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Abstract: Emotion recognition from facial expressions is a challenging task due to the subtle and
nuanced nature of facial expressions. Within the framework of Tactile Internet (TI), the integration of
this technology has the capacity to completely transform real-time user interactions, by delivering
customized emotional input. The influence of this technology is far-reaching, as it may be used
in immersive virtual reality interactions and remote tele-care applications to identify emotional
states in patients. In this paper, a novel emotion recognition algorithm is presented that integrates a
Self-Attention (SA) module into the SlowR50 backbone (SlowR50-SA). The experiments on the DFEW
and FERV39K datasets demonstrate that the proposed model achieves good performance in terms of
both Unweighted Average Recall (UAR) and Weighted Average Recall (WAR) metrics, achieving a
UAR (WAR) of 57.09% (69.87%) on the DFEW dataset, and UAR (WAR) of 39.48% (49.34%) on the
FERV39K dataset. Notably, SlowR50-SA operates with only eight frames of input at low temporal
resolution, highlighting its efficiency. Furthermore, the algorithm has the potential to be integrated
into Tactile Internet applications, where it can be used to enhance the user experience by providing
real-time emotion feedback. SlowR50-SA can also be used to enhance virtual reality experiences by
providing personalized haptic feedback based on the user’s emotional state. It can also be used in
remote tele-care applications to detect signs of stress, anxiety, or depression in patients.

Keywords: emotion recognition; facial expression; deep learning; SlowFast networks; SlowR50;
self-attention; DFEW; FERV39K; Tactile Internet

1. Introduction

The Tactile Internet (TI) is a fundamental aspect of 6G technology that predicts real-
time haptic connection and offers revolutionary possibilities for distant work and immersive
interactions. TI is a very low-latency, ultra-high-reliability communication system [1]. It is
designed to allow remote access, monitoring, manipulation, or control of physical or virtual
objects or processes that are perceived as happening in real time, either by humans or
automated systems [2]. The development of TI presents obstacles, particularly in the field
of tactile cognition, which refers to the understanding and processing of tactile interactions.
An essential aspect of delivering superior haptic feedback and facilitating immediate
performance assessment is a comprehensive grasp of context. In order to address the
unavoidable delays in remote work, the development of artificial intelligence approaches
is necessary. However, to enhance motion prediction and feedback, it is crucial to gather
more information about the context and terminal interactions [3]. Key features include
ultra-low latency, reliability, and a human-centric approach through projects such as Tactile
Internet with Human-in-the-Loop (TaHiL) [4].

TI incorporates tactile and kinesthetic content to complement the visual and aural
aspects of augmented reality (AR) and virtual reality (VR) experiences [5]. It embodies
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a concept of the Internet that integrates the sensation of touch with conventional com-
munication methods, with the goal of facilitating remote operation of systems without
requiring physical proximity. TI applications enable tactile communications, especially
in the context of haptic-enabled VR. These applications require extremely low latency,
less than 50 ms, making them suitable for remote phobia treatment via VR [6]. A critical
challenge in implementing TI is the “1 ms challenge”, which requires the system reaction
time to be less than 1ms in order to prevent users from being able to differentiate between
local and remote control [7].

Another paradigm emerges as TI enables multisensory experiences in the Metaverse,
integrating tactile and kinesthetic components with visual and audio content. As users
interact within the Metaverse, the TI enhances the sensation of immersion by adding the
additional sense of touch and pressure. However, it presents challenges related to reliability,
low latency, and sensitivity to network jitter, making its integration into the Metaverse a
complex but promising endeavor. In addition, it is essential to address issues related to
the emotional and mental well-being of users, ethical norms, and the preservation of a
safe and healthy environment within this virtual realm [8]. As the Metaverse enhances
digital experiences with tactile elements, the integration of semantic compression refines
the efficient communication of emotions, thus augmenting the immersive quality of virtual
interactions. Semantic compression also addresses high-latency challenges in affective
computing [9], playing a pivotal role in the TI’s pursuit of diverse experiences, including
emotional, behavioral, and cognitive dimensions, in the 6G era [1]. Unlike remote vision
and hearing, haptic sensing remains an uncharted area that the TI seeks to explore [10]. In
the realm of 6G TI, the convergence of semantic compression and emotions, exemplified by
the work of Akinyoade and Eluwole [11], initiates further exploration of applications and
research directions, recognizing its transformative role in shaping the era of 6G technology.

The convergence of the field of emotional intelligence with artificial intelligence (AI)
and machine learning (ML) enables the development of robotic systems that can accurately
perceive and react to human emotions [12]. Emotion, a complex and subjective feeling
encompassing physiological, psychological, and behavioral aspects, arises from internal
or external stimuli in the human being. It can be expressed in various forms, such as joy,
sadness, surprise, or fear, observable in facial expressions or heard in a person’s voice, or
even through touch. Not only does touch affect emotion, but emotional expressions also
affect touch perception. So emphasis is placed on enhancing the Quality of Experience (QoE)
through machine learning and QoE models [13,14]. The potential of the Tactile Internet
extends to applications like Exergames, where users interact with emotions through speech
recognition. Exergames allows users to express feelings verbally during exercise, recording
and analyzing emotions to generate tactile vibrations corresponding to users’ feelings. This
real-time feedback enhances users’ overall experience and satisfaction during physical
activities [15].

Facial expression recognition is a crucial component in the larger context of emotional
recognition. It entails the analysis of the facial expressions of persons, which is achieved by
both humans and computer systems using image processing and AI technologies.

The motivation behind this work stems from the burgeoning field of TI and its po-
tential to revolutionize real-time user experiences through the integration of emotion
recognition technology. With the advent of 6G technology, there is a growing emphasis
on ultra-low-latency communication systems like TI, which enable remote interactions
with physical or virtual objects in real time. However, the full realization of TI’s potential
hinges on the incorporation of emotional intelligence, particularly in applications such as
immersive virtual reality interactions and remote tele-care. Recognizing the crucial role of
facial expressions in conveying emotions, the objective of this study is to develop a novel
deep learning architecture specifically tailored for Dynamic Facial Expression Recognition
(DFER) within the TI framework. By integrating an SA module into the SlowR50 backbone
(SlowR50-SA), this research aims to enhance the accuracy and efficiency of emotion recog-
nition, thus paving the way for personalized emotion feedback in TI applications. Through
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rigorous experimentation and benchmarking against state-of-the-art methods, this work
seeks to demonstrate the effectiveness and computational efficiency of the proposed model,
thereby addressing a critical need in the evolving landscape of TI-enabled interactions.

The main contributions of the presented work are as follows:

• Presenting a novel deep learning architecture for DFER, the model effectively extracts
spatiotemporal features using the SlowR50 (8 × 8) model. This architecture integrates
a slow pathway with low temporal resolution for capturing long-range temporal
information and identifying subtle changes in facial expressions. The inclusion of an
SA module further refines the feature vector, dynamically attending to relevant spatial
and temporal details, enhancing the representation of nuanced facial expressions.

• The proposed algorithm achieves superior performance on benchmark datasets (DFEW
and FERV39K) compared to state-of-the-art methods, demonstrating its effectiveness
in Dynamic Facial Expression Recognition. The model outperforms competitors in
terms of both UAR and WAR, showcasing its capability to accurately classify emotions.

• The model demonstrates computational efficiency by achieving state-of-the-art results
with only eight frames of input. This efficiency, combined with its high performance,
positions the algorithm as a promising candidate for real-world applications, especially
in TI scenarios, where it can effectively recognize and respond to facial expressions
with reduced computational cost.

The rest of this paper is structured as follows. Section 2 provides an overview of related
works in the field of DFER. Section 3 details the proposed model and its implementation.
In Section 4, we present the datasets used, experimental setups, comparisons with state-
of-the-art methods, and an ablation study. This section also includes visualizations of 2D
t-SNE features and confusion matrices. Finally, Section 5 concludes the paper, summarizing
key findings and contributions.

2. Related Work

Dynamic facial expression recognition is a complex task in computer vision and af-
fective computing. Its goal is to classify a facial video clip, rather than a still image, into
one of the basic emotions. The field of DFER has attracted considerable attention from
researchers [16–22]. These studies share a common goal of addressing challenges within
environmental scenarios, such as occlusion, pose variation, and noisy frames. Despite
the progress made by these methods, it is evident that they still fall short in extracting
comprehensive temporal features that encompass both short-term and long-term aspects.
So a prevailing trend in the recently published works is the adoption of the transformer
architecture for modeling spatiotemporal relationships in facial expressions. This architec-
tural choice, as highlighted by [16–21], underscores the importance of capturing complex
dependencies within dynamic facial expressions. Evaluation of these DFER methodolo-
gies extends to commonly used datasets such as DFEW, FERV39K, AFEW, and BU-3DFE,
reflecting the comparative analysis of DFER models by [16–21].

Examining the differences between these DFER methods reveals different approaches
to spatiotemporal modeling. One notable study by Liu et al. (2023) [16] proposes an
Expression Snippet Transformer (EST) that decomposes videos into expression fragments
and predicts the order of scrambled fragments. This approach emphasizes the importance
of unifying video lengths through interpolation and clipping, achieving high accuracy
across multiple datasets. However, EST focuses on fragment-based analysis, leaving room
for improvement in capturing long-range temporal dependencies. Zhao et al. (2021) [17]
introduced the Former-DFER by using a combination of a convolutional spatial transformer
(CS-Former) and a temporal transformer (T-Former) to train spatial and temporal features.
While Former-DFER effectively captures spatiotemporal relationships, its performance
may be limited by the complexity of the transformer architecture and the computational
resources required. Lee et al. (2023) [18] present Frame-Level Emotion-Driven Dynamic
Facial Expression Recognition featuring an Affectivity Extraction Network (AEN) with
frame-level emotion-driven loss features. This method incorporates emotion-driven loss
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functions to enhance recognition accuracy, but it may lack robustness in handling diverse
environmental scenarios. Li et al. (2023) [22] contributed to intensity-adaptive loss for
dynamic facial expression recognition by integrating a global attentional bias (GCA) block
and intensity-adaptive loss (IAL) to handle different expression intensities. While effective
in addressing intensity variations, this approach may require additional computational
overhead. Li et al. (2022) [19] propose NR-DFERNet, addressing noisy frames using a
dynamic–static fusion module (DSF) and a fragment-based filter (SF) to mitigate the impact
of neutral frames. These different methodological approaches also involve variations in the
training paradigm. Wang et al. (2023) [20] reimagined the learning paradigm for DFER by
treating it as a weakly supervised problem and introduced the multi-3D dynamic facial
expression learning (M3DFEL) framework with multi-instance learning (MIL). Additionally,
variations in loss functions are investigated with Li et al. (2023) [22], introducing Intensity-
Aware Loss to distinguish samples with low expression intensity. While the Intensity-
Aware Loss effectively handles expression intensity variations, it may introduce additional
computational overhead during training, potentially limiting scalability to larger datasets.
Attention mechanisms are also a focal point, as seen in Ma et al.’s Logo-Former (2022)
[21], which proposes a local–global spatiotemporal transformer (LOGO-Former) with
attention mechanisms to capture local and global dependencies. However, this work may
face challenges in capturing long-range dependencies and subtle temporal changes in
dynamic facial expressions, potentially impacting its effectiveness in recognizing nuanced
expressions. Addressing the challenge of modeling noisy frames, Li et al. (2022) [19]
propose NR-DFERNet, introducing a dynamic class tag (DCT) and an SF to process noisy
frames in the decision stage. However, this work may have limited effectiveness in handling
complex noise patterns in dynamic video sequences, potentially leading to misclassification
of facial expressions in challenging environmental conditions. In the ever-evolving field of
Facial Expression Recognition, researchers have developed creative approaches to address
the complexities of analyzing facial expressions in dynamic video sequences. The EST
method [16] takes a distinctive approach by unifying video lengths through interpolation
and clipping, using face detection, and randomly selecting frames to create expression
snippets. With an implementation in PyTorch, EST achieves an average FER accuracy
of 88.17% across datasets such as BU-3DFE, MMI, AFEW, and DFEW. Noteworthy is its
real-time speed and computational efficiency. Since the EST method relies on random frame
selection and interpolation to create expression snippets, it may introduce biases or artifacts
in the extracted snippets, potentially leading to inaccuracies in recognition. The Frame-
Level Emotion-Guided Dynamic Facial Expression Recognition with Emotion Grouping
method [18] introduces the AEN architecture, incorporating temporal transformers and
pre-processing involving face region detection. Trained on a PyTorch platform with an
NVIDIA RTX 3090 GPU, it utilizes pre-trained networks and introduces fusion parameters
for dynamic emotion grouping. This method emphasizes the efficacy of proposed loss
functions and fusion parameters. Addressing the nuances of expression intensity, the
Intensity-Aware Loss for Dynamic Facial Expression Recognition in the Wild method [22]
employs a GCA Block, Dynamic–Static Fusion Module, and Temporal Transformer for
feature extraction. Trained on PyTorch-GPU and Tesla V100 GPUs, it achieves performance
on dynamic facial expression recognition tasks. As mentioned, this architecture relies
heavily on pre-trained networks and fusion parameters, which may limit its adaptability to
novel datasets or dynamic environmental conditions.

In conclusion of this section, the DFER field has witnessed substantial progress with
various methodological approaches, all aiming to address challenges posed by environ-
mental scenarios in videos, such as occlusion, pose variation, and noisy frames. The
adoption of the transformer architecture, as evident in several studies, emphasizes the
importance of capturing complex spatiotemporal relationships within dynamic facial ex-
pressions. Methodological variations include innovative techniques like EST, Former-DFER,
Frame-Level Emotion-Driven Dynamic Facial Expression Recognition, NR-DFERNet, and
M3DFEL, each proposing unique solutions to the challenges at hand. These methods em-
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ploy diverse strategies, including attention mechanisms, intensity-adaptive loss, and novel
training paradigms like weakly supervised learning and multi-instance learning. Evalua-
tions on benchmark datasets reveal competitive performance, showcasing advancements
in addressing expression intensity, noisy frames, and long-term temporal relationships.
While these methodologies exhibit promising results, ongoing research and exploration of
new techniques remain crucial for further advancements in the dynamic facial expression
recognition domain.

3. Algorithm Description
3.1. Proposed Model

The proposed video classification model for DFER is illustrated in Figure 1.

Concatinate + Linear ReLUBackbone
(Slow_R50)

Linear

Linear
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Product
Attention Concatenate + Linear ReLU Linear

Q

K

V

Self-Attention ModuleMulti-Head Attention

4 Heads

Emotion
Label

Time

Frame 1
Frame 2

Frame 3
Frame 4

Frame 5
Frame 6

Frame 7
Frame 8

Figure 1. A pipeline of the proposed model.

For the extraction of spatiotemporal features, the SlowFast architecture’s slow path
model is utilized. In this case, we are specifically using the SlowR50 (8 × 8) model, as intro-
duced in [23]. There are several reasons why it is encouraged to use a slow pathway with
low temporal resolution. Initially, it can be used to extract long-range temporal information.
When recognizing emotions in videos, it is necessary to identify the overall emotional state
of the person, taking into account the temporal dynamics of their facial expressions. This
can be effectively achieved by processing the video at a low temporal frame resolution,
as it allows the model to focus on the subtle changes in facial expressions that occur over
time. The slow pathway’s ability to capture long-range temporal information allows it
to identify long-range relationships, which is crucial for accurate expression recognition.
Furthermore, it can reduce the computational cost of DFER algorithms. Because the slow
pathway operates at a lower temporal resolution than the fast pathway, it requires fewer
computations and less memory, making it more efficient to train and use. For the proposed
model, the videos are processed by segmenting each video into C frames of resolution
M × N, resulting in an input tensor of a shape M × N × C. This approach allows us to
efficiently capture the temporal dynamics of facial expressions while still maintaining a
manageable input size. The feature vector extracted by the SlowR50 backbone is further
refined by the SA module, which consists of multiple blocks: a Multi-Head Attention, a
Summation block, a Linear (FC layer) and ReLU activation function (see Figure 1). The
working flow of SA is further described in the details below.

Multi-Head Attention: Initially, the Multi-Head Attention mechanism with four heads
is applied to the single feature vector, allowing the model to dynamically attend to the
most relevant spatial and temporal information encoded within the vector. This attention
mechanism enables the model to capture the subtle nuances of facial expressions, even in
low temporal resolutions. In the context of the Multi-Head Attention operation, where
the objective is to capture relationships within the same vector, all the query (Q), key (K),
and value (V) vectors are set equal to the feature vector extracted by the backbone. This
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simplification allows focusing on the self-attention mechanism applied to the feature vector.
In general, the Multi-Head Attention operation is expressed as follows:

MultiheadAttention(Q, K, V) = Concat(head1, head2, head3, head4)× WO, (1)

where each attention head (headi) is computed as:

headi = Attention(Q × WQ
i , K × WK

i , V × WV
i ), (2)

where WQ
i , WK

i , WV
i , and WO are weight matrices associated with the query, key, value,

and output transformations, respectively, for each attention head i. The attention function
(Attention) is defined as:

Attention(Q, K, V) = softmax

(
Q × KT

√
dk

)
× V. (3)

The variable KT denotes the transposed matrix of the key vectors, ensuring compatibility
with the query vectors for the attention calculation, and dk represents the dimensionality of
the key vectors.

Summation block: After the Multi-Head Attention mechanism has identified and
weighted the most relevant spatial and temporal information within the feature vector, the
attended features are added back to the original feature vector. This summation operation
effectively integrates the attention mechanism’s insights into the feature representation,
weighting the features according to their importance and enriching the representation with
additional information. This enhanced feature representation allows the model to better
capture the subtle details in facial expressions.

Linear (FC layer) and ReLU activation function: The model further refines the feature
representation by passing it through a Fully Connected (FC) layer and ReLU activation
function. This combination of layers serves to normalize the feature representation, enhanc-
ing its complexity, and improving the model’s ability to generalize to unseen data. This
refined feature representation provides the model with a more accurate and informative
basis for making predictions about the underlying emotion in the video frames. After
the SA module, the final Linear (FC) layer is the classification layer, which produces the
Emotion Label. During the training phase, the backbone is fine-tuned, while the SA module
and classification layer are fully trained.

3.2. Implementation Details

The algorithm is implemented in PyTorch-GPU (v1.12.1) [24] and trained on an
NVIDIA GeForce RTX 2080 Ti GPU (Graphics Processing Unit). It uses a SlowR50 (8 × 8)
model [23] for feature extraction, which is fine-tuned during training. The models are
trained for 100 epochs with an AdamW optimizer, learning rate of 5× 10−4 , and weight de-
cay of 0.05. After finding the best model, it is fine-tuned for another 30 epochs with a learn-
ing rate of 5× 10−5. Each video is input to the algorithm as eight frames of 196 × 196 pixels
each. Horizontal flipping, random cropping, and color jitter are applied to augment
the data.

4. Experiments
4.1. Datasets

Dynamic Facial Expression in-the-Wild (DFEW) [25] is a comprehensive dataset cap-
tured in real-world settings, introduced in 2020. Comprising over 16,000 video clips
featuring dynamic facial expressions, these clips are collected from a broad range of over
1500 global movies, presenting diverse and real-world scenarios with challenges such as
extreme illuminations, self-occlusions, and unpredictable pose changes. Each video clip is
carefully annotated by ten well-trained experts under professional guidance. The anno-
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tations classify expressions into seven categories: Happy, Sad, Neutral, Angry, Surprise,
Disgust, and Fear.

FERV39K [26] encompasses 38,935 video clips sourced from four scenarios, further
categorized into 22 fine-grained scenes. Distinguished by its unprecedented scale of
39K clips, scenario–scene division, and cross-domain supportability, FERV39K marks a
milestone in DFER datasets. Each video clip within FERV39K undergoes meticulous
annotation by 30 professional annotators, ensuring the provision of high-quality labels.
These annotations classify expressions into the same seven primary categories as in DFEW.

4.2. Experimental Protocol

In this study, UAR and WAR are employed as primary evaluation metrics, aligning
with established practices in the field of dynamic facial expression recognition. These
metrics are widely used in previous studies for their effectiveness in evaluating model
performance across various domains, including facial expression recognition [17–20,22,27].
UAR, computed as the average recall across all classes, provides an unbiased assessment of
the model’s ability to accurately classify facial expressions without favoring any specific
class. It can be defined as:

UAR =
1
N

N

∑
i=1

Ri, (4)

where N is the number of classes and Ri is the recall for class i. Similarly, WAR extends the
evaluation beyond UAR by considering the distribution of samples across different classes.
By weighting the recall of each class based on its sample size, WAR offers a more nuanced
evaluation that accounts for class imbalances commonly encountered in real-world datasets.
It can be expressed as:

WAR =
∑N

i=1(Ri × Si)

∑N
i=1 Si

, (5)

where Si is the number of samples for class i. Given the widespread use of UAR and
WAR in existing literature, their adoption in this study enables direct comparisons with
prior research outcomes. This ensures the consistency and reliability of the findings while
facilitating a deeper understanding of the proposed model’s performance relative to state-
of-the-art approaches.

To ensure fair and consistent comparisons, we adopted a 5-fold cross-validation setup
as suggested by DFEW [25] for evaluating various methods. For the FERV39K dataset, we
followed the recommended approach from [26] by partitioning the data into 80% training
and 20% testing sets.

4.3. Comparison of the Proposed Method with the State-of-the-Art Methods

The comparative analysis of the proposed SlowR50-SA algorithm with other state-
of-the-art methods on both DFEW and FERV39K datasets is presented in Table 1. The
research works included in the comparison analysis were chosen based on their use of the
identical experimental protocol employed in this study. The table’s results demonstrate
that SlowR50-SA outperforms all other approaches in terms of both UAR and WAR metrics.

It surpasses the AEN model [18] with a difference of 0.43% (0.5%) for UAR (WAR) on
DFEW. Additionally, SlowR50-SA outperforms the M3DFEL model [20] by UAR (WAR) of
0.99% (0.62%) on DFEW and 3.54% (1.67%) on FERV39K, despite using only eight frames as
input compared to M3DFEL’s sixteen frames. In addition, SlowR50-SA outperformed the
second-best model in terms of UAR for the FERW39K dataset, surpassing ResNet18-ViT
by 0.13%. Similarly, the proposed model outperformed IAL, the second-best model for
FERW39K in terms of WAR, by 0.8%. This demonstrates the effectiveness of SlowR50-SA,
which achieves superior performance using fewer frames and outperforms other methods.
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Table 1. Comparison of proposed SlowR50-SA model with the state-of-the-art methods on DFEW and
FERV39K datasets (bold indicates the best result, while underline indicates the second-best result).
The evaluation metrics UAR and WAR for the methods compared with the SlowR50-SA algorithm
are derived from corresponding literature data.

DFEW FERV39K

Method UAR (%) WAR (%) UAR (%) WAR (%)

R(2+1)D-18 [20,28] 42.79 53.22 31.55 41.28
C3D [20,29] 42.74 53.54 22.68 31.69
I3D [20,30] 43.4 54.27 30.17 38.78
P3D [20,31] 43.97 54.47 23.2 33.39

EC-STFL [20,25] 45.35 56.51 - -
3D-ResNet18 [20,32] 46.52 58.27 26.67 37.57

ResNet18-LSTM
[22,33,34]

51.32 63.85 30.92 42.95

Former-DFER [17,22] 53.69 65.7 37.2 46.85
EST [16,27] 53.94 65.85 - -

Logo-Form [21,27] 54.21 66.98 38.22 48.13
ResNet18-ViT [27,33,35] 55.76 67.56 38.35 48.43

NR-DFERNet [19,27] 54.21 68.19 33.99 45.97
IAL [22] 55.71 69.24 35.82 48.54

M3DFEL [20] 56.1 69.25 35.94 47.67
AEN [18] 56.66 69.37 38.18 47.88

SlowR50-SA (proposed) 57.09 69.87 39.48 49.34

4.4. Ablation Study on Self-Attention Module

Adding a Self-Attention Module after the SlowR50 backbone on the DFEW dataset
resulted in an improvement of over 0.3% in the UAR metric and almost 0.5% in the WAR
metric (see Table 2). This improvement came with an increase of 17.82M parameters and a
slight increase of 40 M FLOPs (Floating Point Operations Per second). Recall the results
shown in Table 1, in which the SlowR50 backbone exhibits impressive performance on the
DFEW dataset, even outperforming the state-of-the-art AEN method [18]. However, it is
important to note that the integration of the Self-Attention (SA) module further enhances
the model’s ability to capture subtle spatiotemporal dependencies within facial expression
sequences. Despite the notable performance of the SlowR50 backbone alone, the additional
complexity introduced by the SA module contributes to further enhancing the model’s
performance in DFER tasks.

Table 2. Ablation study on the effect of SA module added after the SlowR50 backbone on DFEW database.

Method UAR (%) WAR (%) Params (M) FLOPs (G)

SlowR50 56.78 69.40 31.65 71.88
SlowR50-SA 57.09 69.87 49.47 71.92

4.5. Detailed Results

In this section, a visual representation of the data using t-SNE [36] is provided. Specifi-
cally, two-dimensional t-SNE plots are employed to visualize samples from both the DFEW
and FERV39K datasets, aiding in the comprehension of their distribution. Additionally, the
confusion matrices of both datasets are presented for further analysis.

Two-dimensional t-SNE feature visualization: Figure 2a,b show the distribution of
features in different colors and example image samples for each emotion in the DFEW and
FERV39K datasets, respectively. For the DFEW dataset, it is evident that the features for the
neutral, happy, sad, and angry emotions are more clearly separated into clusters, whereas the
features for fear and surprise are more dispersed. The samples belonging to the disgust class
do not form a cluster, likely due to the low proportion of disgust videos (1.22%) in the dataset.
The model’s inability to form a distinct cluster for the expressions of disgust indicates that it has
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difficulty accurately classifying these emotions. Regarding the FERV39K dataset (Figure 2b),
it is apparent that the clusters exhibit a more diffuse distribution than DFEW. Similar to the
DFEW dataset, clusters representing neutral, happy, sad, and angry emotions appear more
tightly grouped, whereas fear, surprise, and disgust exhibit a more dispersed arrangement.
The two figures depicting t-SNE visually reinforce the findings presented in Table 1.

Figure 2. Two-dimensional t-SNE visualization [36] of facial expression features obtained by the
proposed algorithm on videos from DFEW [25] dataset (a) and from FERV39K [26] dataset (b) .
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Confusion matrices: The proposed SlowR50-SA algorithm is tested for its effectiveness
on the DFEW dataset by examining confusion matrices generated across all five folds
(Figure 3). These matrices reveal that the model struggles to accurately predict both the
expressions of disgust and fear. The model performs particularly poorly with expressions
of disgust, as observed in the earlier t-SNE visualization. While the model performs better
with the expressions of fear, it still struggles to achieve an accurate classification rate due to
the fact that videos with these emotions are also rarely presented in the dataset (only 8.14%).
This suggests that the task of distinguishing between disgust and fear among the other
expressions is particularly challenging. Additionally, the model tends to classify samples as
neutral expressions in an attempt to minimize the risk of misclassification. Figure 4 depicts
the confusion matrix for the FERV39K dataset. It reveals that happy, sad, and neutral
emotions are identified more frequently, with rates exceeding 50%, while the remaining
four emotions exhibit lower recognition rates.

Figure 3. The confusion matrices obtained by the proposed SlowR50-SA algorithm on DFEW dataset.
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Figure 4. The confusion matrix obtained by the proposed SlowR50-SA algorithm on FERV39K dataset.

The comparison of the confusion matrices between the DFEW and FERV39K datasets
indicates notable differences in recognition performance. Analysis reveals that the DFEW
dataset demonstrates superior classification accuracy compared to FERV39K. This discrep-
ancy is particularly evident in the recognition of various emotions, where DFEW exhibits
more robust performance across multiple emotion categories. These findings underscore
the importance of dataset selection in training emotion recognition models and suggest the
need for further investigation into the factors contributing to the variance in performance
between datasets.

Variation of training and testing WAR across epochs: Figure 5a,b depict the evolution
of training and testing WARs across epochs for the DFEW (fold 2) and FERV39K datasets,
respectively. The learning rate for the DFEW dataset is reduced from 5× 10−4 to 5× 10−5 at
epoch 44, while for the FERV39K dataset, it is reduced at epoch 51, as outlined in the training
process detailed in Section 3.2. It is evident that the optimal testing WAR is achieved at
epoch 50 (67.62%) for the DFEW dataset and at epoch 64 (49.34%) for the FERV39K dataset.
The total time required for training and testing one epoch is approximately 450 s for the
DFEW dataset and 1500 s for the FERV39K dataset.
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Figure 5. The variation of WAR across epochs for DFEW (fold 2) dataset (a) and FERV39K dataset (b).

GradCAM [37] visualizations: Figure 6 illustrates GradCAM visualizations from
the final layers of the SlowR50 backbone across the seven emotions. It is evident that the
activations primarily occur in facial regions that are characteristic of distinct emotions.
This observation holds especially true for emotions depicted in the first row of Figure 6,
including happy, sad, neutral, and angry. Nevertheless, when considering the emotions of
disgust and fear, it is noticeable that the model does not focus on the relevant facial regions
associated with these emotions. Consequently, the performance is not satisfactory for these
emotions, as evidenced by the confusion matrices and t-SNE visualization, depicted above.

Figure 6. GradCAM [37] visualization of different emotions, utilizing weight gradients from the last
SlowR50 backbone layer.

4.6. Limitations of the Presented Work

The following are considered limitations of the present work:

• While the proposed SlowR50-SA algorithm demonstrates superior performance on
the DFEW and FERV39K datasets, its property to generalize to other datasets or real-
world scenarios remains untested. The datasets used may not fully represent the
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diversity of facial expressions encountered in real-world settings, potentially limiting
the algorithm’s applicability in practical situations.

• Both DFEW and FERV39K datasets may suffer from class imbalance issues, which can
affect the model’s performance, especially for minority classes such as disgust and
fear. Imbalanced datasets may lead to biased models that prioritize majority classes,
potentially resulting in lower accuracy for minority classes.

• The ablation study focuses solely on the addition of the Self-Attention module to the
SlowR50 backbone. Further analyses, such as investigating the impact of different
hyperparameters or architectural variations, could provide deeper insights into the
algorithm’s performance and help optimize its design.

• Although the proposed algorithm achieves good performance with only eight frames
of input, its computational efficiency in real-world applications, especially on resource-
constrained devices or in real-time systems, remains unclear. Assessing the algorithm’s
efficiency in practical deployment scenarios is essential for its feasibility in TI applications.

To address the limitations highlighted above, future research efforts could focus on
the following areas:

• Generalization to diverse datasets: We acknowledge the importance of evaluating
the algorithm’s performance on a wider range of datasets, including those with more
diverse facial expressions and real-world scenarios. Future work could involve testing
the SlowR50-SA algorithm on additional datasets and assessing its robustness across
various settings.

• Mitigating class imbalance issues: To mitigate the impact of class imbalance on model
performance, future studies could explore techniques such as data augmentation,
oversampling of minority classes, or using advanced loss functions tailored to handle
imbalanced datasets. Additionally, efforts could be made to collect or curate datasets
that better represent the distribution of facial expressions in real-world scenarios.

• Extended scope of ablation study: Further analysis could extend beyond the addition
of the Self-Attention module to explore the effects of different hyperparameters,
architectural variations, or alternative model components. Conducting comprehensive
experiments would provide deeper insights into the algorithm’s behavior and aid in
optimizing its performance.

• Evaluation of computational efficiency: Future research should prioritize assessing the
algorithm’s computational efficiency in practical deployment scenarios. This could
involve benchmarking the algorithm on resource-constrained devices, evaluating its
runtime performance, and optimizing its implementation for real-time applications.

5. Conclusions

This paper presents SlowR50-SA, a novel emotion recognition algorithm that ap-
pends a Self-Attention module to the SlowR50 backbone. The experimental results on two
benchmark datasets, DFEW and FERV39K, indicate that SlowR50-SA performs favorably
compared to other algorithms, demonstrating good or better performance in terms of
both UAR and WAR. Additionally, the model uses only eight frames of input, indicating
its efficiency. The ablation study in Table 2 further highlights the positive impact of the
Self-Attention module, which significantly improves the model’s performance. These
findings demonstrate the potential of SlowR50-SA as a powerful tool for emotion recogni-
tion. Its state-of-the-art performance, computational efficiency, and ability to operate with
fewer input frames make it a promising candidate for real-world TI applications. Based
on the promising outcomes of this study, future research could explore further enhance-
ments to SlowR50-SA, such as experimenting with different variations of the Self-Attention
module, integrating multimodal data sources for more robust emotion recognition, and
conducting experiments with different backbone architectures and hyperparameters. Addi-
tionally, evaluating SlowR50-SA in real-world TI scenarios and exploring transfer learning
techniques could accelerate its deployment and improve its effectiveness across diverse
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applications. These avenues offer opportunities to advance emotion recognition technology
and its integration into real-world settings.
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Abbreviations
The following abbreviations are used in this manuscript:

AR Augmented Reality
AEN Affectivity Extraction Network
CS-Former convolutional spatial transformer
DCT dynamic class tag
DFER Dynamic Facial Expression Recognition
DFEW Dynamic Facial Expression in-the-Wild
DLIAM Dynamic Long-term Instance Aggregation Module
DSF dynamic–static fusion module
EST Expression Snippet Transformer
FC Fully Connected
FLOPs Floating Point Operations Per second
GCA global attentional bias
GPU Graphics Processing Unit
IAL intensity-adaptive loss
LOGO-Former local–global spatiotemporal transformer
MIL multi-instance learning
M3DFEL multi-3D dynamic facial expression learning
QoE quality of experience
SA Self-Attention
SF fragment-based filter
TaHiL Tactile Internet with Human-in-the-Loop
TI Tactile Internet
T-Former temporal transformer
UAR Unweighted Average Recall
VR Virtual Reality
WAR Weighted Average Recall
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