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Abstract: Traffic flow prediction is essential for smart city management and planning, aiding in opti‑
mizing traffic scheduling and improving overall traffic conditions. However, due to the correlation
and heterogeneity of traffic data, effectively integrating the captured temporal and spatial features
remains a significant challenge. This paper proposes a model spatial–temporal fusion gated trans‑
former network (STFGTN), which is based on an attention mechanism that integrates temporal and
spatial features. This paper proposes an attention mechanism‑based model to address these issues
andmodel complex spatial–temporal dependencies in road networks. The self‑attentionmechanism
enables the model to achieve long‑term dependency modeling and global representation of time
series data. Regarding temporal features, we incorporate a time embedding layer and a time trans‑
former to learn temporal dependencies. This capability contributes to a more comprehensive and
accurate understanding of spatial–temporal dynamic patterns throughout the entire time series. As
for spatial features, we utilizeDGCNand spatial transformers to capture both global and local spatial
dependencies, respectively. Additionally, we propose two fusion gate mechanisms to effectively ac‑
commodate to the complex correlation and heterogeneity of spatial–temporal information, resulting
in a more accurate reflection of the actual traffic flow. Our experiments on three real‑world datasets
illustrate the superior performance of our approach.

Keywords: traffic flow prediction; smart city; attention mechanism; transformer; fusion gate

1. Introduction
Intelligent transportation systems (ITS) [1] are integral to the development of smart

cities. Within ITS, traffic flow prediction [2] plays a crucial role by accurately forecast‑
ing future traffic conditions based on historical observations. Studies have demonstrated
that precise traffic flow prediction is essential for tasks such as alleviating congestion and
forecasting taxi demand [3] In the transportation domain, “demand” typically refers to
the travel or transportation needs of people or goods between different locations. This
encompasses factors like the quantity of trips or the volume of goods transported from
one location to another. Short‑term origin–destination (OD) flow prediction [4,5] is par‑
ticularly significant for urban rail transit operation planning, control, and freight trans‑
port management.

The typical spatial and temporal characteristics observed in traffic flow prediction
data pertain to the variations in data across time and location. This trait underscores the
prevalence of correlation and heterogeneity within traffic flow data. Correlation primarily
entails autocorrelation across both temporal and spatial dimensions. For instance, as de‑
picted in Figure 1, a traffic incident occurring at a specific road nodemay have a prolonged
impact on adjacent road segments’ traffic flow, persisting overmultiple time intervals. Het‑
erogeneity, conversely, is evidenced by diverse patterns observed at different temporal or
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spatial scales. For example, certain holidays or highly trafficked areas may exhibit dis‑
tinct traffic flow features. So, the primary challenge in predicting traffic flow is effectively
capturing and modeling the complex and dynamic correlation and heterogeneity of traffic
data. Traditional methods, such as support vector regression (SVR) [6], Bayesian meth‑
ods [6,7], and vector autoregressive models [8], often rely on complex feature engineering
and have poor generalization capabilities.
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Figure 1. (a) This is a real‑time road condition map from the high‑speed highway traffic detection
system in the Los Angeles area. The system installs detectors in various areas of the road to collect
real‑time traffic flow data. These data include metrics such as vehicle speed, vehicle density, traffic
volume, etc., along with their variations over time and spatial locations. (b) Scenario of traffic flow
correlations and heterogeneity in the road network. The traffic condition at one node will influence
other nodes over time and space.

In recent years, the field of traffic flow prediction has seen widespread use of hybrid
neural networks based on convolutional neural networks (CNNs) and recurrent neural net‑
works (RNNs) [8–12] due to the development of deep learning techniques. Examples of
such networks include ConvLSTM [13] and PredRNN [14]. However, these methods have
a limitation in that they cannot directly address non‑Euclidean data inherent in urban sys‑
tems, such as vehicle flows on road networks. Graph neural networks have rapidly devel‑
oped to fill the gap in traffic flow prediction. For complex spatial–temporal dependencies,
some approaches take into account the existence of multiple spatial relationships by con‑
structing multiple graphs, such as STMGCN [15] and STFGNN [16]. Graph WaveNet [17]
utilizes adaptive graph learning to learn spatial dependencies. Regarding temporal depen‑
dencies, there are various approaches, including TCNs that use receptive fields of differ‑
ent sizes, such as MTGNN [18]. There are also approaches that capture spatial–temporal
dependencies by integrating different learning networks, such as ASTGCN [19]. Addi‑
tionally, spatial–temporal synchronization graphs can be constructed to establish unified
spatial–temporal dependencies between time.

But this adjacency matrix is based on road adjacency or time series similarity and
only takes into account the static spatial dependence between roads. However, spatial re‑
lationships on real roads undergo dynamic changes influenced by factors such as weather
conditions, holidays, and emergencies. Capturing this dynamic change is difficult with
a single temporal or spatial module. Furthermore, spatial–temporal relationships in traf‑
fic flow tasks are often complex and diverse, involving multiple patterns at different time
scales and spatial locations. To accurately and comprehensively fuse this complex informa‑
tion, it is crucial to designmodel structures that can adapt to different modes and dynamic
changes. Consequently, enhancing the accuracy and robustness of traffic flow prediction
hinges on the model’s adeptness at effectively fusing spatial–temporal information.
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Compared to previous trafficflowpredictionmodels based on encoder–decoder trans‑
former architectures, STFGTN has made the following improvements:
• We introduce a novel spatial–temporal dependency fusionmodel (STFGTN) for traffic

flow prediction, leveraging an attention mechanism. This model effectively captures
spatial–temporal correlations, aggregates relevant information, and notably enhances
traffic flow prediction accuracy.

• A novel dynamic graph convolutional neural network (DGCN) is employed to cap‑
ture evolving spatial dependencies among traffic flow data nodes, complemented
by an attention mechanism. This network adeptly mines spatial data correlations
by dynamically adjusting node correlation coefficients and aggregating high‑node‑
correlation information.

• Two gatingmechanisms are incorporated to integrate various components within our
model. Firstly, we fuse local spatial features fromDGCNswith global spatial features
from spatial multi‑attention. Secondly, we introduce a gating nonlinearity to fuse pre‑
viously integrated spatial features with temporal features obtained through temporal
multi‑head attention.

2. Relation Work
2.1. Deep Learning for Traffic Prediction

In recent years, there has been a surge in the development of deep learning frame‑
works aimed at addressing traffic flow prediction challenges, with the primary goal of
enhancing prediction accuracy. Initially, spatial regions were divided into two or three‑
dimensional grids, serving as inputwindows for convolutional neural networks to forecast
traffic flow. ST‑ResNet [9] utilized residual convolution techniques for crowd flow predic‑
tion. Yao et al. [12] employed convolutional neural networks (CNNs) in the spatial domain
and long short‑term memory (LSTM) in the temporal domain to capture spatial–temporal
dependencies in traffic flowdata. Thesemethods operate on gridded traffic data and apply
convolution operations in a structured manner with respect to spatial dimensions to cap‑
ture spatial correlations. However, they do not account for non‑Euclidean dependencies
between nodes.

Graph neural networks (GNNs) have showcased remarkable performance in model‑
ing graph data, rendering them a favored choice for various graph‑related tasks like graph
classification [20], node classification [21], and recommender systems [22]. Recent stud‑
ies have integrated spatial graphs into traffic prediction by employing spatial–temporal
graph models to handle the graph structure of spatial–temporal data. This approach has
been explored by numerous researchers [18,23–27]. The traffic data is organized as a graph
using a spatial–temporal graph neural network (STGNN) and utilized for prediction. The
STGNN model is divided into two methods: RNN‑based and CNN‑based. RNNs and
CNNs are utilized in the respective methods to conduct forward computation along the
temporal dimension. Attentional mechanisms have gained popularity in this domain due
to their efficacy in capturing dynamic dependencies in traffic data [19,28–31]. However,
these models do not comprehensively address the dynamic spatial–temporal dependen‑
cies between nodes within the road network, at both local and global scales.

Additionally, deep learning techniques aid in origin–destination (OD) estimation for
traffic flow prediction [32], using deep learning methods and global sensitivity analysis to
solve OD estimation and sensor location issues.

2.2. Graph Convolution Networks
Graph convolutional neural networks (GCNs) are powerful tools for capturing spa‑

tial dependencies in non‑Euclidean spaces. The crux of GCNs lies in the adjacency matrix,
which provides inherent topological information to the model. However, real‑world traf‑
fic dynamics can vary significantly, even among locations with the same central point, due
to factors such as temporal variations. Therefore, the static adjacency matrix constructed
by GCNs fails to accurately capture the dynamic nature of traffic diffusion. In recent years,
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popular GCNs can be classified into three main types: spectral GCN [33,34], ChebNet [35],
and GAT [36]. With regard to spectral GCN, Bruna et al. used Fourier transform to con‑
vert graph signals in the spatial domain to the spectral domain for convolution computa‑
tions. In terms of ChebNet, to overcome the dependence on the graph Laplacematrix, Kipf
et al. performed message passing in the spatial domain to simplify the graph convolution
operation. In terms of GAT, to illustrate the importance of neighboring nodes in learn‑
ing spatial dependencies, GAT integrates an attention mechanism into the node aggreg‑
ation operation.

2.3. Transformer
The concept of the attention mechanism aims to enhance model performance by effi‑

ciently assigning weights and focusing on different parts of the information, thus making
it more adaptable to various tasks and data contexts. This concept has been successfully
applied in several deep learning models, including the Transformer architecture in natu‑
ral language processing [37], and the Swin Transformer in computer vision [38], which
achieved remarkable image classification performance. Additionally, numerous variants
of the Transformer have demonstrated promising results in computer vision tasks.

Recent studies have shown that introducing the Transformer architecture to traffic
flow prediction [27,30,39] addresses the limitations of static structures. The original Trans‑
former architecture employs an encoder–decoder structure, utilizing encoder and decoder
stacks to extract deep features, along with a multi‑head mechanism to capture long‑term
dependencies in sequences. For example, in TFormer [40], the K‑hop adjacency matrix
is used to guide the model to focus on the nearby neighboring nodes and ignore the dis‑
tant nodes. It describes the adjacency between nodes in the graph and helps the model
to accurately capture local spatial features. Traffic Transformer [41] consists of a global
encoder and a global–local decoder, integrating global and local spatial features through
multi‑head attention. It utilizes temporal embedding blocks to extract temporal features,
positional encoding and embedding blocks to understand node locations, and concludes
with a linear layer for prediction. In our approach, we leverage the Transformer solely
as a spatial–temporal dependency extractor, deviating from the original Transformer’s
encoder–decoder structure.

3. Problem Definition

 Definition 1. (Road network) We denote the road network as G = (V, E, A), where V = {v1,
v2 . . . , vn} denotes the set of N nodes (|V| = N) in the road network, E is the set of connectivity
between nodes, and A ∈ RN×N  is the adjacency matrix of the road network used to describe the
spatial distance between nodes. Where N is denoted as the number of nodes in the road network.

 Definition 2.  (Traffic Signal Matrix) Therefore, the traffic state at any time step t can be regarded
as a graph signal Xt ∈ RN×D, where D is the dimension of the traffic state, and the state includes
traffic flow, speed, etc. We use X = (X1, X2, . . . , XT) ∈ RT×N×D to denote the traffic flow tensor
of all nodes on the total T time step.

Problem Formalization
Traffic flow prediction is the prediction of traffic flow in a future time period by an‑

alyzing the observed historical traffic data. In a transportation system, we have observed
traffic flow data X =

(
X(t−T+1), X(t−T+2), . . . , Xt

)
, and a known spatial graph A. Our

objective is to learn the mapping function f from the observed historical traffic flow at the
T‑steps, in order to predict the traffic flow at the future T′ steps.[

X(t−T+1), . . . , Xt; G
] f→

[
X(t+1), . . . , X(t+T′)

]
(1)
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4. Methods
Figure 2 illustrates the architecture of STFGTNs, comprising a data embedding layer,

multiple stacked spatial–temporal modules interconnected in sequence, and an output
layer. We will provide a detailed description of each module below.
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4.1. Data Embedding Layer
In this study, we introduce an input embedding, a widely employed and effective

technical approach. The data embedding layer’s main task is to transform input data
into a high‑dimensional representation. Specifically, it first transforms the original input
X into E f ∈ RT×N×d f which is a vector in a higher dimensional space through a fully
connected layer.

E f = FC(Xt−T+1:t) (2)

where d f is the dimension of the embedding, Xt−T+1:t is the traffic series in the previous T
time timestamp, and the FC(·) indicates a fully connected layer.

In order to better model the periodicity of traffic flow, we specifically design an em‑
bedding mechanism which can effectively incorporate the time‑periodicity information
into themodel. The urban traffic flow is highly periodic as influenced by people’s traveling
mode and lifestyle. For the time periodicity information, we introduce two embeddings
to represent the weekly and daily periodicity, respectively, denoted as Tw ∈ RNw×d f and
Td ∈ RNd×d f , where Nw = 7 is the number of days in a week and Nd = 288 is the number
of timestamp in a day. Wt ∈ RT and Dt ∈ RT denote the day of the week data and, for
traffic flow sequences, the timestamped data, respectively. We extract the corresponding
temporal embeddings Ew ∈ RT×d f and Ed ∈ RT×d f by using them as indexes. The peri‑
odicity embedding Ep ∈ RT×N×2d f for the traffic time series is obtained by concatenating
and broadcasting them.

In addition, we use the temporal position encoding Etpe ∈ RT×d f from the original
Transformer to introduce the position information of the input sequence.

Eventually, by connecting the embeddings above, we obtain the hidden spatial–temporal
representation Xemb ∈ RT×N×d, as follows:

Xemb = E f + Ep + Etpe (3)

where the final embedding dimension d = 3d f .
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4.2. Spatial–Temporal Block Layer
We present a spatial–temporal block comprised of parallel components in Figure 3,

which includes a temporal transformer, a spatial transformer, and a dynamic spatial con‑
volutional network. Within the spatial–temporal block, two gating mechanisms, namely
the Spatial FusionGate (SFG) and the Spatial–Temporal FusionGate (STFG), are positioned
for the fusion of spatial–temporal features.
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4.3. Temporal Transformer
Traffic flow in cities typically exhibits a wide range of variations over extended peri‑

ods, including daily traffic patterns, weekly periodic fluctuations, and other changes under
diverse conditions. To capture these variations effectively, we utilize the temporal trans‑
former, which excels at extracting long‑term dependencies within traffic flow data. By
leveraging global information, this component adeptly discerns trends and periodic vari‑
ations, offering a critical advantage for traffic flow prediction. Formally, within the multi‑
heads self‑attention mechanism [42], the core operation is the scaled dot‑product attention.
Here, queries, keys, and values represent equivalently time sequences of identical sliding
windows. In other words, Q = K = V. The input sequence X′T ∈ RT×N×d is projected
into a high‑dimensional subspace Q(T)

i ∈ RT×d′ , K(T)
i ∈ RT×d′ , V(T)

i ∈ RT×d′ using linear
mapping to learn the complex time dependence. A time sequence XT ∈ RT×d with a T
timestamp and d dimension is inputted into the temporal transformer. The subspace is
generated by the linear transformation, as follows:

Q(T)
i = XTWT

Q, K(T)
i = XTWT

K , V(T)
i = XTWT

V (4)

where WT
Q, WT

K WT
V ∈ Rd×d′ are learnable parameters and d′ is the dimension of query, key,

and value matrix.
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To capture the temporal dependencies between all of the time slices of the node, the
self‑attention operation is applied in the time dimension, as follows:

A(T)
t =

(Q(T)
i )(K(T)

i )
√

d′
(5)

TSA
(

Q(T)
i , K(T)

i , V(T)
i

)
= so f tmax

(
A(T)

n

)
V(T)

n (6)

where d′ are queries, keys, values, and their dimension, respectively, and softmax is an
activation function. The TSA refers to the weights obtained by scaling the dot product.

Temporal self‑attention has been demonstrated to effectively detect dynamic temporal
patterns across various nodes in traffic data. Moreover, it exhibits global adaptability and
can capture long‑range temporal dependencies spanning all time slices. The output of the
temporal self‑attention module can be expressed as:

MTSA
(

XT
)
= Concatenate(Headi, Head2, . . . Headh)WO (7)

where Headi = TSA
(

Q(T)
i , K(T)

i , V(T)
i

)
, h is the number of attention heads, and WO is the

final output projection matrix.
Furthermore, we employ a position‑wise fully connected feedforward network on the

output of the temporal multi‑head self‑attention block to produce the final output. To re‑
tain information from the original inputs, we integrate layer normalization and residual
connections by combining the output of the temporal attention module with the
original inputs.

During the final stage, layer normalization and residual connections are once again
applied to the output of the temporal transformer. The residual connection aids in facilitat‑
ing information flow throughout the entire temporal attention module, thereby ensuring
model stability. This process is illustrated below:

Toutput = LN
(

MTSA
(

XT
)

w
T

1
+ Q(T)

)
(8)

Ttrans = LN
(

Toutput + Relu
(

ToutputWT
2

)
WT

3

)
(9)

where Toutput ∈ RT×N×d is the output of the temporal transformer after residual and
Ttrans ∈ RT×N×d is the final output of the temporal transformer. WT

1 WT
2 and WT

3  are learn‑
able parameters, LN is layer normalization, and ReLU is the activation function.

4.4. Spatial Transformer
Spatial transformers provide diverse representations of node relationships, enabling

the model to flexibly learn various aspects of spatial features. This capability is partic‑
ularly beneficial for handling correlated and heterogeneous node relationships in urban
transportation scenarios. Therefore, we utilize a spatial self‑attention module as a feature
extractor to capture dynamic correlations in traffic time series.

Formally, given an input X′S ∈ RT×N×d, with spatial features, we slice X′S ∈ RT×N×d

by node to obtain XS ∈ RN×d to introduce information about the topology of the traffic net‑
work, and we use the adjacency matrix A to generate an initialization matrix W f . Then we
add W f to the spatial input sequence of the query so that the dynamic feature embedding
is integrated into the inputs of the model.

∼
X

S
= XS + W f (10)

where W f ∈ RN×d is a learnable feature embedding of nodes initialized by the adjacency
matrix. In the previous multi‑attention‑based model, all queries, keys, and values are rep‑



Electronics 2024, 13, 1594 8 of 21

resented as the same sequence, i.e., Q = K = V. However, this approach does not suf‑
ficiently consider the structural characteristics of the dynamical graphs, and the addition
of feature embeddings in multi‑head spatial attention serves to introduce additional node
information, which helps to improve the ability of modeling relationships between nodes.
The input data are linearly mapped to perform the same operation as the temporal trans‑
former. This is performed by projecting the data into a high‑dimensional subspace to learn
complex spatial dependencies. We obtain the query, key, and value matrices for the self‑
attentive operation by linear transformation as follows:

∼
Q

(S)

i =
∼
X

S
Ws

Q, K(S)
i = XSWS

K, V(S)
i = XSWS

V (11)

where WS
Q ,W

S
K, WS

V, ∈ Rd×d′ is the weight matrix of each of
∼
Q

(S)

i , K(S)
i and V(S)

i and the
dimension of the query, key, and value matrices in this work. We then apply the self‑
attention operation to the spatial dimension to model the spatial dependency between
nodes and obtain the attention scores between all nodes as follows:

A(S)
t =

∼
Q

(S)

i K(S)
i

T

√
d′

(12)

where A(S)
t ∈ RN×N captures the spatial relations in different spatial nodes. The d′ are

queries, keys, values, and their dimension, respectively.
It is evident that the spatial dependency matrix between nodes undergoes dynamic

changes across different time segments. Therefore, the SSAmodule can effectively capture
these dynamic spatial dependencies. Finally, by multiplying the attention scores by the
value matrix, we obtain the output of the spatial self‑attention module (SSA) for each head
as follows:

SSA

(
∼
Q

(S)

i , K(S)
i , V(S)

i

)
= so f tmax

(
A(S)

t

)
V(S)

i (13)

The final output is obtained by concatenating the outputs and projecting them further.
Formally,

MSSA
(

XS
)
= Concatenate(Headi, Head2, . . . Headh)WO (14)

where Headi = SSA

(
∼
Q

(S)

i , K(S)
i , V(S)

i

)
, h is the number of attention heads, and WO is the

final output projection matrix.
The model is able to learn multiple potential subspaces to learn different spatial de‑

pendency patterns using the multi‑head attentionmechanism, and the feedforward neural
network applies the dynamically learned representation of spatial relations between nodes
to each node, represented by W f . This enables W f to dynamically impact the model learn‑
ing of spatial features between nodes. To ensure model stability, we incorporate residual
and layer normalization operations in the output of the model, similar to the temporal
transformer. Finally, the output of the spatial transformer is obtained as follows:

Soutput = LN
(

MSSA
(

XS
)

Ws
1 + Q(S)

)
(15)

Strans = LN
(
Soutput + Relu

(
SoutputWs

2
)
Ws

3
)

(16)

where Soutput and Strans ∈ RT×N×d, Ws
1 , Ws

2 and Ws
3 are learnable parameters, LN is layer

normalization, and ReLU is the activation function.
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4.5. Dynamic Spatial Graph Convolution
The connectivity and global nature of road networks remain vital aspects of trans‑

portation infrastructure. To capture the spatial dynamics effectively, we employ a dynamic
graph convolutional network (DGCN). The GCN derives node features by aggregating in‑
formation from neighboring nodes [19,43,44], enabling amore thorough exploration of the
transportation network’s topological structure. Building upon this approach, we integrate
a traditional convolution operation, transitioning from structured data processing to graph
data analysis, thereby capturing unstructured patterns inherent in graphs. Specifically, the
GCN initially gathers information surrounding each node to form an intermediate repre‑
sentation, which is then refined using linear projection and nonlinear activation functions.

The input to the GCN comprises two components: the raw time series input for multi‑
head attention, and the feature matrix W f representing the relationships between nodes
after conducting spatial multi‑head attention across all nodes. When combined, these com‑
ponents yield a matrix denoted as:

Q(l−1) =
(

Q(l−1)
t−T+1, Q(l−1)

t−T+2, . . . Q(l−1)
t

)
ϵRT×N×d (17)

where Q(l−1)
t ∈ RN×d, W(l) ∈ Rd

′×′
, A ∈ RN×N represents the interplay between nodes,

defined as follows:

A =


∼
D

− 1
2 ∼

A
∼
D

− 1
2
,

∼
D

−1∼
A,

undirected graph
directed graph

(18)

∼
A is the adjacency matrix of the graph, and

∼
Dii = ∑

j

∼
Aij.

Traditional graph convolution operations are static, whereas in traffic road networks,
the relationships between nodes may change over time. Therefore, a simple application
of static GCN cannot capture these dynamic changes. Hence, we introduce a node fea‑
ture matrix W f , which dynamically changes in the multi‑head spatial self‑attention mech‑
anism. This enables the model to learn a different weight matrix at each time step in the
GCN, resulting in changes to the adjacency relationships. Consequently, different spatial
relationships are captured and integrated, as defined below:

W f =
Q(S)

i Q(S)T

i√
d′

(19)

In addition, we enhance the complexity of node representations by stacking twograph
convolutional layers. Each GCN layer can be perceived as a mechanism for aggregating
and propagating information concerning nodes and their neighboring nodes. By stacking
multiple GCN layers, the model progressively extracts higher‑level abstract features and
enhances its representation of graph structures. In our case:

DGCN
(

Z(l−1)
t

)
= σ

((
A ⊙ W f

)
Q

(l−1)

t
W(l)

)
(20)

XS
GCN = DGCN

(
DGCN

(
Q(l−1)

t

))
(21)

With this design, the model can glean information about the spatial relationships be‑
tween nodes from the data, rather than depending on a predefined static adjacency matrix.

4.6. Gate Mechanism for Feature Fusion
As shown in Figure 2, we employ two gating mechanisms to merge the local spatial

features derived from spatial graph convolution with the global spatial features acquired
through multi‑head attention. Additionally, another gating mechanism is utilized to com‑
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bine the spatial fusion features with the temporal features learned via temporal multi‑
head attention.

4.6.1. Spatial Gate Mechanism
To comprehensively integrate the diverse spatial features learned by themodel through

spatial graph convolution and the multi‑head attentionmechanism, and to dynamically al‑
locateweight shares between theDGCNand themulti‑head attention for various scenarios,
we employ a classical gating mechanism.

The outputs of the DGCN and the outputs of the multi‑head attention mechanism,
XS

GCN and XS
att ∈ RT×N×d, are each passed through a fusedMLPunit. Aweight is obtained

as follows:
Sgcn = 2sigmoid

(
linear

(
Relu

(
linear(XS

att)
)))

(22)

Satt = 2sigmoid
(

linear
(

Relu
(

linear( XS
GCN)

)))
(23)

The output Y′s ∈ RN×d is obtained by weighting Ps and Rs with the gate y.

y = sigmoid
(
Sgcn + Satt

)
(24)

Ys = y XS
GCN + (1 − y)XS

att (25)

where the final output Ys ∈ RT×N×d is the result of the dynamic spatial graph convolution
and spatial transformer in the collection of T time steps.

4.6.2. Spatial–Temporal Bilinear Gate Mechanism
To comprehensively capture both spatial and temporal dependencies in traffic flow

prediction, we introduced gating nonlinearity. This design enables the model to more flex‑
ibly capture the intricate relationship between spatiotemporal features, which is crucial for
addressing the complex spatiotemporal dependencies inherent in dynamic systems like ur‑
ban traffic. Specifically, the outputsYs of the fused spatial information and the outputYT of
the temporal multi‑attentionmechanism are respectively passed through a neural network
unit comprising a linear layer and an activation function to generate gating weights.

Sgate = 2sigmoid(linear(Relu(linear(Ys)))) (26)

Tgate = 2sigmoid(linear(Relu(linear(Yt)))) (27)

where the gatingmechanism is constructed using a 2‑sigmoid, which expands the range of
gating weights to [0, 2] compared to the conventional sigmoid, thus increasing the sensitiv‑
ity to the inputs, possibly to better account for the effect of spatial–temporal information.

Youtput = Sgate ⊙ Ys + Tgate ⊙ Yt (28)

where ⊙ denotes an element‑by‑element multiplication operation, and the output fused
spatial–temporal information is used as input to the subsequent spatial–temporal blocks
stacked by the model.

4.7. Output Layer
After passing through several stacks of spatial–temporal blocks, our input undergoes

convolution with two additional layers to generate the final output. Specifically, the out‑
put features first undergo the first convolution operation and activation function to extract
higher‑level features and introduce nonlinearities. Then, a dimension substitution is per‑
formed to ensure that the tensor’s dimension matches the expectation of the subsequent
convolutional layers. Subsequently, a second convolutional operation captures more fea‑
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ture information. Finally, another dimension substitution is performed to restore the ten‑
sor to its original order. This process is illustrated below:

X̂ = Conv2
(
Conv1(Youtput)

)
(29)

where the prediction results for T′ steps, denoted as X̂ ∈ RT′×N×D involve 1 × 1 convo‑
lutions with Conv1 and Conv2. In this approach, we opt for a direct method rather than a
recursive one for multi‑step prediction. This decision is made to account for cumulative
errors while also prioritizing model efficiency. This series of operations helps properly
extract features and integrate the Transformer output to prepare the model output for the
final task.

5. Experiments
5.1. Datasets

We conducted comparative experiments on four real‑world highway traffic public
datasets: PeMS04, PeMS07, PeMS08 and PEMS‑BAY [44]. The raw traffic data were ag‑
gregated into 5 min intervals and normalized to zero mean. In addition, a spatial neigh‑
borhood map was constructed for each dataset based on the actual road network. Table 1
shows more details about the datasets.

Table 1. Summary of datasets.

Datasets Nodes Timesteps Time Range

PEMS04 307 16,992 1/1/2018–2/28/2018
PEMS07 883 28,224 5/1/2017–8/31/2017
PEMS08 170 17,856 7/1/2016–8/31/2016

PEMS‑BAY 325 52,116 1/1/2017–5/1/2017

5.2. Baseline
We compare STFGTNwith the following baseline: VAR: captures the relationship be‑

tween two time series. SVR [6]: Support Vector Regression utilizes linear support vector
machines to make predictions. DCRNN [45]: Diffusion graph convolutional network inte‑
grated into GRU to predict flow graph sequence data. STGCN [43]: uses ChebNet and 2D
convolution to capture spatial and temporal correlations, respectively. GWNET [15]: com‑
bining graph convolution with temporal convolution while capturing spatial–temporal
correlations. STSGCN [44]: captures both spatial and temporal correlations by construct‑
ing spatial–temporal synchronization maps. MTGNN [18]: an adaptive graph learning
method for learning spatial correlation based on feature initialization. STFGNN[16]: Learn‑
ing Hidden Spatial–Temporal Dependencies by Novel Fusion of Multiple Spatial and Tem‑
poral Graphs. GMAN [28]: learning spatial and temporal correlations and integrating
them using self‑attentive mechanisms. TFormer [40]: a transformer‑based model where
encoder and decoder are stacked to extract deep features. STGODE [46]: Applying Con‑
tinuous Graph Neural Networks to Traffic Prediction in Multivariate Time Series Fore‑
casting. STGNCDE [47]: developed a STGNN combined with neural control differential
equations (neural CDE) for better continuous modeling. HDCFormer [48]: an evolved
Transformer network based on hybrid dilated convolutions. DSTAGNN [30]: utilizes data‑
driven dynamic spatiotemporal‑aware graphs instead of traditional static graph convolu‑
tions. EGFormer [49]: replaces dynamic decoding operations with a generative decoding
mechanism to reduce time and memory complexity.

5.3. Experimental Settings
All experiments were trained and tested on windows server (CPU: Intel(R) Core (TM)

i7‑13700KF, GPU: NVIDIA GeForce GTX 4090). Based on the PyTorch1.11.0 framework,
we divided the three public datasets into training, validation and testing sets in the ratio
of 6:2:2. The PEMS‑BAY dataset was divided in a ratio of 7:1:2. Additionally, we utilized
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data from the preceding hour (comprising 12 time steps) to conduct a multistep prediction,
specifically forecasting the traffic flow for the subsequent hour (consisting of 12 time steps).
We trained the model using the following hyperparameter configuration: the number of
layers for both the spatial and temporal transformers was 3, and each layer contained 4
attention heads. Both input and prediction lengths were set to 1 h, i.e., T = T′ = 12. We
trained using the Adam optimizer with the learning rate set to 0.001. The batch size was
64 and we implemented an early stopping mechanism if the validation error converged
within 30 consecutive steps. To evaluate model performance, we used three widely used
metrics: mean absolute error (MAE), mean absolute percentage error (MAPE), and root
mean square error (RMSE).

5.4. Experimental Results
Table 2 demonstrates the predictive performance of the different models for the three

evaluation metrics on the three datasets. STFGTN shows optimal performance on many
different types of baseline models.

Table 2. Performance on PEMS04, PEMS07, and PEMS08.

Model
PEMS04 PEMS07 PEMS08

MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE

VAR 23.750 18.090 36.660 101.200 39.690 155.140 22.320 14.470 33.830
SVR 28.660 19.150 44.590 32.970 15.430 50.150 23.250 14.710 36.150

DCRNN 22.737 14.751 36.575 23.634 12.281 36.514 18.185 11.235 28.176
STGCN 21.758 13.874 34.769 22.898 11.983 35.440 17.838 11.235 27.122
GWNET 19.358 13.301 31.719 21.221 9.075 34.117 15.063 11.211 24.855
MTGNN 19.076 12.964 31.564 20.824 9.032 34.087 15.396 9.514 24.934
STSGCN 21.185 13.882 33.649 24.264 10.204 39.034 17.133 10.170 36.785
STFGNN 19.830 13.021 31.870 22.072 9.212 35.805 16.636 10.961 26.206
STGODE 20.849 13.781 32.825 22.976 10.142 36.190 16.819 10.547 26.240
STGNCDE 19.211 12.772 31.088 20.620 8.864 34.036 15.455 10.623 24.813
GMAN 19.139 13.192 31.601 20.967 9.052 34.097 16.819 10.134 24.915
TFormer 18.916 12.711 31.349 20.754 8.972 34.062 15.455 9.925 24.883
STFGTN 18.829 12.703 30.532 20.549 8.673 33.802 14.987 9.638 23.950

SVR solely considers temporal correlation and neglects spatial correlation, rendering
it the least effective model. Conversely, while VAR accounts for both temporal and spatial
correlations, it lacks the capability to effectively capture nonlinear and dynamic spatial–
temporal relationships, resulting in predictions that are often highly unstable. DCRNN
represents a typical RNN‑based method for traffic flow prediction. However, its recursive
structure necessitates sequence computations at each time step, leading to significantly
increased computational costs and notably lower prediction accuracy compared to our
STFGTN method, particularly for long‑term predictions.

STGCN, Graph WaveNet, and STSGCN are representative CNN‑based approaches
employing 1D CNNs or TCNs along the time dimension to capture temporal correlations.
Although they effectively mitigate the issue of heightened computational costs, the one‑
dimensional convolutional kernel of 1D CNNs only slides along the time axis, making
it challenging to handle dependencies over extended periods. Furthermore, while TCNs
employ dilated convolutions to expand the convolutional receptive field, the time com‑
plexity logarithmically increases with the number of convolutional layers as the recep‑
tive field expands. This may present accuracy challenges in long‑term prediction com‑
pared to the self‑attentive mechanism utilized by TCNs to capture sequence dependencies
through convolution.

In the temporal dimension, our approach leverages an attention mechanism that dy‑
namically adjusts across time segments, facilitating effective capture of long‑term correla‑
tions. Across all three datasets, STFGTN outperforms MTGNN and STGNCDE in terms
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of MAE, MAPE, and RMSE, underscoring the enhancement in the model’s traffic flow pre‑
diction capability following integration of spatial–temporal features.

To validate the generalization ability of our model across different cities traffic condi‑
tions, we conducted experiments on traffic speed datasets with varying perspectives. The
experimental results demonstrate that our model maintains good predictive performance
compared to the baseline models, as shown in Table 3.

Table 3. Performance on PEMS‑BAY.

Datasets Metric DCRNN STGCN MTGNN GMAN STFGTN

PEMS‑BAY

Horizon 3
(15 min)

MAE 1.38 1.36 1.33 1.35 1.33
RMSE 2.95 2.96 2.80 2.90 2.85
MAPE 2.90% 2.90% 2.81% 2.87% 2.83%

Horizon 6
(30 min)

MAE 1.74 1.81 1.66 1.65 1.63
RMSE 3.97 4.27 3.77 3.82 3.70
MAPE 3.90% 4.17% 3.75% 3.74% 3.63%

Horizon 9
(60 min)

MAE 2.07 2.49 1.95 1.92 1.90
RMSE 4.74 5.69 4.50 4.49 4.38
MAPE 4.90% 5.79% 4.62% 4.52% 4.44%

In this comparative analysis, we evaluated the competitiveness of STFGTN against
other Transformer‑based models. Our study focused on comparing their performance
in capturing spatiotemporal correlations. The results, as presented in Table 4, highlight
STFGTN’s competitive performance, achieved through the integration of temporal fea‑
ture embeddings with both global and local spatial features. This underscores our ap‑
proach’s effectiveness in leveraging both temporal and spatial information for improved
prediction accuracy. Unlike traditional models like GMAN, which employ traditional
gate fusion mechanisms, we utilize a non‑linear gate fusion approach. Furthermore, un‑
like Transformer‑based frameworks like TFormer and HDCFormer, our approach ensures
more comprehensive spatiotemporal feature extraction with simplified computations.

Table 4. Performance of the transformer‑based model on the PEMS04 and PEMS08 datasets.

Model
PEMS04 PEMS08

MAE MAPE (%) RMSE MAE MAPE (%) RMSE

GMAN 19.139 13.192 31.601 16.819 10.134 24.915
TFormer 18.916 12.711 31.349 15.455 9.925 24.883
DSTAGNN 19.304 12.700 31.460 15.671 9.943 24.772
HDCFormer 32.806 16.154 43.602 15.715 10.612 20.543
EGFormer 29.796 14.792 40.822 31.523 11.386 44.104
STFGTN 18.829 12.703 30.532 14.987 9.638 23.950

Figure 4 illustrates the performance comparison of our model with different types of
methods over 12 time steps on the PEMS04 and PEMS08 datasets. Generally, as the predic‑
tion interval increases, the task becomesmore challenging, resulting in performance degra‑
dation across all models. However, our model, STFGTN, exhibits the smallest decrease in
performance compared to both GNN‑based and attention‑based models, highlighting its
superiority in long‑term prediction among other models. This also demonstrates the effec‑
tiveness of the improvements made on our proposed Transformer‑based model.



Electronics 2024, 13, 1594 14 of 21
Electronics 2024, 13, x FOR PEER REVIEW 14 of 22 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. The performance of different models on two datasets then varies at different time steps. 
(a–c) This represents the performance difference of STFGTN compared to other baseline models 
across different time steps in the PEMS04 dataset; (d–f) this represents the performance difference 
of STFGTN compared to other baseline models across different time steps in the PEMS08 dataset. 

5.5. Ablation Study 
In order to further assess the validity of each component of STFGTN, we conducted 

an ablation study of four variants of our model on the PEMS04 and PEMS08 datasets: 
• w/o s_gate: this variant removes the spatial fusion gating and simply splices the GCN 

with the output of spatial attention. 
• w/o st_fusion_gate: this variant removes the spatial–temporal fusion gating 

mechanism and splices the output of fused spatial features with temporal attention. 
• w/o Ttrans: this variant removes the time transformer. 
• w/o Strans: this variant removes the spatial transformer. 

Figure 5 illustrates a comparison of these variants, from which we draw the following 
conclusions: the integration of these components enables improved capture of spatial–
temporal interaction information, validating the effectiveness of the overall model 
framework. The significant degradation in model performance upon removing the 
temporal and spatial attention mechanisms, respectively, indicates their crucial roles in 
capturing remote temporal dependencies across the temporal dimension and global 
spatial dependencies among different roads in the spatial dimension. In terms of spatial 
fusion, the effect of the spatial fusion gating mechanism is important for adjusting spatial 
information, and its absence leads to a decrease in model performance. By introducing the 
gating nonlinearity, the model can capture spatial and temporal dependence more 
flexibly, significantly improving the modeling effect. 

  

Figure 4. The performance of different models on two datasets then varies at different time steps.
(a–c) This represents the performance difference of STFGTN compared to other baseline models
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of STFGTN compared to other baseline models across different time steps in the PEMS08 dataset.

5.5. Ablation Study
In order to further assess the validity of each component of STFGTN, we conducted

an ablation study of four variants of our model on the PEMS04 and PEMS08 datasets:
• w/o s_gate: this variant removes the spatial fusion gating and simply splices the GCN

with the output of spatial attention.
• w/o st_fusion_gate: this variant removes the spatial–temporal fusion gating mecha‑

nism and splices the output of fused spatial features with temporal attention.
• w/o Ttrans: this variant removes the time transformer.
• w/o Strans: this variant removes the spatial transformer.

Figure 5 illustrates a comparison of these variants, from which we draw the follow‑
ing conclusions: the integration of these components enables improved capture of spatial–
temporal interaction information, validating the effectiveness of the overall model frame‑
work. The significant degradation in model performance upon removing the temporal
and spatial attention mechanisms, respectively, indicates their crucial roles in capturing
remote temporal dependencies across the temporal dimension and global spatial depen‑
dencies among different roads in the spatial dimension. In terms of spatial fusion, the
effect of the spatial fusion gating mechanism is important for adjusting spatial informa‑
tion, and its absence leads to a decrease in model performance. By introducing the gating
nonlinearity, the model can capture spatial and temporal dependence more flexibly, sig‑
nificantly improving the modeling effect.
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By conducting a comparative analysis of replacing dynamic GCN with traditional
GCN, as shown in Table 5, we are able to more clearly evaluate the role and effectiveness
of dynamic GCN in our model. Traditional GCNs use static graphs to initialize relation‑
ships between nodes, while dynamic GCNs initialize them based on the road matrix dur‑
ing the initialization phase. Through attention mechanisms, the model’s weight matrices
can dynamically adjust, focusing attention on the nodes and features most relevant to the
prediction task. Additionally, by stacking multiple GCN layers, the model can gradually
extract higher‑level feature representations, thereby improving themodel’s representation
capability and prediction performance.

Table 5. Performance of traditional GCN and DGCN on the PEMS04 and PEMS08 datasets.

Datasets Metrics Classical GCN DGCN

PEMS04
MAE 19.263 18.829

MAPE(%) 13.038 12.703
RMSE 31.074 30.532

PEMS08
MAE 15.597 14.987

MAPE(%) 10.058 9.638
RMSE 24.614 23.950
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5.6. Visualization
To demonstrate the prediction performance of our model, we conducted predictions

on the test sets of sensor 100 from the PeMS04 dataset and sensor 80 from the PeMS08
dataset for both daily and weekly traffic flows. Figure 6 depicts that our predicted se‑
quences closely align with the actual traffic flow on both the fitting curves for the PEMS04
and PEMS08 datasets, maintaining consistency despite variations in the field of view. This
indicates that our model accurately forecasts by comprehensively considering the traffic
flow characteristics within the real road network.

Figures 7 and 8 display the absolute error of STFGTN for the 15 min, 30 min, 45 min,
and 60 min prediction tasks on PEMS04 and PEMS08.

The model demonstrates proficiency in both short‑term and long‑term forecasting,
effectively capturing temporal trends within traffic flow data. Nonetheless, its predictive
efficacy diminisheswith an extended prediction horizon, attributed to the heightened com‑
plexity and variability inherent in actual traffic conditions.
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5.7. Effect of Hyperparameters
In our study, we explored the impact of variations in hyperparameters, including

the number of attention heads, the number of layers in the spatiotemporal module, and
changes in dimensionality.

In Figure 9, we observe a clear trend in traffic flow prediction performance as model
dimensionality increases. Initially, there is a decrease followed by improvement. Notably,
optimal performance is achieved at a dimensionality of 64, attributed to the model’s en‑
hanced capability in capturing intricate traffic data features while mitigating overfitting
risks. However, escalating model dimensionality may exacerbate overfitting and compu‑
tational complexity, adversely affecting overall performance and generalization ability.
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In Tables 6 and 7, we looked at the effects of the number of attention heads and the
number of layers of the spatial–temporal module on the performance of the STFGTN (h, l),
where h is the number of heads of attention and l is the number of layers of the ST‑block.
The (*) indicates the parameter settings at which our model achieved optimal performance.
The observed results show a gradual increase inmodel performance at the beginning of the
increase in the number of attention heads. However, when the number of heads reaches
eight, we observe a significant decrease inmodel performance. This phenomenon suggests
that multi‑head attention does not significantly improve the accuracy of traffic flow pre‑
diction. Conversely, an excessive number of attention heads introduces redundant infor‑
mation, potentially leading to overfitting or underutilization of the attention mechanism
when dealing with traffic flow.

Table 6. Examines the fluctuations in MAE, MAPE (%), and RMSE acquired by STFGTN (h, l) with
varying numbers of attention heads and layers of ST‑block in the PEMS04 dataset.

PEMS04
Model MAE MAPE (%) RMSE

STFGTN (2, 3) * 18.829 12.703 30.532
STFGTN (1, 3) 19.111 12.886 31.561
STFGTN (4, 3) 18.962 12.679 31.086
STFGTN (8, 3) 18.962 12.795 31.122
STFGTN (2, 1) 20.076 13.571 32.520
STFGTN (2, 2) 19.164 13.329 31.024
STFGTN (2, 4) 19.195 12.760 31.362
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Table 7. Examines the fluctuations in MAE, MAPE (%), and RMSE acquired by STFGTN (h, l) with
varying numbers of attention heads and layers of ST‑block in the PEMS08 dataset.

PEMS08
Model MAE MAPE (%) RMSE

STFGTN (2, 3) * 14.987 9.638 23.950
STFGTN (1, 3) 15.511 10.014 24.619
STFGTN (4, 3) 15.097 9.965 23.992
STFGTN (8, 3) 15.203 10.045 24.152
STFGTN (2, 1) 16.033 10.260 24.330
STFGTN (2, 2) 15.337 9.981 31.024
STFGTN (2, 4) 15.097 9.651 23.992

Similarly, for the number of layers of the spatial–temporal module, we find that the
model achieves optimal performance at a layer number of three. However, as the number
of layers increases to four, the model performance starts to show a decreasing trend. This
suggests to us that increasing the number of layers in the spatial–temporal module does
not lead to additional performance gains, but instead may introduce too much complexity
and reduce computational efficiency, making the model too deep to train or generalize
when dealing with spatial–temporal relationships.

6. Conclusions
In this study, we introduced a traffic flow prediction model that integrates spatial–

temporal features using attention mechanisms. In this model, an embedding layer is uti‑
lized to incorporate periodic time features, and a spatial fusion gating module is proposed
to integrate spatial dependencies and a spatial–temporal bilinear gating module to com‑
bine spatial–temporal dependencies. Further improvements were made to the original
GCN by combining it with an attention mechanism to learn different spatial dependency
patterns. The experiments were performed on four real datasets, experiments on ablation
and parametric aspects of the individual modules were performed, and the results demon‑
strate the superiority of our model. In future work, we plan to explore the replacement of
attention mechanisms and their broader application in the field of traffic flow prediction.
We will particularly focus on investigating the impact of different types of attention mech‑
anisms on model performance and generalization ability, aiming to further enhance the
adaptability and prediction accuracy of the models in new environments.
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