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Abstract: Localization is a primary concern for wireless sensor networks as numerous applications
rely on the precise position of nodes. This paper presents a precise deep learning (DL) approach
for DV-Hop localization in the Internet of Things (IoT) using the whale optimization algorithm
(WOA) to alleviate shortcomings of traditional DV-Hop. Our method leverages a deep neural
network (DNN) to estimate distances between undetermined nodes (non-coordinated nodes) and
anchor nodes (coordinated nodes) without imposing excessive costs on IoT infrastructure, while DL
techniques require extensive training data for accuracy, we address this challenge by introducing
a data augmentation strategy (DAS). The proposed algorithm involves creating virtual anchors
strategically around real anchors, thereby generating additional training data and significantly
enhancing dataset size, improving the efficacy of DNNs. Simulation findings suggest that the
proposed deep learning model on DV-Hop localization outperforms other localization methods,
particularly regarding positional accuracy.

Keywords: wireless sensor networks; DV-Hop localization; data augmentation strategy; deep neural
network; whale optimization algorithm

1. Introduction

A wireless sensor network (WSN) consists of numerous actuators and sensors strate-
gically positioned across a geographical area. Sensors are designed to be cost-effective
with low power consumption. Self-reconfigurable nodes are capable of sensing data and
transmitting it to a designated sink node [1]. The wireless sensor network has various ap-
plications, such as environmental monitoring, military area surveying, traffic management,
medical management, and other security purposes [2]. For these applications, the node
position is crucial to detecting information which would be meaningless without location
information attached [3]. For geographical area coverage, manual sensor deployment is
the easiest approach, but it is not practical for large ad hoc network areas and in remote
regions [4]. In WSN, sensor nodes which are aware of their location, named anchors, are
used for localization purposes. However, these anchors could potentially raise the network
cost and necessitate increased energy consumption [5]. Anchor nodes assist other unknown
nodes to determine their location. Various localization approaches have been utilized for
location estimation of wireless sensor nodes [6]. These localization methods are divided
into two classes: range-based and range-free. Range-based methods utilize separation
information within neighbor nodes to approximate the position of unknown nodes, which
generally involves higher cost for the measurement of distance [7].

The range-based localization algorithm shows higher localization accuracy as com-
pared to range-free but requires additional ranging hardware for node estimation [8].
Contrarily, the connectivity information is utilized by range-free methods for location
approximation. In these techniques, the position of unidentified nodes is estimated with

Electronics 2024, 13, 1542. https://doi.org/10.3390/electronics13081542 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13081542
https://doi.org/10.3390/electronics13081542
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4594-9204
https://orcid.org/0000-0002-1242-5191
https://doi.org/10.3390/electronics13081542
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13081542?type=check_update&version=1


Electronics 2024, 13, 1542 2 of 16

the assistance of hop counts between the anchor and unidentified nodes [9]. It has been
noted that this approach is cost-effective as it reduces its requirement over nodes for in-
stalling extra hardware [10]. The range-free algorithms offer significant cost and power
savings [11].

DV-Hop-based range-free localization techniques are most commonly used in WSN
but are much less accurate as compared to range-based methods [12]. In earlier studies,
researchers utilized machine learning (ML) and deep learning (DL) techniques to enhance
localization performance. Various supervised learning algorithms, including the Support
Vector Machine (SVM) and Artificial Neural Network (ANN), have been employed for
localization purposes [13]. For the implementation of deep learning, there exists the need
for extensive training datasets. The larger the datasets, the more accurate the estimated
node positions of unknown nodes. However, obtaining such data is often challenging, as it
relies on anchors equipped with expensive Global Positioning System (GPS) technology,
which is operated with batteries, resulting in relatively limited data. Moreover, GPS
has a low signal for an indoor environment, and the technology is expensive for mass
deployment. To address this limitation and enhance localization precision, we propose a
precise and low-cost deep-learning-based localization method for IOT networks using the
whale optimization algorithm.

The following are the paper’s key contributions:

• To address the challenge of limited training data for the proposed deep learning model,
we devise an effective data augmentation strategy (DAS).

• This approach entails strategically creating numerous virtual anchors surrounding the
current real anchors. By doing so, additional training data are generated, leading to a
substantial increase in dataset size.

• To lower the localization error, the whale optimization algorithm is introduced.

Simulation results prove that our proposed DV-Hop+WOA+DNN localization algo-
rithm effectively diminishes localization errors when compared to traditional methods
such as distance vector hop, genetic-based distance vector hop, and distance vector hop
employing Particle Swarm Optimization (PSO).

The rest of the paper is organized as follows: In Section 2, related work is discussed.
Section 3 gives a brief discussion of traditional DV-Hop localization. Section 4 describes
the proposed DV-Hop localization based on the whale optimization algorithm. In Section 5,
a description of data augmentation is given. Section 6 shows the simulation results and,
lastly, in Section 7, the conclusion is discussed.

2. Literature Review

Sensor node localization consists of two fundamental steps: first, estimating distances,
and second, determining node coordinates. Researchers have improved the DV-Hop local-
ization, focusing on refining the process of node localization based on network connectivity
and topology. Hop size and weighting are two commonly used approaches to improve
distance measurement in localization problems. For example, Kumar et al. (2013) [14]
introduced an approach that implements the beacon node’s hop size to determine the target
node’s distance. Additionally, the advanced DV-Hop method is utilized to reduce the
localization inaccuracy among the beacon nodes and the unknown node. This method used
a weighted least square technique to escalate the reliability of the localization. Supplement
data are also utilized to upgrade the position of unknown nodes. However, the impact of
irregularity on signals is not taken into account. Chen et al. (2012) [15] worked on placing
certain anchors at the boundaries of the observing zones to approximate the position of
nodes. Anchor nodes kept near the edge of the observational field are not appropriate for
isolated areas, according to this study. Zaidi et al. (2015) [16] suggested a different range-
free technique in which unknown nodes may locate themselves using domestically relevant
information, eliminating unnecessary complexity and power consumption that would be
generated if data transmission between nodes was needed. The influence of radio asym-
metry on the localization method is not described in this paper. Zazali et al. (2020) [17]
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introduce an advanced algorithm aimed at optimizing the spatial allocation of sensor nodes
within a network. The main objective of this study is to extend the network’s operational
lifespan by reducing the energy consumption of sensor nodes while simultaneously mini-
mizing localization errors. Maddumabandara et al. (2015) [18] developed a new model for
assessing indoor object localization using wireless sensor networks in real time. The main
purpose of the proposed approach is to reduce computational costs while maintaining the
robustness of power-based phase transition algorithm.

Another line of research relates to using optimization algorithms to refine DV-Hop,
such as the work of Sharma et al. (2018) [19], who propose an upgraded range-free tech-
nique based on the genetic algorithm (GA). A correction factor is used to adjust the hop
size of the number of anchors, and further refine the adjusted hop size using a line search
method. Another approach to increasing localization precision is through the use of a
genetic algorithm, which optimizes an objective function through small perturbations
to system parameters [20]. The computational efficiency and convergence of the genetic
algorithm may be compromised by the presence of voids, non-uniform node distribution,
sparse hub coverage, and irregular radio patterns. Singh et al. (2018) [21] present a Particle
Swarm Optimization (PSO)-based upgraded DV-Hop localization technique. In PSO-based
optimization on DV-Hop, the hop count and an average hop size are jointly optimized for
location estimation. Particularly, the number of hops is used in determining the distance
from beacon nodes, which in turn are used to estimate node location. Studies show that
current PSO-based approaches suffer from low location accuracy. Kaur et al. (2018) [22]
present a gray-wolf optimization (GWO) algorithm to obtain an approximate average
distance per hop. Gray-wolf optimization is reported to have high precision in estimating
the hop count in previous studies. GWO has a tunable accuracy, which in turn increases
the computational cost due to the increased number of iterations. The concept of data
augmentation and blockchain for increasing datasets involves expanding data through
transformations and storing it securely is also introduced in some studies, such as Sug-
asaki et al. (2022) [23] propose a novel data augmentation algorithm implemented for
Wi-Fi indoor localization, known for location data augmentation. In contrast to traditional
methods, proposed data augmentation synthesizes identified data for the entire target envi-
ronment from scattered sampled data, achieving a high-density representation. However,
the impact of radio irregularities on the proposed approach is not defined. Marquez et al.
(2022) [24] propose a machine learning algorithm designed for localization in a LoRa WAN
using a data augmentation algorithm. This approach involves a network comprising four
gateways and three static nodes, each with its known coordinates. However, given the po-
tential for node displacement due to events such as landslides or floods, the main purpose
is to accurately detect positions within a range of at least 100 m, despite having access to
only a limited dataset. Faheem et al. (2024) [25] introduce a blockchain-based industrial
wireless sensor network, which offers a robust solution for secure and resilient data trans-
mission. The authors deem this approach essential for intelligent integration, monitoring,
and control of devices within the smart grid. The Advanced Solana Blockchain (ABC)
introduces a framework for smart contracts, specifically designed for managing devices
in the smart grid. The proposed approach facilitates real-time control and monitoring of
devices in a secure and resilient manner. However, the proposed approach is not tested on
anisotropic network conditions, as the wireless sensor network is very prone to interference
and fading. Raza et al. (2020) [26] introduce a novel framework for autonomic performance
prediction in data warehouses, using a cluster-based approach and leveraging case-based
reasoning. By implementing autonomic computing principles, this approach anticipates
performance metrics ahead of time, aiding in query monitoring and management. This
approach uses metrics for precision, accuracy, and relative error rate. However, the concept
of data augmentation is not introduced in this study for increasing the datasets for auto-
matic prediction framework. A detailed comparison of existing localization techniques is
elaborated in Table 1.
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Table 1. Summary of localization.

Authors Algorithm Used Accuracy Communication Cost Analysis

Kumar et al. [14] DV-Hop Low Low Simulation

Chen et al. [15] Range-free localization Low Low Simulation

Zaidi et al. [16] Localization estimation error (LLE) High Low Simulation

Zazali et al. [17] FC DV-Hop Medium Medium Simulation

Maddumabandara et al. [18] TDOA High High Experimental

Sharma et al. [19] GA DV-Hop Low Medium Simulation

Singh et al. [21] PSO IDV-Hop High High Simulation

Kaur et al. [22] GWO DV-Hop High High Simulation

Sugasaki et al. [23] RSSI Low Low Simulation

Marquez et al. [24] RSSI Medium High Simulation

Faheem et al. [25] Advanced Solana Blockchain (ABC) High Low Simulation

Raza et al. [26] Case-based reasoning (CBR) High High Simulation

3. DV-Hop Algorithm

The distance vector hop makes use of a hop-based propagation model for exchanging
the information about the distance between all the sensors. A packet having information of
coordinates and hop count is broadcast in the network among nodes by each anchor node.
The hop count in first step is taken as 0 by default [19]. The hop count is incremented by
1, and again an updated version is broadcast in the sensor network [27]. The node at the
receiving end records the minimum hop distance and ignores the larger one as shown in
Figure 1. Then, the information is flooded into the network with an increase of one hop.
All the sensor nodes obtain the minimum hop count value in the network in this way.
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The hop size is determined in the next step using the following equation:

(Hop_Size) =
∑K

w ̸=k
√
(yw − yk)2 + (xw − xk)2

∑K
w ̸=k h(wk)

(1)

In Equation (1) , the k-th anchor node has coordinates (xk, yk). Other anchor nodes have
coordinates (xw, yw), ∀ w ∈ [1, K], and w ̸= k, and the lower hop count among anchors w
and k is represented by h(wk).

The estimated distance between unidentified and real anchor nodes is measured as

d(a) = (Hop_Size) ∗ h(pu) (2)

where hpu represent the hop counts among the number of anchor nodes.
In the third step, the trilateration method is examined to approximate the region of

unidentified nodes [28]. Assume that the coordinates of the unknown node are (x, y) and
(xk, yk) is the location of the kth beacon. The below Equation (3) is implemented to compute
the average distance among these deployed nodes:

dk =
√
(yk − yi)2 + (xk − xi)2 (3)

From Equation (3), we obtain:

(yr − y1)
2 + (xr − x1)

2 = (di)2
1

(yr − y2)
2 + (xr − x2)

2 = (di)2
2

· · ·
...

(yr − yt)2 + (xr − xt)2 = (di)2
t


(4)

Equation (4) is rearranged, and the tth equation is subtracted from the remaining equation
as follows:

y2
1 − y2

t + x2
1 − x2

t − (di)2
1 + (di)2

t = 2× yr × (y1 − yt)
+2× xr × (x1 − xt)

y2
2 − y2

t + x2
2 − x2

t − (di)2
2 + (di)2

t = 2× yr × (y2 − yt)
+2× xr × (x2 − xt)

...
y2

t−1 − y2
t + x2

t−1 − x2
t − (di)2

t−1 + (di)2
t = 2× yr × (yt−1 − yt)

+2× xr × (xt−1 − xt)



(5)

MX = N (6)

M = 2×


x1 − xt y1 − yt
x2 − xt y2 − yt

. . .
xt−1 − xt yt−1 − yt

 (7)

and

N =


y2

1 − y2
t + x2

1 − x2
t − (di)2

1 + d2
t

y2
2 − y2

t + x2
2 − x2

t − (di)2
2 + d2

t
.
.

y2
t−1 − y2

t + x2
t−1 − x2

t − (di)2
t−1 + d2

t

 (8)
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Finally, the least square estimate technique is applied to compute the coordinates of
nodes as follows:

X = (MT M)−1MT N (9)

4. Whale Optimization Algorithm (WOA)

The WOA is an optimization method which relies on the natural hunting mechanism
of humpback whales. This optimization technique is a nature-inspired meta-heuristic
algorithm which is optimized by imitating biological and physical phenomena [29]. It uses
three steps for improving the position of candidate solutions, namely, encircling prey, spiral
location updating, and searching for prey, to update the location. These steps are as follows:

1. Encircling prey:
In this method, the position of the prey is detected by humpback whales, and af-
ter that, they encircle around it. When the decision coefficient p < 0.5 (with p being
a random number, and the legend in this paper using 0.5) and |A|r < 1, it signifies
that the current humpback whale has identified the prey Sp and is now tightening
its encirclement.
The placement of the candidate determination is updated in the equation given below:

−→
S (t + 1) =

−→
S ∗(t)−−→A r.

−→
D t (10)

−→
D t = |

−→
B .
−→
S ∗(t)−−→S (t)| (11)

where
−→
S (t+ 1) is the whale’s present position,

−→
S ∗(t) is the whale’s previous position

at iteration t, and
−→
D t is the interspace between whale and prey.

The
−→
B and

−→
A r are coefficient vectors calculated by equation given below:

−→
A r = 2.−→a r.−→e +−→a r (12)

−→
B = 2.−→e (13)

where−→a r is linearly reduced from 2 to 0 as the number of iterations increases through-
out the iteration period and −→e is a random vector in [0,1].

2. Spiral Position Updating: if p ≥ 0.5
In this step, a spiral equation is generated among the location of whale and prey to
match the motion of humpback whales as in the equation given below:

−→
S (t + 1) = e(gl).cos(2πk).

−→
D ∗t +

−→
S ∗(t) (14)

−→
D ∗t = |−→S ∗(t)−−→S (t)| (15)

where g is a constant utilized to show the shape of the logarithmic spiral, and l is a
random number uniformly distributed between −1 and 1.

3. Searching for prey: if p < 0.5 and |Ar| <1
In this method, whales uses random search to locate their prey depending on the posi-
tion of each other. The mathematical model is described in the equation given below:

−→
S (t + 1) =

−→
S (rand) −

−→
A r.
−→
D t (16)

−→
D = |−→B .

−→
S (rand) −

−→
S | (17)

where
−→
S (rand) is the random position of the whale and

−→
A r is the coefficient vector

utilized to update the position of individual whales based on optimization strategies.
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Whale Optimization Based on Improved DV-Hop Localization

In this section, we present whale optimization based on improved DV-Hop localization.
The DV-Hop algorithm depends on distance vector hop routing, estimating node distances
by multiplying the number of hop counts by the hop size of the anchor node. However,
challenges are encountered in distance estimation when the number of hops between
the anchor and target nodes exceeds two, leading to poor localization in the network.
To address this issue, an improved DV-Hop algorithm incorporating the whale optimization
algorithm (WOA) has been proposed. This improved algorithm refines the hop size
calculation within the network to enhance distance estimation between target and anchor
nodes by introducing a correction factor depicted in step 3, while the WOA improves
accuracy of estimating node locations. The process of the proposed algorithm is divided
into the following four steps:

Step 1: Initially, the coordinates of beacon nodes are determined, and their positions
are broadcast to the main sensor central hub. Subsequently, each sensor node in the network
is assigned the minimum hop count value.

Step 2 involves calculating the hop size of anchor nodes using Equation (18) as pro-
vided below:

(Hop_Size) =
∑K

w ̸=k
√
(yw − yk)2 + (xw − xk)2

∑K
w ̸=k h(wk)

(18)

where, the kth anchor node has coordinates (xk, yk) and the other nodes have location
(xw, yw), ∀w ∈ [1, K] and k ̸= w, smallest quantity of hop count among two anchor node k
and w is represented by h(kw).

Step 3: The approximate interspace among anchor nodes k and w is determined by
Equation (19):

d(est) = (Hop_Size) ∗ h(kw) (19)

The actual separation among beacon k and w is computed by using Equation (20):

d(true) =
√
(yk − yi)2 + (xk − xi)2 (20)

The error in estimated distance and actual distance of nodes k and w is calculated as:

d(error) = d(est) − d(true) (21)

A correction coefficient is added to modify the hop size of anchor nodes as given by
Equation (22):

θ =
d(est)
(pm)
− d(true)

(pm)

h(kw)
(22)

where d(est)
(pm)

and d(true)
(pm)

are the estimated and actual distance among beacon nodes.
In the above equation, θ represents the correction factor. The hop size determined by

Equation (18) is modified by adding a correction factor (θ) to it. The improved distance
between anchor node k and w is computed as shown in Equation (23):

d(modi) = (Hop_Size + θ) ∗ h(kw) (23)

Step 4: In this step, we have proposed the application of the WOA to the DV-Hop algo-
rithm to further reduce the localization errors. Since localization is an optimization problem
whose overall estimation error can be minimized, the objective function of improved
DV-Hop using the WOA using DV-Hop localization is given by the equation:

f (x, y) = min

[
K

∑
i=1

∣∣∣∣√(yk − yi)2 + (xk − xi)2 − d(modi)

∣∣∣∣
]

(24)
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where (xi, yi) are the coordinates of anchor nodes, i = 1, 2 . . . t.
(xk, yk) are the estimated coordinates of target nodes, k = t + 1, t + 2 . . . n, and d(modi)

is the modified distance between anchor nodes and target nodes, calculated according to
Equation (23).

5. Data Augmentation in Localization

The role of data augmentation in DV-Hop localization involves augmenting the train-
ing dataset by artificially creating additional data points based on the current dataset [30,31].
In this scenario, deep learning techniques, such as Generative Adversarial Networks
(GANs) or Variational Auto Encoders (VAEs), can be implemented to create artificially gen-
erated data that closely resemble real-world scenarios [32]. This augmentation process may
involve techniques such as initiating noise to examine environmental diversity or activating
current data points to generate virtual anchor nodes to increase the density of reference
nodes [32]. By increasing the training dataset through data augmentation, deep learning
models can better learn the fundamental patterns and connections in the localization issues,
resulting in improved accuracy and reliability in DV-Hop localization. Furthermore, data
augmentation can assist address challenges linked with limited real-world data, improv-
ing the generalization ability of the deep learning model to unseen environments. Data
augmentation is implemented to enhance the accuracy of datasets prediction models by
increasing the sample size through the integration of artificially generated data [33].

In the subsequent steps, we will consider a similar strategy, implementing data aug-
mentation to augment the dataset as shown in Algorithm 1. We initiate by collecting a
dataset of real anchor node positions. Through GAN training, the generator learns to create
synthetic anchor positions that closely resemble a real location, while the discriminator
distinguishes between real and synthetic positions. This training process ensures the gener-
ation of high-quality synthetic data. Therefore, we have considered multiple duplicates
of virtual anchors positioned surrounding each original anchor, as depicted in Figure 2.
The mathematical representation of the coordinates for these additional virtual anchors
is governed by Equation (25). The main aim of the proposed augmentation technique is
to implement an enhanced dataset, producing more versions of virtual anchors to alter
the training data. The proposed scheme considers one hundred unknown nodes (U = 100)
and seven anchor nodes (D = 7), and each anchor is encircled by five original virtual
anchors (B = 5) as shown in Figure 3. The coordinates of the virtual anchors surrounded
by the original anchor nodes can be formulated by developing a span range and mul-
tiplying it by a random Gaussian deviation (δxL, δyL), represented as (Bcx, Bcy), where
Bcx = Range × randn(1, B) and Bcy = Range × randn(1, B) as shown in Algorithm 1. The
positional coordinates of given anchor node i (xi, yi) for (i = 1, . . . , D) and (L = 1, . . . , B)
are given as:

(xi ± δx1, xi ± δy2) = (x1, y1)
(xi ± δx2, xi ± δy2) = (x2, y2)

· · ·
...

(xi ± δxL, xL ± δyL) = (xL, yL)


(25)

where D and B denotes the number of original and virtual deployed anchor nodes.



Electronics 2024, 13, 1542 9 of 16

Algorithm 1 Pseudocode for the DAS algorithm
Input: Length of Border, Total Nodes, Anchor Nodes, Span Range, B;
G (generation of coordinates of all nodes);
Anchor = [G(1,1:Anchor Nodes);G(2,1:Anchor Nodes)]; Output:

1: Start
2: B← 5
3: L← Anchor_Nodes× B
4: for i← Total_Nodes to Anchor_Nodes + 1 do
5: Shift_unknown_nodes
6: n← 1
7: for j← 1 to L + Anchor_Nodes do
8: Bcx ← Range× randn(1, B)
9: Bcy← Range× randn(1, B)

10: for k← 0 to B do
11: if k == 0 then
12: Set G1
13: else
14: Bind G(:, i + j)
15: end if
16: Increment n
17: Set n← n− 1
18: end for
19: end for
20: end for
21: End

Figure 2. Deployment of virtual anchor nodes.

The size of training data (Dis)T is given in the equation:

(Dis)T = (D ∗ B + D) ∗U (26)

By taking the reference of Figure 3, the present scenario determines the composition of
datasets by considering the number of the original anchors (D = 7), the number of unknown
nodes (U = 100), and the presence of the virtual anchor nodes (B = 5). The total data size is
estimated as 4200. Furthermore, increasing the size of virtual anchor nodes will result in a
significant expansion of the overall data size as shown in Figure 3.
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Next, the training and testing of these datasets will go through a deep neural network
(DNN). Through a process of supervised learning, the DNN learns the detailed structure
and correlations built in these sensor readings that enhance the actual distances.

Initially during the training step, the DNN generates its internal parameters through
the optimization technique, aiming to minimize the error between estimated distances and
ground level real values. This approach enables the DNN to generate a deep understanding of
the complex mapping between the data calculated from sensors and real distances, capturing
variations in the datasets and irregularities that may occur in the localization process.

The proposed DNN architecture consists of one input layer; five hidden layers with
neuron counts of 30, 15, 10, 15, and 30; and a single output layer. During training, the adam
optimizer is used to adjust weights repeatedly with the aim of optimizing model perfor-
mance. Once trained, the DNN can efficiently estimate the distance of unknown nodes
that are linked with the original anchor and virtual anchor nodes. When a newly deployed
node enters the network or requires localization, the sensor node starts communicating
data to the DNN, which then processes this information through its training and skilled
model. The dataset is partitioned into 80% for training and 20% for the testing. The training
of the DNN involves iterating up to 1100 times, a significant step taken to manage the
DNN in achieving an optimal normalized mean-square error (MSE). By calculating the
sensor readings with regard to the patterns learned during the training process, the DNN
measures an estimate of the node’s distance from the anchor nodes in the network as shown
in Algorithm 2.

Algorithm 2 DNN for distance estimation

1: function forward_pass(X):
2: H ← activation_function(X×W1 + b1)
3: Y ← activation_function(H ×W2 + b2)
4: return Y
5:
6: function train_DNN(Xtrain, Ytrain, 0.001, 1100):
7: initialize_parameters()
8: for epoch in [1, . . . , 1100] do
9: for i in [1, . . . , len(Xtrain)] do

10: Ypred ← forward_pass(Xtrain[i])
11: loss← compute_loss(Ypred, Ytrain[i])
12: compute_gradients(Xtrain[i], Ytrain[i], Ypred)
13: update_weights(0.001)
14: end for
15: end for
16:
17: function activation_function(Z):
18: return ReLU(Z)
19:
20: function ReLU(Z):
21: return max(0, Z)
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Figure 3. Datasets of virtual augmentation strategy.

6. Results and Analysis

The performance of the suggested algorithm is analyzed by simulation results by
modifying the various parameters. The various parameters whose values are varied
are node density, anchor density, virtual anchor nodes and transmission range. Table 2
represents the simulation parameters, and the 100× 100 m2 area is taken for data simulation.
To implement this strategy, we have considered two scenarios with different span ranges.
The first scenario shows an illustration of 50 unidentified nodes followed by 6 anchor nodes,
each encircled by 5 virtual anchors, with range of 2 m as shown in Figure 4a. The second
scenario shows a uniform distribution of 50 unidentified nodes followed by 6 anchor nodes,
each encircled by 5 additional virtual anchors, with a span range of 6 m shown in Figure 4b.

(a) (b)

Figure 4. (a) Sensor node deployment with a span of 2 m (b) Sensor node deployment with a span
of 6 m.

To verify the outcomes of the proposed algorithm with traditional DV-Hop methods,
the localization error is calculated as the root-mean-square error (RMSE) shown in the
equation given below:

(RMSE) =
∑Q

p=1

√
(xcal − xact)2 + (ycal − yact)2

Q× T
(27)
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where (xcal , ycal) and (xact, yact) denote the measured and actual position of unknown node.

Table 2. Parameters used in simulation.

Simulation Configuration Value

WSN coverage region 100× 100 m2

Transmission range 15 m, 20 m, 25 m, 30 m, 35 m

Unknown nodes 50

Anchor nodes 6

Virtual anchor nodes 5, 10, 15, 20, 25, 30

Span 2 m, 4 m, 6 m, 8 m, 10 m, 12 m

Optimization technique Whale optimization

6.1. The Impact of the Number of Virtual Anchors on Localization Error

Figure 5 depicts the relationship between localization error and virtual anchor nodes’
variation. The 100 × 100 m2 area is examined for simulation purposes, where 50 unidentified
nodes having a 25 m range among the sensor nodes are deployed within the network. Virtually
deployed anchors are taken between 5 and 30. The simulation findings suggest that with an
increase in the number of virtual anchor nodes, the localization error diminishes as clearly
shown by Figure 5. Furthermore, it has come to our attention that the localization error of the
proposed DNN-based DV-Hop outperforms other localization techniques.

5 10 15 20 25 30
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Figure 5. Localization error versus virtual anchors.

6.2. The Impact of Span on Localization Error

The graph depicting the relationship between localization error and the span is pre-
sented in Figure 6. For simulation purposes, a 100 × 100 m2 area is considered, where
50 unknown nodes, each with a transmission range of 25 m, are deployed. The virtual
anchors are surrounded by real anchor nodes, and spans are taken between 2 and 12. We
observe that with an increasing span, the localization error decreases, as clearly shown by
Figure 6. This is due to the fact that a wider span between virtual anchor nodes can lead to
better network connectivity, as it ensures that a larger portion of the network is covered
by the anchor nodes. The proposed algorithm showcases increasing excellence over the
DV-Hop approach as the span (distance) increases.
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Figure 6. Localization error versus span.

6.3. The Impact of Transmission Range on Localization Error

Impact of variability in transmission range on localization error is represented by
Figure 7. A region spanning of 100 × 100 m2 hosting a fixed complement of 50 uniden-
tified nodes and seven anchors is taken for simulation purposes. Each anchor node is
surrounded by five virtual anchor nodes. The transmission range is maintained within
the range from 15 m to 35 m. Simulation results give evidence that localization error is
reduced with regard to the higher value of the transmission range. The explanation for this
is that when transmission range increases while unknown and anchor nodes are constant,
the connectivity between the nodes is improved. Therefore, neighboring anchor nodes
per unknown node rise. Therefore, the localization error decreases significantly with the
increase in transmission range. As illustrated in Figure 7, we compared our proposed algo-
rithm with traditional DV-Hop, genetic-based DV-Hop, and PSO-based DV-Hop algorithms.
The analysis concluded that our proposed algorithm outperforms these algorithms.
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Figure 7. Error in localization plotted against transmission range.
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6.4. The Impact of Span Variation on Localization Accuracy in DV-Hop and
DV-Hop+WOA+DNN Algorithm

The examination of the traditional DV-Hop and proposed DNN approach involved
systematically adjusting the span values to 2, 4, 6, 8 and 10, as shown in Figures 8 and 9.
As shown in the bar graph, there is a noticeable trend of increasing localization accuracy as
the span distance and the number of virtual anchors are incremented. In this evaluation, we
considered a range of virtual anchors (5, 10, 15, 20, 25) m and span distances ranging from
2 to 10 (m). This comprehensive analysis provides valuable insights into the effectiveness
of our proposed DV-Hop DNN algorithm compared to the traditional DV-Hop method,
highlighting its superior performance in achieving an accurate localization approach for
the given scenario.

Figure 8. Span variation in DV-Hop algorithm.

Figure 9. Span variation in DV-Hop+WOA+DNN algorithm.

7. Conclusions

This paper presents a data augmentation strategy that enhances the number of ad-
ditional added virtual anchors, substantially expanding the training dataset and leading
to more precise localization. The proposed algorithm involves creating virtual anchors
strategically around real anchors, thereby generating additional training data and signifi-
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cantly enhancing dataset size. However, deploying a large number of real anchor sensors
can be impractical and present difficulties related to the availability of sufficient training
data. In response to this challenge, we proposed a data augmentation scheme aimed at
virtually expanding the anchor pool, thereby alleviating the financial constraints associated
with deploying numerous physical anchors. Additionally, we have proposed a deep neural
network algorithm to estimate the location of unidentified nodes. Simulation results show
that our proposed algorithm achieves a reduction in localization error of approximately
33% compared to the traditional DV-Hop algorithm.
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