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Abstract: This paper presents a chaotic system based on novel semiconductor nanolasers (NLs),
systematically analyzing its chaotic region and investigating the influence of key parameters on the
unpredictability of chaotic output. This study found that under optical feedback conditions, NLs
generate chaos across a wide range of feedback parameters, with the highly unpredictable region
completely overlapping with the chaotic region. Further injection into the slave lasers enhances
the chaotic output, expanding the range of unpredictability. Additionally, we analyzed the impact
of internal parameter mismatch on the complexity of chaotic signals and found it to be similar to
the scenario when parameters are matched. Using this chaotic system as an entropy source, we
constructed a random number generator (RNG) and investigated the effects of internal parameters
mismatch and differences in the injection parameters on the generator’s performance. The simulation
results show that the RNG performs well under different parameter settings, and the generated
random sequences pass all random number tests successfully. Therefore, this chaotic system can yield
a high-complexity chaotic light source with appropriate parameter selection, and when combined
with effective post-processing, it can generate high-quality random numbers. This is crucial for
advancing the realization of small-sized, high-randomness RNGs.

Keywords: nanolaser; random number generator; chaotic signal

1. Introduction

Random numbers have been widely applied in various fields of scientific research.
In particular, random numbers play an irreplaceable role in diverse domains such as
information verification [1,2], computer simulation [3], and secure communication [4–8].
According to the generation method, random numbers can be divided into two main
categories: pseudo random numbers and physical random numbers. Pseudo random
numbers [9,10] are generated based on deterministic algorithms and seeds, offering speed
and convenience, with generation rates reaching Gb/s. However, these numbers are
replicable and predictable, exhibiting drawbacks such as periodicity and repeatability.
Consequently, systems relying on pseudo random number encryption are susceptible to
attacks and security risks. Physical random numbers [11,12] are generated by using physical
phenomena in nature as entropy sources, exhibiting a high degree of unpredictability.
The main types of physical entropy sources include thermal noise [13,14], phase jitter in
oscillating signals [15–17], chaos [18–21], and others. Amplifying signals based on thermal
noise, selecting appropriate detection thresholds, and subsequent signal processing can
ultimately generate true random numbers. Because thermal noise disturbances are small,
high-gain amplifiers are required, but they are susceptible to external influences and lack
stability. For the oscillator-based RNGs, random sources are the oscillator’s phase jitter
noise, which can achieve true random number output. However, it is not suitable for fully
custom integrated circuits, and the randomness implemented in the circuit is relatively low.
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In addition, the bandwidth of these physical entropy sources is limited, and the real-time
generation rate of random numbers is only on the order of Mb/s. This limitation makes it
challenging to meet the requirements of current high-speed, large-capacity communication
and fast computational simulations.

Chaos has garnered widespread attention and research over the past few decades.
Chaotic systems are renowned for their highly complex and unpredictable characteristics,
which provide new insights and methods for random number generation. In recent years,
there has been a significant amount of research on high-speed RNGs based on chaos [22–25].
Semiconductor lasers (SLs) are one of the most widely used light source devices, known
for their advantages such as their simple structure, compact size, and reliable operation.
Under external perturbations such as optical feedback [26], optical injection [27,28], or
optoelectronic feedback [29,30], SLs can produce broadband chaotic laser outputs reaching
several GHz. Scholars both domestically and internationally have conducted extensive
research on using SLs for high-speed random number generation [31–34]. In 2008, Uchida
et al., utilized laser chaos for the first time as a physical entropy source for random number
extraction. After passing through a 1-bit analog-to-digital converter (ADC) and an exclusive-
OR (XOR) operation, they achieved a RNG with a rate of 1.7 Gbit/s [35]. To increase the
bit generation rate of random numbers, I. Reidler et al. employed an 8-bit ADC-based
random number extraction scheme, resulting in the generation of a physical random
number sequence with a rate of 12.5 Gbit/s [36]. In 2016, Butler et al. proposed an ultrafast
RNG based on a semiconductor ring laser. By performing multi-bit sampling of chaotic
optical waveforms and then applying a simple post-processing procedure, the generated
random bit rate can reach 1 Tb/s [37]. In 2022, Guo et al. proposed an all-optical method
for generating physical random bit sequences, achieving an online generated random
bit stream with a speed of up to 10 Gbit/s [38]. The following year, Cai et al. utilized a
distributed feedback laser to output two paths of complex optical chaotic signals. A dual-
channel physical RNG with a bit rate on the order of terabits per second is implemented by
combining a multi-bit extraction method [39].

However, the complex structure of traditional SLs and auxiliary materials makes it
challenging to apply them to the practical photonics that integrated circuits need. With
continuous innovation in science and technology, SLs have overcome these size limitations.
The advent of nanolasers (NLs) has provided the possibility for photonics integration.
When subjected to external disturbances, NLs exhibit dynamic characteristics that are
similar to traditional SLs. Due to the extremely small mode volume of NLs, spontaneous
emission is enhanced. Therefore, it is necessary to introduce characteristic factors into the
rate equations to characterize spontaneous emission. Erwin first proposed introducing
two important characteristic parameters, namely the Purcell factor F and the spontaneous
emission coupling factor β, into traditional laser rate equations to characterize spontaneous
emissions. Many studies have analyzed how these two characteristic factors affect the
output properties of NLs. In 2012, Ding and Ning explored the effects of F and β on
the performance of electronically pumped NLs [40]. Sattar et al. studied the nonlinear
dynamical behavior of NLs under external optical feedback, phase-conjugate feedback,
and optical injection [41–44]. In 2017, Han et al. analyzed the dynamic characteristics of
mutually coupled NLs and investigated the influence of F and β on them [45,46]. The fol-
lowing year, Han et al. conducted a more in-depth analysis of the impact of high-frequency
oscillations on mutually coupled NLs [47]. Elsonbaty et al. examined the time-delay signa-
ture (TDS) suppression in a single NL with a hybrid all-optical and electrooptic feedback
scheme [48,49]. In 2019, Qu et al. investigated the impact of system parameters on TDS
when dual-channel chaotic light is injected into NLs [50]. In the same year, Fan et al. con-
ducted a numerical study on the stability of NLs with external optical feedback, exploring
the influence of feedback phase on their stability [51]. In 2021, Li et al. separately analyzed
the unpredictability of chaotic light sources under optical feedback and optical injection
conditions. They investigated the impact of key parameters on the unpredictability of
NL chaotic light sources [52]. The above studies extensively analyzed the dynamic char-
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acteristics of NLs, providing inspiration for us to utilize nano-light sources for random
number extraction. Due to the relatively short time since the emergence of NLs, there is
currently limited research on the dynamic characteristics and related applications of NLs.
Therefore, studying the chaotic dynamics of NLs contributes to a deeper understanding
of the behavior and properties of nonlinear systems, expanding the application of chaos
theory at the microscopic scale. As an important component of photonics, the chaotic dy-
namics of NLs are significant for integrating them into optical communication and random
number generation devices, expanding the boundaries of their photonics applications, and
enhancing the efficiency and security of optical information processing.

NLs have shown promising potential in the field of photonic integration, making them
a hot topic of research. However, there have been relatively few reports on the applications
of NLs. The main contribution of this paper is the proposal of a chaotic system based on
NLs, which is successfully utilized as an entropy source for generating physical random
numbers. This includes analyzing the chaotic region and unpredictability of the NLs under
optical feedback and injection, particularly investigating the impact of parameter mismatch
on NL characteristics. Building upon this, a RNG was constructed, successfully achieving
high-speed physical random number generation, and the performance of the proposed
RNG under different parameter settings was compared. The successful application of NLs
in random number generation is crucial for realizing compact, high-quality RNGs.

The organization of this paper is as follows. In Section 2, we discuss the theoreti-
cal model of the RNG scheme. In Section 3, detailed numerical simulation results are
presented. Firstly, we introduce two widely used measures, the 0–1 test for chaos and
permutation entropy (PE), to analyze the influence of key parameters on the chaotic region
and unpredictability of the the master laser (MNL) and the slave laser (SNL). This helps
in determining the parameter range for obtaining highly unpredictable chaotic signals.
Based on this analysis, a RNG was constructed, and the effects of parameters mismatch
and injection parameter differences on the performance of random number generation
were compared. In Section 4, conclusions are drawn. It is stated that the proposed chaotic
system can output highly complex signals over a wide range of parameters. Therefore,
by adjusting the appropriate parameters and employing effective post-processing tech-
niques, high-quality random numbers can be generated. Furthermore, regarding parameter
fluctuation, effective post-processing can successfully eliminate non-randomness in the
generated random sequences.

2. Theoretical Model

The block diagram of the RNG is shown in Figure 1, where the chaotic entropy source
of the RNG is composed of three NLs. The signal output from the MNL passes through the
first polarization controller PC1 and arrives at the first fiber coupler FC1. At this point, a
portion of the signal enters the feedback path, while another portion enters the injection
path. The signal from the feedback loop is output from the first fiber coupler FC1, then
it passes through the first variable optical attenuator VOA1 and fiber mirror FM before
returning back to the MNL along the same path. By adjusting the feedback strength of
the feedback path, the MNL can operate in a chaotic state, generating chaotic signals. The
output from the injection path is split into the first injection path and the second injection
path through the second fiber coupler FC2. Specifically, the signals from FC1 are output to
an optical isolator OI, and after passing through it, the signals are divided into two parts
by the second fiber coupler FC2. One part enters the first injection path, while the other
part enters the second injection path. By controlling the injection strength of the signals in
the first and second injection paths and adjusting the frequency detuning parameters of
SNL1 and SNL2, enhanced chaotic signals are generated from SNL1 and SNL2, respectively.
In the post-processing stage, the chaotic signals from the first and second injection paths
are converted from optical signals to electrical signals by photodetectors. These signals
are then subtracted from their delayed copies, and the resulting signals are converted into
binary signals using 8-bit ADCs. The binary signals from both paths are combined through
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logical XOR operations to generate a signal random bit sequence. Finally, m least significant
bits (m-LSBs) are extracted from the generated 8-bit binary sequences. The randomness
of the digital bit sequences is evaluated using NIST SP 800-22. If all the test criteria are
successfully met, the generated numbers are classified as physical random numbers.
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According to the device shown in Figure 1, the rate equations for the chaotic entropy
source can be written as follows [41,43].
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θ1(t) = 2π fMτd + ϕM(t)− ϕM(t − τd) (7)

θj(t) = 2π fMτri + ϕSi(t)− ϕM(t − τri)− 2π∆ fit(i = 1, 2; j = 2, 3) (8)

In the above rate equations, the subscripts ‘M’, ’S1’, and ‘S2’ represent the MNL, the
first SNL, and the second SNL, respectively. I(t) is photon density, ϕ(t) is the phase, and
N(t) is carrier density. In this model, the key parameters are the Purcell factor F and
the spontaneous emission coupling factor β. The NLs can exhibit enhanced dynamical
performance, possibly arising from a combination of physical factors including F and β.
The dc bias current is defined as Idc = 2Ith, where Ith is the threshold current, e is the
electron charge, and the threshold carrier density Nth(Nth = N01/Γgnτp). The last term in
Equations (1) and (2) represents the optical feedback and contains the feedback delay τd.
The feedback rate kd. kd can be written as follows [41]:

kd = f (1 − R)

√
Rext

R
c

2nL
(9)
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where f is the feedback coupling fraction, R stands for the reflectivity of the NLs, Rext is
the power reflectivity of the external mirror, c represents the speed of light in free space,
n is the refractive index, and L denotes the cavity length of the NLs. The chaotic light
source generated by optical feedback is further injected into the two SNLs. The last term in
Equations (4) and (5) represents the optical injection, containing the injection rate kri and
the injection delay τri. Rinj denotes the injection ratio, and kri can be written as follows [43]:

kri = (1 − R)

√
Rinj

R
c

2nL
(10)

In addition, there is a frequency detuning ∆ fi = fM − fSi between the MNL and SNL,
where ∆ fM and ∆ fSi are the operating frequencies of the MNL and SNLs, respectively.

In this paper, for simplicity, the parameters set for the NLs are the same, meaning
NLs with identical internal parameters, unless specifically stated to be different, such as
in the subsequent discussion of parameter mismatch. Some of the key parameters used
in the simulation are listed in Table 1 [41,43], and the remaining parameter values will be
specified in the following sections.

Table 1. Parameters used in the simulations.

Parameters Description Value

λ0 Wavelength of MNL 1591 nm
L Cavity length 1.39 um

Va Volume of active region 3.96 × 10−13 cm3

Γ Mode confinement factor 0.645
Q Quality factor 428
gn Differential gain 1.65 × 10−6 cm3/s
τp Photon lifetime 0.36 ps
τd Feedback delay 0.2 ns
τn Carrier lifetime 1 ns
Ith Threshold current 1.127 mA
N0 Transparency carrier density 1.1 × 1018 cm−3

ε Gain saturation 2.3 × 10−17 cm3

n Refractive index 3.4
α Linewidth enhancement factor 5

Rext External factor power reflectivity 0.95
R Laser facet reflectivity 0.85
c Speed of light in free space 3 × 108 m/s
F Cavity Purcell factor 14
β Spontaneous emission coupling 0.05
f Feedback coupling fraction 0.025

3. Results and Discussion

In this section, we utilize the fourth-order Runge–Kutta algorithm to integrate the rate
equations and present the numerical simulation results.

3.1. Effects of the Parameters on the Unpredictability of NLs

There are many methods available to distinguish between deterministic and chaotic
dynamics [53]. Among these methods, the 0–1 chaos test [54] is a simple, fast, versatile, and
effective method for assessing the chaotic properties of signals. It has excellent practicality
and application potential and is of significant value and significance in fields such as
chaos theory research, engineering applications, and information processing, where ‘0’
represents nonchaotic states and ‘1’ represents chaotic states. To quantify the corresponding
complexity, this paper introduces the PE [55]. PE is a computational measure based on
the coherence between adjacent data in a time series. Due to its simplicity and high
robustness, it is widely used in the analysis of nonlinear systems and the calculation of
sequence complexity. In chaotic systems, PE can serve as a measure of system complexity
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and is applicable to any long time series, including chaotic signals, regular signals, and
noise signals. The value of PE falls between 0 and 1. A higher value indicates a greater
unpredictability, and consequently, the sequence is closer to a completely random sequence.
Below, we will analyze the dynamical characteristics of the laser chaotic signal output from
MNL and SNLs using 0–1 chaos testing and PE.

Since the output of MNL serves as the driving signal for the chaotic system, it is crucial
to determine the chaotic region of MNL first. We utilize the 0–1 test for chaos and PE to
investigate the dynamic characteristics of individual NLs under optical feedback. We ana-
lyze the influence of the feedback coupling fraction and feedback delay time on the chaotic
region of the MNL. Figure 2 illustrates the changes in the chaotic region and complexity of
the MNL under optical feedback when both the feedback delay time and feedback coupling
fraction vary simultaneously. In Figure 2a, the chaotic region is represented in deep red,
while the non-chaotic region is shown in blue. In Figure 2b, the highly unpredictable region
is depicted in yellow, whereas the predictable region is in blue. It can be observed that
the MNL under optical feedback generates chaos over a wide parameter space range. By
observing the highly unpredictable region of the MNL, we find that the chaotic region
completely overlaps with the highly unpredictable region. Therefore, by adjusting the
feedback delay time and feedback coupling fraction, the dynamic output of the MNL can
be easily controlled.
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Building upon this, we also investigated the influence of the injection strength and
frequency detuning on the chaotic regions of SNL1 and SNL2. In particular, we also
considered the impact of parameter mismatch on the unpredictability of the chaotic light
source. Here, the concept of the relative mismatch ratio is introduced, with the parameters
of MNL and SNL1 set as fixed values, while the parameters of SNL2 vary with the relative
mismatch ratio. The relative mis-match ratio is defined as follows [56]:

u =
x1 − x2

x1
(11)

In the above equation, the subscripts ‘1’ and ‘2’ denote the two slave lasers, respectively,
and the variable x denotes the parameters, including the carrier lifetime τn, differential gain
gn, photon lifetime τp, linewidth enhancement factor α, and transparency carrier density
N0. The equations for simultaneous mismatch of multiple parameters are as follows:

τ2
n = (1 − u)τ1

n , g2
n = (1 − u)g1

n, τ2
p = (1 − u)τ1

p , α2 = (1 − u)α1, N2
0 = (1 − u)N1

0 .

We set f = 0.025 and τd = 0.2 ns to ensure that the output of the MNL is a highly
complex chaotic signal, and then we unidirectionally inject it into SNL1 and SNL2. Since
the output of the MNL is injected into two structurally identical NLs, we choose SNL1
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to analyze its chaotic characteristics under matched parameters, with SNL2 serving as
the control group for parameter mismatch. We set the relative mismatch rate as u = 0.05,
analyzing the chaotic dynamical characteristics of SNL outputs under parameter matching
and mismatching using 0–1 chaos testing and PE. Figure 3(a1,b1) depicts the results of the
chaotic region when there are internal parameter matches and mismatches, respectively. It
can be observed that the chaotic region is almost guaranteed across the entire parameter
range. When the injection strength exceeds 10 ns−1, the SNLs operate in a chaotic state,
as the driving signal from the MNL is chaotic. Figure 3(a2,b2) describes the effects of the
unpredictability changes on the injection strength and frequency detuning plane, with the
highly complex region being entirely consistent with the chaotic region. Unpredictability
is a crucial attribute of physical random numbers, which instills confidence in obtaining
physical random numbers during subsequent random number extraction processes.
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3.2. Extracting Random Numbers

The stochastic characteristics of physical phenomena and post-processing jointly
determine the unpredictability and statistical unbiasedness of random numbers. These
consecutive sampling points are not independent, and there exists non-negligible correla-
tions among them. Therefore, to extract high-quality random numbers from the chaotic
entropy source, effective post-processing techniques must be employed. The purpose of
post-processing is to enhance the randomness of the sequence and reduce the correlations
between sequences. The statistical distribution characteristics of the entropy source initially
will affect the randomness of the generated bit sequence. We use delay and differencing
processing to make the entropy source after differencing conform to an ideal symmetric
state. The XOR method is one of the simplest ways to address sequence correlation and
uniformity, and it is widely employed in random number generation [31,33,35]. Specifically,
this involves performing an XOR operation on a pair of bits from input data to produce
a single output bit. Performing bitwise XOR operations on the two binary sequences can
further eliminate bias and disrupt the remaining correlations. Extracting the LSBs is a com-
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mon and simple yet effective post-processing method. It not only efficiently enhances the
uniformity of the statistical distribution of the bit sequence but also disrupts any remaining
correlations. The statistical characteristics of laser chaotic signals also play a role in deter-
mining the rate of the RNG. This is because the better the uniformity of the laser chaotic
signal, the more bits of LSB can be utilized to generate the random number sequence. In the
field of high-speed RNGs based on SL chaotic signals, numerous multi-bit post-processing
schemes have been proposed. The central idea in these schemes is to transform the chaotic
signal into a higher-resolution signal, followed by a series of post-processing steps to retain
more LSBs, aiming to increase the random number generation rate.

The number of LSB bits extracted is based on the ability of the generated bit sequence
to pass the random number test criterion. There are many methods and standards for
random number sequence testing, mainly for the verification of the randomness of the
generated random sequences. In this paper, the NIST SP 800-22 test standard is used [57].
NIST SP 800-22 is a random number test standard provided by the National Institute of
Standards and Technology. The random code sequence testing program provided by NIST
consists of a total of 15 tests. By sequentially testing the random sequence, the program
assesses whether the sequence can pass all the test procedures to determine whether the
RNG is a physical RNG. As advised by the NIST SP 800-22, we perform each test with
1000 samples of 1 Mbit binary numbers with a significance level of α = 0.01. For a 1 Mbit
sample, each test yields a p-value. Based on 1000 p-values, the pass rate and the uniformity
level of the p-value distribution can be calculated, denoted as proportion and p-value,
respectively. A random bit sequence is said to pass the NIST test if the p-value for each test
is larger than 0.0001 and the proportion of samples passing each test is within the range of
0.99 ± 0.0094392.

The number of LSBs retained depends on whether the generated bit sequence can pass
the NIST random number test. The good statistical properties of chaotic entropy sources
and effective post-processing can ensure that more LSBs are used to generate random
number sequences. By studying the relationship between the number of retained LSBs
and the results of random number tests, the influence of relevant parameters on RNG
performance can be investigated.

3.2.1. Internal Parameter Matching

Firstly, without considering the internal parameter mismatch (i.e., all NLs have the
same internal parameters), we studied the impact of identical and different injection pa-
rameters on RNG performance. As the statistical properties of chaotic laser signals can
affect the performance of random number extraction, we adjust the frequency detuning
and injection strength to make the statistical properties of the chaotic signal as close as
possible to a symmetric distribution. When the injection parameters are identical, the
relevant parameter settings are as follows: ∆ f1 = ∆ f2 = −5 GHz, kr1 = kr2 = 210 ns−1.
When the injection parameters are different, the relevant parameter settings are as follows:
∆ f1 = −5 GHz, ∆ f2 = −10 GHz, kr1 = 210 ns−1, kr2 = 220 ns−1. Under the given
simulation parameters and without considering gain saturation effects, the amplitude
distribution of the chaotic entropy source exhibits asymmetry. We differentiate the orig-
inal chaotic signal from itself after a certain delay time to obtain the delayed differential
chaotic entropy source. As shown in Figure 4, the statistical distribution histogram of the
differentially processed entropy source conforms to a symmetric distribution.

When the internal parameters of the NLs are matched, we set the injection parameters
to be the same. SNL1 and SNL2 will produce identical chaotic time series. Therefore,
further post-processing is required. The signal after delayed differentiation is quantized
into an 8-bit binary sequence through an 8-bit ADC (ADC sampling rate of 80 GHz).
Performing bit shifting on the binary sequence in the SNL2 channel. A bitwise XOR
operation is performed between the binary sequence in SNL1 pathway and the binary
sequence after shifting in SNL2 pathway to obtain an 8-bit binary sequence. Figure 5 shows
the histogram of statistical distributions when retaining different numbers of LSBs under
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identical injection parameters. Under different injection parameters, the output of the
chaotic signal is completely different, thus eliminating the need for shifting processing.
Figure 6 shows the histogram of statistical distributions when retaining different numbers
of LSBs under different injection parameters. Observing Figures 5 and 6 reveals the same
trend: even when discarding the most significant bit, the amplitude distribution remains
extremely asymmetric. As the number of retained least significant bits decreases, the
uniformity of the amplitude distribution gradually improves.
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Due to the highly uneven statistical distribution when retaining 8-LSBs and 7-LSBs,
we opted to begin random number testing by retaining 6-LSBs. Under identical injection
parameters, the random bit sequence obtained using the retained 6-LSBs only passed
6 tests. By discarding one LSB, i.e., retaining 5-LsSBs, the resulting random sequence
passed 13 tests. When retaining 4-LSBs, it passed all the tests. Under different injection
parameters, the random number sequence generated using the retained 6-LSBs passed
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12 tests. We discarded one LSB, i.e., retained 5-LSBs, and continued testing. The random
number sequence generated using the retained 5-LSBs passed all the tests. The successful
test results are presented in Table 2. When the injection parameters are different, an extra
LSB can be retained. This is because when the injection parameters are the same, there is
still a strong correlation between the shifted sequence in the SNL2 path and the unshifted
sequence in the SNL1 path.
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Table 2. Results of NIST statistical tests under matched internal parameters.

Statistical Test
Retaining 4-LSBs under Identical

Injection Parameters
Retaining 5-LSBs under Different

Injection Parameters

p-Value Proportion Result p-Value Proportion Result

Frequency 0.344048 0.989 Success 0.344048 0.989 Success
Block frequency 0.136399 0.993 Success 0.136399 0.993 Success

Cumulative sums 0.739918 0.990 Success 0.739918 0.990 Success
Runs 0.779188 0.986 Success 0.779188 0.986 Success

Longest runs 0.599693 0.989 Success 0.599693 0.989 Success
Rank 0.320607 0.991 Success 0.320607 0.991 Success

Fast Fourier transform 0.461612 0.990 Success 0.461612 0.990 Success
Non-overlapping template 0.192724 0.981 Success 0.192724 0.981 Success

Overlapping template 0.236810 0.997 Success 0.236810 0.997 Success
Universal 0.117432 0.987 Success 0.117432 0.987 Success

Approximate entropy 0.476911 0.986 Success 0.476911 0.986 Success
Random excursions 0.057593 0.987 Success 0.057593 0.987 Success

Random excursions variant 0.063864 0.987 Success 0.063864 0.987 Success
Serial 0.258307 0.990 Success 0.258307 0.990 Success

Linear complexity 0.836048 0.994 Success 0.836048 0.994 Success

3.2.2. Internal Parameter Mismatch

In this section, we investigate the performance of the RNG under parameter mismatch
when the injection parameters are identical and different. The parameters of the MNL and
SNL1 are set as fixed values, while the parameters of SNL2 vary with the relative mismatch
ratio, where u = 0.05. The parameters for the identical injection parameters are set as
follows: ∆ f1 = ∆ f2 = −5 GHz, kr1 = kr2 = 160 ns−1. The parameters for the different
injection parameters are set as follows: ∆ f1 = −5 GHz, ∆ f2 = −10 GHz, kr1 = 160 ns−1,
kr1 = 170 ns−1. The amplitude distribution of the original chaotic signals still exhibits
asymmetry. We applied delayed differentiation processing, and the amplitude distributions
of the chaotic entropy source after delayed differentiation are shown in Figure 7, which
conforms to a symmetric distribution.
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The delayed differentiated signal was sampled and quantized using an 8-bit ADC
(ADC sampling rate of 100 GHz), converting it into 8-bit binary code. Through XOR opera-
tion and retaining the LSB, we ultimately obtained the random bit sequence. Figures 8 and 9
display the histograms of the statistical distribution of the LSB extraction when the injection
parameters are identical and different under parameter mismatch, respectively. It can be
observed that as the number of retained LSBs decreases, the amplitude distribution tends
to balance. Therefore, we still chose to start testing from the retained 6-LSBs.
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When the injection parameters were identical, retaining 6-LSBs resulted in only one
failed test. By discarding one LSB, i.e., retaining 5-LSBs, the generated sequence passed
all the tests. When the injection parameters were different, retaining 6-LSBs resulted in
two failed tests. Retaining 5-LSBs enabled the generated sequence to pass all the tests. The
successful test results are shown in Table 3.
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Table 3. Results of NIST statistical tests under mismatched internal parameters.

Statistical Test
Retaining 5-LSBs under Identical

Injection Parameters
Retaining 5-LSBs under Different

Injection Parameters

p-Value Proportion Result p-Value Proportion Result

Frequency 0.723804 0.984 Success 0.125927 0.987 Success

Block frequency 0.811080 0.990 Success 0.385543 0.995 Success

Cumulative sums 0.185555 0.985 Success 0.010531 0.987 Success

Runs 0.620465 0.989 Success 0.008090 0.990 Success

Longest runs 0.033362 0.990 Success 0.546283 0.989 Success

Rank 0.212184 0.993 Success 0.668321 0.992 Success

Fast Fourier transform 0.998655 0.986 Success 0.798139 0.991 Success

Non-overlapping template 0.009880 0.993 Success 0.620465 0.983 Success

Overlapping template 0.016037 0.987 Success 0.034712 0.987 Success

Universal 0.560545 0.982 Success 0.054661 0.987 Success

Approximate entropy 0.355364 0.986 Success 0.812905 0.982 Success

Random excursions 0.280306 0.983 Success 0.213309 0.989 Success

Random excursion variants 0.321625 0.985 Success 0.422521 0.987 Success

Serial 0.482707 0.987 Success 0.123755 0.985 Success

Linear complexity 0.801865 0.994 Success 0.731886 0.988 Success

Based on the simulation results above, retaining 5-LSBs under mismatched parameters,
both with identical and different injection parameters, allowed the generated sequence
to pass the random number tests. Compared to the RNG test results under parameter
matching, the RNG still performs well under parameter mismatch conditions. Therefore,
even in the presence of parameter fluctuations, non-randomness in the random sequence
can be eliminated through post-processing in the proposed scheme. Comparing physical
RNGs based on thermal noise [13,14] and phase jitter [15–17], although they can generate
high-quality random numbers, their outputs are unstable, and the generation rates are
relatively low. The RNG proposed in this paper based on laser chaos has significantly
improved generation rates and exhibits good stability. Additionally, NLs have the advan-
tages of a small size, easy integration, and modulation capabilities, demonstrating excellent
nonlinear dynamic characteristics. This study provides valuable experience for high-speed
random number generation in the field of photonic integration.
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4. Conclusions

This paper proposed a chaotic system based on novel NLs. Through 0–1 testing
for chaos and PE, a systematic analysis of the chaotic region of the NLs was conducted,
exploring in detail the influence of key parameters on the unpredictability of the output
from the NLs. This research revealed that under optical feedback conditions, the MNL
generates chaos over a wide range of parameters, and the high unpredictability region
completely overlaps with the chaotic region. Further optical injection enhances the chaotic
output, expanding the range of unpredictability. Additionally, we analyzed the influence
of internal parameter mismatch on the complexity of the chaotic signal and found that its
chaotic characteristics remained similar to when the parameters were matched. Using a
chaotic light source with a high complexity and symmetric amplitude distribution as an
entropy source, we constructed a RNG. We investigated the impact of internal parameters
mismatch and external injection parameter differences on the performance of the RNG. The
simulation results showed that the RNG performed well under different parameter settings,
and the generated random sequences passed all the random number tests successfully.
Regarding the parameter fluctuations of the NLs, the proposed post-processing steps
effectively eliminated non-randomness in the random sequence. Compared to RNGs
based on traditional physical entropy sources, RNGs based on NLs offer advantages such
as a smaller size, ease of control, and faster generation rates. They provide valuable
insights and references for obtaining high-speed random numbers using NLs in the field
of photonic integration. NLs have potential applications in photonic integrated circuits,
optical information processing, and system-on-chip technologies. The dynamic output
generated by NLs, especially the optimization and application of chaotic light sources
produced by NLs, will also become a hot research topic. In the future, there will be in-depth
exploration of the nonlinear dynamical characteristics of NLs, with additional experiments
aimed at validating the superiority of NL-generated chaotic light sources. Additionally,
there will be further exploration applications of NLs in random number generation.
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