excessively long sequences. Batch size determines the number of training samples
in each iteration. With the initial learning rate set to 2 × 10−5, the maximum sequence
length set to 10, and the batch size set to 16, by iteratively adjusting these parameters, the
goal is to enhance the accuracy and training speed of the model in entity recognition tasks
to achieve optimal results while avoiding resource waste and overfitting risk.

6.2. Deep Learning Method Selection and Model Evaluation Criteria

BERT, as a base model, possesses strong language representation capabilities and ex-
cels in natural language processing tasks, effectively addressing named entity recognition
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tasks. CRF and BiLSTM-CRF, as commonly used sequence labeling models, demonstrate
excellent performance in named entity recognition tasks, effectively considering contextual
information and entity relationships. By combining BERT with CRF or BiLSTM-CRF, one
can fully leverage BERT’s understanding of contextual nuances and the modeling capabili-
ties of sequence labeling models to enhance the accuracy and robustness of entity extraction.
This paper selects three models, namely BERT, BERT-CRF, and BERT-BiLSTM-CRF, to inves-
tigate the application effectiveness of deep learning algorithms in industrial chain named
entity recognition tasks. Through multiple rounds of comparative experiments, a thorough
evaluation of different models’ performance in industrial chain named entity recognition is
conducted. The selection and framework of entity extraction models are shown in Figure 5.
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This study selects macro-averaging as the evaluation metric for the industrial chain
entity recognition experiments. Macro-averaging balances the influence of different cat-
egories by considering the performance of each category and averaging them. In this
multi-classification problem, macro-averaging can independently evaluate the performance
of each category, providing a better understanding of the performance of each category. The
evaluation metrics include macro-average F1 score (Macro-F1), macro-average precision
(Macro-P), and macro-average recall (Macro-R). Where Macro-P, Macro-R, and Macro-F1
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are, respectively, the arithmetic averages of Precision (P), Recall (R), and F1-score (F1). The
formulas for calculating P, R, and F1 are as follows (Equations (1)–(3)):

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F1 =
2 ∗ R ∗ P

R + P
(3)

Among them, TP refers to the number of samples that the model correctly identifies as
positive examples, that is, the number of positive samples for which the entity recognition
is correct. FP refers to the number of samples in which the model incorrectly identifies
negative examples as positive examples, that is, the number of positive samples that the
model misjudges. FN refers to the number of samples in which the model incorrectly
identifies positive examples as negative examples, that is, the number of positive samples
that the model misses.

6.3. Experimental Results and Discussion

This paper conducted comparative experiments among BERT, BERT-CRF, and BERT-
BiLSTM-CRF and obtained the experimental results shown in Table 4 after multiple pa-
rameter adjustments. Based on the experimental results in the table, we can draw the
following conclusions:

Using different learning rates, the performance of the BERT model does not vary
significantly, but overall performance is good, with macro-F1 scores ranging from 0.9666 to
0.9695. macro-P and macro-R scores of the BERT model both remain at a high level. The
BERT-CRF model, which combines BERT with CRF, performs significantly lower in the F1
score compared to the pure BERT model. The BERT-BiLSTM-CRF model further extends
the BERT-CRF model by adding BiLSTM and fine-tuning the learning rate of CRF. This
model achieves a macro-F1 score of 0.9710, an increase of 0.44% compared to the BERT
model and 24.78% compared to the BERT-CRF model. However, there is a slight decrease
in macro-P and macro-R compared to the pure BERT model, although they still remain at a
high level.

Table 4. Experimental results of entity recognition for different models.

Model Macro-F1 Macro-P Macro-R Learning Rate Epoch Maxlen Batch_Size

BERT
0.9674 0.9735 0.9709 3 × 10−5 3 10 16
0.9695 0.9735 0.9715 4 × 10−5 3 10 16
0.9666 0.9693 0.9679 5 × 10−5 3 10 16

BERT-CRF 0.7232 0.7658 0.8611 5 × 10−5 (bert),
3 × 10−3 (crf)

3 10 16

BERT-BiLSTM-CRF
0.9710 0.9680 0.9695 2 × 10−5 (bert),

3 × 10−3 (crf)
3 10 16

0.9710 0.9671 0.9690 3 × 10−5 (bert),
3 × 10−3 (crf)

3 10 16

Overall, the BERT-BiLSTM-CRF model achieves the best performance, with an F1 score
higher than the other two models, and it also performs well in terms of precision and recall,
making it suitable for the entity recognition task of industrial chain naming addressed in
this paper. In this model, BERT learns bidirectional contextual relationships between words
to generate word-level contextual representations. BiLSTM has two directions of hidden
states, one for reading sequences from left to right and the other for reading sequences
from right to left, which enables capturing semantic information over longer distances.
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CRF is a sequence labeling model that, based on the output of the BiLSTM layer, labels
the entire sequence and considers dependencies between labels, thereby improving the
accuracy of labeling.

The advantages of the BERT-BiLSTM-CRF model in the task of entity name recognition
in the industrial chain mainly include the following points: First, because the industrial
chain involves multiple fields and professional terms, the semantic representation learned
by BERT during pre-training can better understand the terms and relationships in specific
fields, thereby improving the accuracy of entity name recognition, especially when dealing
with proprietary terms and abbreviations in the industrial chain. Secondly, BiLSTM can
capture the influence of context on entity names, while BERT provides a more compre-
hensive understanding of context, further enhancing the precision of entity recognition.
In addition, the CRF model globally models the labeled sequences, considering the de-
pendency relationships between entity labels, thus improving consistency and accuracy,
especially when dealing with complex entity relationships in the industrial chain. Finally,
the BERT-BiLSTM-CRF model has strong versatility and generalization ability, adapting
to entity name recognition tasks in different industrial chain scenarios and providing
robust performance.

7. ICKG Instance Display

Through complex data processing and extraction work, a large-scale knowledge graph
has been successfully established, with data stored in the graph database, Neo4j. This
knowledge graph encompasses hundreds of thousands of entities and their relationships
within the industrial chain and has been visualized. A partial display of the ICKG is shown
in Figure 6.
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The query statement is entered in the graph database Neo4j, and the ICKG system
queries the entity information through the semantic network built in the knowledge graph
and visually displays the knowledge structure of this type. Figure 7 displays all the main
products of China Chongqing Xinda Zheng Property Group Co., Ltd. Information about
the main products can be used in various internal applications of the enterprise, such
as marketing, product development, and supply chain management. Understanding a
company’s main products helps analyze its market position, competitive advantages, and
product positioning, providing support for business decisions.
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8. Conclusions

This paper utilized both structured data from sources like the Shenwan Industry Index,
Shenzhen Stock Exchange, Shanghai Stock Exchange, etc., and unstructured data from
sources like encyclopedias, news articles, annual reports, etc., to construct a comprehensive
dataset for the industrial chain. Through data processing and structured extraction tech-
niques, we built a comprehensive industrial chain dataset. After analyzing the performance
of various deep learning algorithms in industrial chain NER, we selected an entity recog-
nition algorithm based on BERT-BiLSTM-CRF and rule-based relationship extraction for
industrial chain knowledge extraction. Regarding graph generation and visualization, we
constructed the framework as shown in the figure through node and relationship construc-
tion and stored the data in the Neo4j graph database, successfully creating a comprehensive
ICKG. This knowledge graph provides strong support for cross-disciplinary applications,
including knowledge retrieval, intelligent question answering, smart decision-making,
intelligent marketing, and recommendations.

Despite constructing a full-scale ICKG and providing support for cross-disciplinary
applications, there are still some shortcomings and areas for further improvement. The
following aspects are considered for improvement in future work:

• Enhancing Precision: Further optimize the entity recognition algorithm and relation-
ship extraction rules to improve the recall and precision of knowledge extraction.
Enhance its generalization ability to adapt to entity and relationship extraction tasks
in different contexts.

• Data Completeness and Updates: Ensure the completeness of knowledge graph data
and regularly update it. Continuously collect the latest data and promptly incorporate
it into the knowledge graph to maintain its timeliness and comprehensiveness.
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• Optimization of Intelligent Application Functions: Further develop and optimize intel-
ligent application functions based on the knowledge graph to enhance the intelligence
level in areas such as knowledge retrieval, intelligent question answering, decision
support, marketing, and recommendations.

• User Experience and Interface Optimization: Design user-friendly interfaces and
interactive experiences to make it easier for users to access and utilize the information
and functionalities provided by the knowledge graph.
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