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Abstract: Unmanned aerial vehicles (UAVs) are becoming increasingly valuable as a new type of
mobile communication device and autonomous decision-making device in many application areas,
including the Internet of Things (IoT). UAVs have advantages over other stationary devices in terms
of high flexibility. However, a UAV, as a mobile device, still faces some challenges in optimizing its
trajectory for data collection. Firstly, the high complexity of the movement action and state space of
the UAV’s 3D trajectory is not negligible. Secondly, in unknown urban environments, a UAV must
avoid obstacles accurately in order to ensure a safe flight. Furthermore, without a priori wireless
channel characterization and ground device locations, a UAV must reliably and safely complete
the data collection from the ground devices under the threat of unknown interference. All of these
require the proposing of intelligent and automatic onboard trajectory optimization techniques. This
paper transforms the trajectory optimization problem into a Markov decision process (MDP), and
deep reinforcement learning (DRL) is applied to the data collection scenario. Specifically, the double
deep Q-network (DDQN) algorithm is designed to address intelligent UAV trajectory planning that
enables energy-efficient and safe data collection. Compared with the traditional algorithm, the DDQN
algorithm is much better than the traditional Q-Learning algorithm, and the training time of the
network is shorter than that of the deep Q-network (DQN) algorithm.

Keywords: UAV; trajectory planning; deep reinforcement learning; double deep Q-network (DDQN)

1. Introduction
1.1. Background

In recent years, the use of unmanned aerial vehicles (UAVs) as airborne base sta-
tions to assist in offloading hotspots in existing ground communication infrastructures
and cellular networks has been recognized as a promising candidate technology. UAV-
assisted communication, when combined with technologies such as the fifth-generation
(5G) networks [1–3] and airborne self-organizing networks [4–6], has the potential to pro-
vide Internet of Things (IoT) services from high altitudes, creating an airborne domain
for the IoT. In certain geographic regions where operators may not be able to afford to
build a cellular infrastructure (e.g., a base station), as an alternative, UAVs can lower the
communication costs while performing tasks such as collecting or transmitting data to
ground-based IoT devices [7,8]. For instance, UAV-assisted cellular communication tech-
nology can efficiently restore wireless services after unexpected damage to facilities, such
as from natural disasters (e.g., earthquakes, volcanic eruptions, and floods) or in hotspot
areas (e.g., sports stadiums and outdoor events), where ground-based cellular stations are
insufficient [9,10]. Compared to traditional satellite relays, UAVs fly at lower altitudes
when acting as wireless communication providers, resulting in a higher optical resolution
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than that of traditional satellites. UAVs have lower maintenance costs and are typically
tens or even hundreds of times less expensive than satellites [11]. Furthermore, UAVs are
more flexible than traditional satellites, which can only fly according to preset orbits. UAVs
can be deployed in a specific area according to demand to fulfill wireless communication
tasks [12].

However, as the IoT networks expand in scalability and system design complexity,
collecting data from IoT devices while maintaining stable and superior network perfor-
mance becomes increasingly challenging. In response to this urgent need, UAVs may be an
effective solution, due to their high mobility and flexibility. According to the literature [13],
UAVs are increasingly being used to collect data from remote sensors. In cases where UAVs
assist in information dissemination or data collection, they can collect data sustainably and
cost-effectively, as they are equipped with ground-based wireless sensor networks [14].
However, UAVs encounter several challenges, such as a restricted battery capacity, a limited
flight time [15,16] and flight altitude, and the impact of malevolent external interference on
the communication link between the UAV and the user [17]. Therefore, it is important to
revisit how to ensure that UAVs efficiently perform data collection tasks in complex and
realistic environments while avoiding obstacles and interferences.

1.2. Related Work and Contributions

With the rapid advancement of UAV-assisted communication technology, traditional
mathematical planning algorithms have demonstrated notable efficacy [18]. For instance,
authors [19] have leveraged cellular UAVs to ensure stable connections during missions
while minimizing the time taken to reach the destination, which was achieved through
the implementation of convex optimization and graph theory techniques. Their results
indicated reduced mission completion times and an enhanced signal-to-noise ratio (SNR)
throughout the missions. Additionally, researchers [20] have identified the following three
distinct phases in the trajectory control process: trajectory generation, trajectory correction,
and trajectory smoothing. They proposed an ant-colony-based algorithm for initial tra-
jectory generation and an effective collision avoidance scheme for the flight trajectory of
UAVs. Another study [21] proposed a method to address the non-convex problem of task
assignment, power allocation, and UAV trajectory in wireless communication services. By
employing the block coordinate descent method, the original problem was decomposed
into two sub-problems, which were subsequently solved iteratively using Lagrange bifur-
cation and successive convex approximation techniques. However, it is important to note
that the computation time of these algorithms may grow exponentially with the scenario
size, and they may not be fully adaptable to the increasingly complex scalable wireless
network environment.

The application of machine learning techniques to UAV communications has recently
gained attention. Reinforcement learning, a model-free algorithmic framework, has been
proposed as an alternative to traditional algorithms. This approach does not require the
modeling of specific environment feature parameters and can train strategies from trial and
error. It has practical significance for UAV trajectory planning and wireless communication
system optimization. For instance, in [22], the authors optimized UAV trajectories and
power allocation to maximize the fairness of throughput between sensor nodes. In [23],
the authors proposed a deep reinforcement learning (DRL)-based framework that uses
convolutional neural networks for feature extraction and deep Q-network (DQN) algo-
rithms for decision making to design energy-efficient remote sensing routes for UAVs. The
experimental results from [24] demonstrate that the algorithm is significantly more efficient.
This study utilizes a network model of the central layer and environmental information
and processes the environmental layer through convolution. However, the works only
examine the flight trajectory of UAVs at a certain altitude, ignoring the complexity of the
3D environment and the external unknown interference.

In [25], the authors proposed a DRL approach to minimize the task completion time
of cellular-connected UAVs while maintaining good cellular network connectivity. In [26],
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the authors proposed a dual Q-learning approach to solve optimization problems involv-
ing UAV trajectories under continuous time constraints. The authors of [27] performed
coordination between UAVs to avoid collisions. This coordination was achieved through a
sense-transmit protocol. The main objective is to determine the optimal motion trajectory
through a decentralized Q-learning algorithm. This algorithm reduces the convergence
time and ensures an efficient transmission of sensor data. However, in practical scenarios,
variations in building height can obstruct the flight path of a UAV, necessitating adjustments
in altitude. Conversely, heightened interference is encountered when UAVs approach jam-
ming devices, prompting maneuvers to different altitudes in order to mitigate jamming
effects and improve the communication environment. It is worth noting that few published
articles have considered the impact of obstacles and jammers on channel quality when
planning 3D UAV trajectories.

In contrast to the preceding research endeavors, our study encompasses a height-
ened level of realism by incorporating a sophisticated environmental model, wherein the
collective presence of multiple obstacles and jammers contributes to the degradation of
the communication link between the UAV and the ground-based IoT devices. Our objec-
tive is the maximization of throughput through the strategic optimization of the UAV’s
three-dimensional flight trajectory, at a low UAV power consumption, while effectively
accomplishing data acquisition from the devices and ensuring the safety of UAV flight op-
erations. The proposed algorithm’s performance is verified through extensive simulations.

The main contributions of this paper are as follows:

• Our work considers a complex and realistic urban environment in order to study the
effects of obstacles and jammers on 3D UAV trajectory planning. Particularly, during
the simulation phase, we randomly generate the positions of jammers and ground
devices for each iteration, which makes the scenario more uncertain and complicates
the design of the Markov decision process (MDP).

• In this paper, the environmental information is not predetermined, and the UAV
dynamically senses and navigates around the obstacles in real time using onboard
sensors such as cameras. It also learns from historical environmental information
obtained from a memory bank to speed up its decision making.

• To address the problem of the limited computing power of UAVs, we developed a
DDQN-based UAV trajectory optimization algorithm. The algorithm sets the reward
value according to the scene and converges faster. We also provide flight results under
different scene parameters and comparison experiments of various reinforcement
learning algorithms to support our view. The article fully demonstrates the simulation
experiments and algorithm comparisons that validate the effectiveness and superiority
of our approach.

The remainder of this paper is organized as follows: In Section 2, the system model
and problem description are outlined. Section 3 details the DDQN-based algorithm for
trajectory optimization in data collection scenarios. The experimental and simulation
results for trajectory optimization are presented in Section 4. The conclusions and future
work are discussed in Sections 5 and 6, respectivley.

2. System Model and Problem Formulation

We consider a smart urban setting in Figure 1, where a UAV operates within an
unlicensed spectrum band to collect data from a collection of U = {1, ..., U} stationary
ground-based IoT devices dispersed across a designated area. In this area, there may be a
set of J = {1, ..., J} static ground directional jammers (for example, Wi-Fi that shares an
unlicensed spectrum band with the UAV).
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Figure 1. Scenario of UAV data collection.

The maximum duration of a UAV mission is denoted by T, during which the UAV
optimal trajectory is designed to maximize data collection from ground IoT devices. For the
sake of easy illustration, we assume that T is discretized into equal N time intervals. The
UAV position at the time step n is denoted by qn = [xn, yn, hn] ∈ R3, ∀n ∈ N, while the
u-th device is located at qu

n = [xu
n, yu

n, 0] ∈ R3, ∀n ∈ N, and the position of the j-th jammer

is qj
n =

[
xj

n, yj
n, 0

]
∈ R3, ∀n ∈ N. Moreover, various obstacle heights are incorporated to

simulate a realistic environment.
The action space of each UAV in time step n is defined as follows:

an =
[
ax, ay, az

]
∈ A, ∀n ∈ [1, N] (1)

where ax, ay, az ∈ {−1, 0, 1} and A define the set of feasible actions on the UAV’s position.
Given the executed action, the position of the UAV evolves as follows:

qn+1 = qn + an (2)

2.1. Channel Model

This paper employs a simplified path loss model in Decibel (dB). The channel gain
between the UAV and the device u at the time step n is modeled as follows [28]:

gu
n =

{
βLoS + αLoS log10(d

u
n) + ηLoS(dB), if LoS

βNLoS + αNLoS log10(d
u
n) + ηNLoS(dB), otherwise

,∀n ∈ [1, N] (3)

where du
n = ∥qn − qu

n∥2 is the distance between the UAV and the device u, α is a path loss
constant, β is the average channel gain at reference distance d0 = 1m, and η represents the
shadowing component following a Gaussian distribution of N

(
0, σ2).

The communication link between UAVs and ground devices is affected by the altitude
of the UAV, the characteristics of the urban environment, and the interference from other
wireless devices. We can assume that the communication between the UAV and ground
devices follows a time-division, multiple access mode. The rule is that, at each commu-
nication time step, the UAV can collect data from only one ground device, and only the
device with remaining data and the highest signal-to-interference plus noise ratio (SINR)
can establish a communication link with the UAV at the current time step n. The SINR of
the signal received by the UAV from the ground device u at the time step n is as follows:

SINRu
n =

Pu10
gu

n
10

In + σ2 , ∀n ∈ [1, N] (4)
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where Pu is the transmission power at the ground device u, σ2 is the white Gaussian
noise power at the receiver, and In is the received interference power that is calculated as

In =
J

∑
j=1

Pj10
gj

n
10 , where Pj represents the transmission power of the jammer j.

Furthermore, the channel throughput can be calculated by Shannon’s formula as
Ru

n = B log2(1 + SINRu
n), where B is the bandwidth of the channel in bits per second.

2.2. Throughput Maximization Problem Formulation

Here, we denote the link status by lu
n ∈ {0, 1}, where lu

n = 1 indicates the collection
of data by the UAV from the u-th device at the time step n, and otherwise lu

n = 0, and the
channel access constraint is given as follows:

U

∑
u=1

lu
n ≤ 1, ∀u ∈ U , n ∈ [1, N] (5)

Our algorithm aims to optimize the trajectory of the UAV in order to maximize the
amount of data collected from the ground equipment during the mission time T. This data
collection problem can be formulated as the following optimization problem:

max
an

T

∑
n=1

U

∑
u=1

lu
n Ru

nδn (6)

s.t.qn /∈ B, ∀n ∈ [1, N] (6a)

bn > 0, ∀n ∈ [1, N] (6b)

SINRu
n ≥ γth, ∀u ∈ U , n ∈ [1, N] (6c)

where an is the action of the UAV at step n. Equation (6a) ensures that the UAV avoids
collisions with obstacles B. Equation (6b) limits the operation time of the drones, forcing
the UAV to end its mission before its battery bn has run out. Equation (6c) indicates that the
communication is interrupted when the SINR produced by the UAV is lower than that of
the SINR threshold. This optimization problem is challenging, due to its non-convexity
and unknown environment at the decision-making moment. Consequently, conventional
model-based approaches are rendered inapplicable.

3. DDQN-Based UAV Trajectory Optimization Algorithm
3.1. Markov Decision Process

In reinforcement learning problems, the MDP is regarded as an idealized form that
provides a theoretical framework for achieving goals through interactive learning. In
the UAV-assisted communication model, we can use the MDP to simulate the interaction
between entities. The complete MDP can be represented by a quaternion ⟨S ,A,R,P⟩ [29].
The MDP for trajectory optimization in the data collection scenario is shown in Figure 2,
which details the interaction process between the UAV and the environment. Additionally,
it provides a detailed description of the process of generating an arbitrary time-slotted state
space, where process 5⃝ is interchangeable with process 6⃝.

A: The action space is defined in (1).
S : The state of the UAV at the time step n is denoted by sn = (sn,1, sn,2, sn,3). To

be specific, sn,1 = {qn, bn, Ln} includes the characteristics of the UAV at the time step n,
including the UAV’s current momentary position qn, remaining power bn, and the amount
of data that has been collected Ln. sn,2 = {qu

n, lu
n , SNRu

n, du
n, Du

n} includes a characterization
of the UAV concerning each ground device, in which du

n represents the distance of the
UAV from the device and Du

n represents the amount of data remaining for each device.
sn,3 = {on, on+1} represents the observation space on of the UAV at the time step n and the
predicted observation space on+1 at the next time step n + 1 in the case of a wide observable
range of the UAV camera.
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P : The transfer probability matrix P represents a transfer process, i.e., the probability
of taking action an to move to the next state sn+1 when the intelligence is in state sn.

R: The reward space represents the information about the gains made by the UAV
in the process of choosing an action and reaching the next state, which can be denoted as
rn = {rn,1, rn,2, rn,3}, and the expression for rn is defined as follows:

rn = rn,1 − rn,2 − rn,3 (7)

where rn,1 =
T
∑

n=1

U
∑

u=1
lu
n Ru

nδn is defined as the total amount of data collected by the UAV at

each time n, rn,2 is the power penalty consumed by the UAV’s movement; in addition, a
penalty of rn,3 is imposed if there is an obstacle in the current observation space on, or if the
UAV’s current position qn is outside of the given region.
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3.2. DDQN-Based UAV Trajectory Optimization Algorithm

The DQN algorithm is built on top of the standard Q-Learning algorithm frame-
work [29], which utilizes deep learning algorithms to train action-value functions by
updating the target network parameters. However, Q-learning and DQN may result in
overestimating the Q-values, due to the use of max operations. To avoid the bias caused
by this situation, we utilize the double deep Q-network (DDQN) algorithm [30]. Similar
to the DQN algorithm, the online network parameters of both of these algorithms are
used to generate strategies for the trajectories of intelligence, while the action strategies
are used to evaluate the current goals. The difference here is that the DDQN algorithm
uses a different set of network parameters for the goodness of the action strategies, i.e., the
selection of actions and the evaluation of actions are realized using two different sets of
network parameters. Thus, the objective function can be expressed as follows:

QDDQN
t = rt+1 + γQ

(
st+1, argmax

a
Q(st+1, a; θt), θ′t

)
(8)
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We use ε-greedy to choose the actions an, i.e., randomly selecting actions with a
probability of ε, and selecting actions based on the Q-values with a probability of 1− ε, to
ensure that the UAV is somewhat exploratory. Figure 3 shows the architecture of the DDQN.
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Compared with the DQN, the DDQN avoids overestimation to some extent and
improves the stability and speed of training. The implementation of the DDQN algorithm
in the data collection scenario is presented in Algorithm 1.

Algorithm 1: DDQN-Based UAV Trajectory Optimization Algorithm

Initialize replay memory D, the online network parameters θ, the target network parameters
θ′ = θ, and the target network update period N f req.

1: for episode = 0, 1, . . ., M − 1 do
2: Randomly generating the location of the IoT devices qu

0 , the location of the UAV q0, the

location of the jammers qj
0, transmission power of UAV P, and interference power Pj.

3: Time step n = 0, initialization of the environment and state sn of the UAV
4: while bn ≥ 0 do
5: choose action an with ε-greedy policy, i.e.,

6: an =

randomly select from A w.p. ε

argmax
a∈A

Q(sn, an) w.p. 1-ε

7: take action an, state sn, next state sn+1, and reward rn
8: store (sn, an, sn+1, rn) in replay memory D
9: sn ← sn+1
10: n = n + 1
11: end while
12: randomly sample a minibatch from D

13: yn =

rn+1, if sn+1is terminal

rn+1 + γQ
(

sn+1, argmax
a

Q(sn+1, a; θt), θ′t

)
, otherwise

14: do a gradient descent step with loss ∥yn −Q(sn, an; θ)∥2

15: Replace target network parameters θ′ ← θ when n = N f req

16: end for
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4. Simulation Results and Discussion

In this section, simulation experiments are conducted, and the performance of the
proposed algorithms in different scenarios is explored. To evaluate the efficacy of the
proposed method in UAV data collection, the following algorithms are compared: (1) Q-
learning; (2) proximal policy optimization (PPO); (3) DQN; (4) dueling DQN; and (5) DDQN.
The simulation experiments are conducted with different numbers of devices and obstacles.
The convergence performance of the algorithms is compared. In this study, a computer
equipped with a 3.60GHz NVIDIA GPU RTX 2080 was used as the experimental platform,
and the Adam optimizer was used to update the neural network. The specific simulation
experiments are shown in Section 4.1.

4.1. Parameter Initialization

To reduce the training time, the simulation scene in this paper is set at 50 m × 50 m ×
10 m, due to the complexity of the algorithm’s action and state space [31–34]. The algorithm
presented in this paper applies to scenes of arbitrary size, and the simulation parameters
are shown in Table 1. Throughout the testing phase, the two-dimensional coordinates of
the UAV are positioned at the center of the scene, while its altitude is randomly generated
within the range of 3 m to 10 m. The positions of the jammers and devices are randomly
distributed within the designated area. Moreover, the data transmission rates of each device
are randomly assigned from 15,000 bps to 20,000 bps. When comparing the performance
of the different algorithms under identical scenarios, the total fixed data volume remains
consistent. Additionally, the parameters for the DDQN algorithm are set as shown in
Table 2. The hyperparameters are set according to the simulation experience.

Table 1. Initialization simulation parameters.

Parameters Value

N 3
J 3
B 100 MHz
P 43 W
Pj [10, 50]
σ2 −60 dBm/Hz

βLoS −30 dB
βNLoS −35 dB
ηLoS 1.41 [28]

ηNLoS 2.23 [28]
αLoS −2.5 [28]

αNLoS −3.04 [28]

Table 2. Parameter settings.

Parameters Value

Learning rate α 0.0004
Discount factor γ 0.99

ε 0.01
N f req 100

Minibatch 32
Iteration 80,000

We compare the performance of the DDQN algorithm with other traditional algorithms
across various scenarios. During the training phase, each algorithm saves the model
that achieved the highest cumulative reward. Subsequently, during the testing phase,
80,000 episodes are run using the best-saved models, and the average reward for each
algorithm is computed.
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Complexity analysis: The training process has a computational complexity of
O
(
|A| × |S| ×N L

)
, where |•| refers to the cardinality of a set, N is the maximum number

of neurons in the hidden layers in θ, and L is the number of layers of θ.

4.2. Result Analysis with Different Numbers of IoT Devices

In this section, the results of the trajectory optimization problem for the UAV data
collection task using the DDQN algorithm are analyzed for various numbers of devices.
The UAV is probed in a bounded three-dimensional space, while ground IoT devices and
jammers are randomly distributed across a two-dimensional plane. The objective is to
optimize the UAV’s movement trajectory in order to obtain the highest cumulative reward.

1. The result analysis for the scenario with three devices and five obstacles (3D+5O, in
short) is as follows:

An example of a UAV trajectory involving three devices and three jammers is shown
in the illustration attached to Figure 4. It is shown that the UAV demonstrates a strategy of
bypassing the jammers and obstacles to mitigate interference during the data collection
mission and to reduce the likelihood of collisions. Furthermore, the UAV tends to approach
devices closely, thereby reducing the distance between them in order to enhance the amount
of data collected. The simulation results indicate that the overall trajectory of the UAV
aligns with the optimization goal.
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Figure 4. Example of UAV data collection under the 3G+5O scenario. (a) three-dimensional (3D)
UAV trajectory; (b) Top view of the scenario. (A pentagram represents the ground devices, while a
triangular shape symbolizes the trajectory of the UAV.)

Figure 5 shows the convergence performance of the different algorithms in this sce-
nario. The experimental results show that the DDQN algorithm outperforms the other
algorithms in terms of the final cumulative average rewards.

2. The result analysis for the scenario with five devices and five obstacles (5D+5O, in
short), as follows:

The scenario with five devices and three jammers is depicted in Figure 6. From
observing the UAV’s trajectory, it is evident that the UAV successfully executes its mission
while navigating around the jammers and obstacles. Figure 7 shows the convergence curves
of the UAV. The curve shows that the mean reward of each agent shows an upward trend
until convergence is reached. Notably, the reward curve of the DDQN algorithm surpasses
that of the traditional algorithm, revealing the good performance of the DDQN algorithm.
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4.3. Result Analysis with Different Numbers of Obstacles

In this section, we increase the number of obstacles from five in 3D+5O to eight to
assess the generalizability of the DDQN algorithm (3D+8O). As can be seen from Figure 8,
as the density of the obstacles increases and the environment becomes more intricate, the
UAV strategically selects an altitude characterized by lower obstacle density to navigate
and complete the data collection task. Figure 9 provides a comparative analysis of the
average reward attained by each algorithm, reaffirming the superior performance of DDQN
in comparison to the other algorithms.
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view of the scenario.
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Figure 10 presents a comparison of the average rewards across the different scenarios
under the DDQN algorithm. We obtain the following conclusions: (1) with throughput
designated as the reward metric, scenario 5D+5O, characterized by an increased number of
ground devices, achieves the maximum reward value compared to 3D+5O; and (2) likewise,
in scenario 3D+8O, the higher obstacle density relative to 3D+5O imposes more penalties
on the UAVs, resulting in a lower average reward value.

We also compared the convergence rates of the algorithms. The 90% confidence
interval of the average reward value of each algorithm is used as the convergence interval to
calculate the convergence rate of each algorithm in each scenario, and then the convergence
rates of the algorithms in the three scenarios are used to obtain that shown in Figure 11. The
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experimental results indicate that, while ensuring the optimal value of the average reward,
both the DDQN and the dueling DQN exhibit a better convergence rate compared to the
PPO and DQN algorithms. However, the Q-learning algorithm has the fastest convergence
rate but the lowest average reward value, resulting in a poor convergence performance.
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To further highlight the advantages of the DDQN algorithm, we took 3D+5O as an
example; fixed the initial position of the UAV, the ground equipment, and the jammer
position after training the network; and observed the test flights under the different al-
gorithms to observe the data collection process of the UAV. The experimental results are
shown in Figure 12, which shows that, although the Q-learning algorithm finally reached
convergence in the previous experiments, it is still inferior to the dueling DQN and DDQN
in terms of the data collection speed. The test results show that the DDQN algorithm can
learn the unknown environment better and can collect the data in the shortest number
of steps.
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Table 3 compares the average training time of each algorithm in different cases. The
DDQN algorithm used in this paper has a shorter training time, while ensuring convergence
performance. The dueling DQN algorithm is the second-best in terms of convergence
performance, surpassed only by the DDQN algorithm. However, it is not as fast as the
DDQN algorithm in terms of training time. Furthermore, the proposed algorithm can meet
real-time requirements, as its execution time on the system is significantly less than that of
its training time.

Table 3. Average training time (seconds per episode) of the UAV.

Method 3D+5O 5D+5O 3D+8O

Q-learning 1.34460 1.28929 1.39889
PPO 1.03520 1.63133 1.27002
DQN 1.75778 4.26592 1.80001

Dueling DQN 2.05745 4.35702 2.13843
DDQN 1.63612 3.95510 1.71541

The simulation results indicate that Q-learning has the worst performance, with
an average reward value that is only 10% of that of DDQN. This is because Q-learning
requires the storage of the value function of each state–action pair, which can be very
difficult, or even infeasible, in a high-dimensional state space. The PPO algorithm is only
better than Q-learning because it does not use empirical replay when updating the policy
network, resulting in the low utilization of empirical samples. Additionally, the algorithm’s
performance is sensitive to hyperparameters. On average, DQN achieves only 50% of
that of DDQN, due to overestimation, which leads to training instability and performance
degradation. It is important to note that this is an objective evaluation and not a subjective
one. Despite potential drawbacks such as implementation complexity and longer training
times, dueling DQN may still be a better choice in certain problems and scenarios.

5. Conclusions

We studied the problem of 3D trajectory planning for UAVs in data collection network
scenarios with jammers and flying obstacles. To achieve this, we proposed a DDQN-
based UAV trajectory optimization algorithm that utilizes appropriate reward values.
This algorithm enabled the UAVs to efficiently perform data collection tasks in complex
and changing environments without prior knowledge of the channel information. We
conducted simulations to analyze the impact of different numbers of IoT devices and
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obstacle densities on the algorithm’s performance. The experimental results demonstrate
that the algorithm optimized for throughput outperforms the traditional algorithm in terms
of both latency and cumulative reward. Additionally, the results show that the DDQN
algorithm is effective in addressing challenges related to trajectory planning.

6. Future Work

While the DDQN algorithm performs well in many situations, it has some limitations.
These include hyperparameter sensitivity, high computational resource requirements, and
a limited adaptation to non-smooth environments.

In future work, we will conduct out-of-field experiments to observe the UAVs’ anti-
jamming, obstacle avoidance, and trajectory planning capabilities in a realistic environment.
We will also introduce limitations on the UAV batteries, particularly by charging the UAVs
in a designated area to ensure that sufficient power is available between tasks. In addition,
future considerations will include addressing multi-UAV dynamic scenarios, considering
distributed training and hyperparameter tuning, in order to accelerate the training speed
for reinforcement learning. Furthermore, when collecting data in UAV IoT networks, it
is essential to consider the security and privacy of the transmitted data, adhere to ethical
guidelines, and acknowledge social responsibility.
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