
Citation: Odeh, J.O.; Yang, X.;

Nwakanma, C.I.; Dhelim, S.

Asynchronous Privacy-Preservation

Federated Learning Method for

Mobile Edge Network in Industrial

Internet of Things Ecosystem.

Electronics 2024, 13, 1610. https://

doi.org/10.3390/electronics13091610

Academic Editor: Hung-Yu Chien

Received: 27 March 2024

Revised: 17 April 2024

Accepted: 22 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Asynchronous Privacy-Preservation Federated Learning Method
for Mobile Edge Network in Industrial Internet of
Things Ecosystem
John Owoicho Odeh 1 , Xiaolong Yang 1,* , Cosmas Ifeanyi Nwakanma 2 and Sahraoui Dhelim 3

1 Computer and Communication Engineering, University of Science and Technology, Beijing 100083, China;
b20190668@xs.ustb.edu.cn

2 ICT-Convergence Research Center, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
cosmas.ifeanyi@kumoh.ac.kr

3 School of Computer Science, University College Dublin, Belfield, D04V1w8 Dublin, Ireland;
sahraoui.dhelim@ucd.ie

* Correspondence: yangxl@ustb.edu.cn

Abstract: The typical industrial Internet of Things (IIoT) network system relies on a real-time data
upload for timely processing. However, the incidence of device heterogeneity, high network latency,
or a malicious central server during transmission has a propensity for privacy leakage or loss of
model accuracy. Federated learning comes in handy, as the edge server requires less time and enables
local data processing to reduce the delay to the data upload. It allows neighboring edge nodes to
share data while maintaining data privacy and confidentiality. However, this can be challenged
by a network disruption making edge nodes or sensors go offline or experience an alteration in
the learning process, thereby exposing the already transmitted model to a malicious server that
eavesdrops on the channel, intercepts the model in transit, and gleans the information, evading the
privacy of the model within the network. To mitigate this effect, this paper proposes asynchronous
privacy-preservation federated learning for mobile edge networks in the IIoT ecosystem (APPFL-
MEN) that incorporates the iteration model design update strategy (IMDUS) scheme, enabling the
edge server to share more real-time model updates with online nodes and less data sharing with
offline nodes, without exposing the privacy of the data to a malicious node or a hack. In addition, it
adopts a double-weight modification strategy during communication between the edge node and the
edge server or gateway for an enhanced model training process. Furthermore, it allows a convergence
boosting process, resulting in a less error-prone, secured global model. The performance evaluation
with numerical results shows good accuracy, efficiency, and lower bandwidth usage by APPFL-MEN
while preserving model privacy compared to state-of-the-art methods.

Keywords: asynchronous privacy preservation; Internet of Things; industrial Internet of Things
ecosystem; iteration model design update strategy; double-weight modification; convergence boosting
process

1. Introduction

The rise and growth of machine learning has rapidly changed the digital landscape
enabling computers to imitate human behavior, with the most recent use of digital twins.
This disruptive technology has led to the advancement of text, image, or speech recognition
technology [1]. However, the gains come with the need for lots of data for learning purposes.
In addition, there is an unprecedented surge in the number of connected devices and the
evolution of intelligence paradigms with large-scale connectivity [2]. Thus, the Internet of
Things (IoT) accounts for 1.68 devices per human as far back as 2020 to be about 9.76 billion.
The IoT is estimated to have increased to about 15.72 billion devices and is likely to increase
to about 29.42 billion devices by 2030 [3]. The most common use case for the industrial IoT

Electronics 2024, 13, 1610. https://doi.org/10.3390/electronics13091610 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091610
https://doi.org/10.3390/electronics13091610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4199-115X
https://orcid.org/0000-0001-5102-6962
https://orcid.org/0000-0003-3614-2687
https://orcid.org/0000-0002-3620-1395
https://doi.org/10.3390/electronics13091610
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091610?type=check_update&version=1

Electronics 2024, 13, 1610 2 of 20

(IIoT) devices in the edge network segment is internet and media devices which include
smartphones, laptops, etc., which are used as mobile tracking devices. This is depicted as
shown in the result of a statistical survey reflecting the number of connected and forecasted
IIoT edge devices globally, between 2019 and 2030, in Figure 1.

Figure 1. Global estimation of connected industrial IoT edge devices globally to 2030 [3].

With the advances in technologies such as edge network computing, the IoT, digital
twin, and the IIoT as seen in the fourth industrial revolution and the current Society 5.0,
there is exponential growth and development of the mobile edge networks [4]. The implica-
tion is the increase in data generation by these sensors or edge infrastructures. Thus, in this
mobile network, constraints such as limitations in computing resources, high bandwidth
usage, latency in network connectivity, heterogeneity, and threats of malicious cloning of
devices have impacted the processing of the needed data, as well as creating loopholes
for affecting the privacy of data [5]. To effectively control and handle the increased data,
they are processed and transmitted to the centralized data centers which cause conges-
tion, delayed processing, and possible collision attacks. This known challenge has given
rise to multi-edge computing [6], which is within a line-of-sight technique or near data
source communication platform that combines the task of computing, storing, networking,
and other securing capabilities within the decentralized edge network. The result is an
effective reduction in bandwidth usage and quicker response time. To enhance the effective
data processing in the mobile network as experienced in the IIoT network, the improved
federated learning technique introduces a distributed learning algorithm that transmits
only locally learned models to the mobile transmission unit within the edge network [7].
The federated learning edge devices collaborate to locally build and optimize a learning
model that is locally kept by interacting with the edge server [8]. This ensures data privacy
protection as the data is not shared with neighboring edge nodes, but only trained through
interaction with the federated learning server. Privacy preservation is thus achieved in
terms of anonymity, unlinkability, undetectability, and identity management [9]. Even the
transmitting and learning of data is carried out at a rate less than the secrecy capacity.

Electronics 2024, 13, 1610 3 of 20

2. Related Works

In securing model updates and training, it is noted that federated learning operation
in mobile edge computing (MEC) is stimulated by privacy protection and security features.
Adversaries can target and retrieve vital details about an edge device from the shared
model updates. In addition, malicious devices can join in the model training process to
infuse fake model updates and negatively affect the trained model’s accuracy. To have a
secured model transmission, a cryptographic protocol called secured multi-party computa-
tion [10,11] is aimed at obfuscating the personal information and ensuring zero knowledge
between the nodes involved. This guarantees the distribution of computation amongst the
multi-edge devices without divulging any private information. The models involved are
aggregated and masked by the addition of random numbers. Then, the encoded segments
are distributed to the connected nodes for computation to ensure data privacy and trust.
The secured multi-party computation scheme allows the nodes to connect, without know-
ing each other’s confidential details [12]. This helps to handle complex issues like mobile
crowdsourcing and traffic congestion.

A similar approach is the anonymous differential privacy (DP) [13] that uses the artifi-
cial noise added to a locally trained model before being transmitted and aggregated. This
is to stop adversaries from accessing the leaked model parameters, even as the enhanced
security measure comes at the expense of model accuracy and computation. A combined
optimization will help strike a balance between computation overhead, accuracy, and pri-
vacy protection. The main technique is the addition of Gaussian noise as highlighted
by [14,15] for the primary aim of protecting the model parameter. Homomorphic encryp-
tion, a token-based privacy mechanism that performs calculations on encrypted data, was
proposed [16]. It was designed in the context of federated learning where edge clients or
devices generate private and public tokens, for the decryption and encryption of locally
trained models. This method further aggregates all the encrypted model updates at the
edge server.

However, the operation of this homomorphic encryption added computational com-
plexities on the edge devices, in terms of bandwidth, time and power, and large data
size. Another technique proposed is the batch method [17], also known as BatchCrypt.
It reduces the transmission and encryption cost to the barest minimum by ensuring that
edge devices arrange the gradients into quantum (low-bit integer format) and transmit the
encrypted batch of encoded gradients [18]. In this format, the total size and other overhead
are greatly reduced. An asynchronous federate learning architecture, a differentially private
asynchronous federated learning (DP-AFL) scheme [19], was designed by leveraging a
distributed peer-to-peer update scheme instead of the centralized update to mitigate the
privacy threat posed by the centralized server. The privacy of updated models in federated
learning was enhanced by co-opting local differential privacy into a gradient descent train-
ing scheme and adding Gaussian noise. However, this is prone to model disruption and
error due to noise addition. Furthermore, ref. [20] proposed a method called the federated
learning-based proactive content caching scheme based on hierarchical architectural design,
consisting of user and edge servers for the industrial network. This decentralized, local
storage, local training, and resource-constrained tolerant feature has made the federated
learning for MEC in urban informatics a good approach [21,22]. This advancement in
the operations of the distributed federated learning on MEC-powered edge devices was
challenged due to privacy and security concerns and resource and deployment constraints.

Some privacy threats targeted at the multi-edge network can disrupt the IIoT architec-
ture; these threats may include the compromised unsecured federated learning algorithm,
where a hacker can read, modify, and even flood the network modified updates, thereby
breaching the privacy and causing a delay in the model update [23]. Furthermore, a man-
in-the-middle attack can cause an interception, relays, and potential alteration of edge
communication, thereby ceasing control over one or more edge nodes. The falsification of
the local model by a malicious server threatens the authenticity and integrity of both the
model update and the network resulting in loss and accuracy of the local dataset [24]. A se-

Electronics 2024, 13, 1610 4 of 20

cured network and an authentication/verification mechanism in the multi-edge network
will bring reprieve to the system. Furthermore, ensuring the use of up-to-date firmware of
the various heterogeneous nodes will suffice [5]. A comparison of these related works is
shown in Table 1 as follows.

Table 1. Comparison of related works.

Privacy
Preservation IMDUS Edge

Network
Convergence
Process Research Reference

✓ × × × Micro-LED as a promising candidate for high-speed
Visible Light Communication

[11]

✓ × × × Visible Light Communication in 6G:
Advances, Challenges, and Prospects

[12]

✓ × × × Learning Differentially Private Recurrent
Language Models

[13]

✓ × × × Practical Secure Aggregation for Privacy-Preserving
Machine Learning

[14]

✓ ✓ × × Secure Multi-Party Computation:
Theory, Practice and Applications

[15]

✓ ✓ ✓ × Update or Wait: how to keep Data Your Fresh [16]

✓ ✓ × × BatchCrypt: Efficient Homomorphic Encryption for
(Cross-Silo) Federated learning

[17]

✓ × × × Learning in the Air: Secure Federated Learning
for UAV-Assisted Crowdsensing

[18]

✓ ✓ × × Federated Learning Based Proactive
Content Caching in Edge Computing

[19]

✓ ✓ ✓ × Task Allocation Algorithm for Energy Resources
Providing Frequency Containment Reserves

[20]

✓ ✓ × × Modeling and Analysis of a Shared Edge Caching
System for Connected Cars and IIoT Applications

[21]

✓ ✓ × ✓ Asynchronous Federated Optimization [22]

✓ × ✓ × Asynchronous Federated Learning Over
Wireless Communication Networks

[23]

✓ × ✓ × Privacy-Preserving Federated Learning for
Internet of Medical Things under Edge Computing

[5]

✓ ✓ ✓ ✓ Asynchronous Privacy-Preservation Federated Learning
method for Mobile Edge Network in IIoT Ecosystem

This
Study

Although there have been some semi-asynchronous updates periodically, there are
more algorithms for integrating asynchronous into synchronous federated learning. Here,
edge nodes broadcast the full local model to all neighboring nodes using a data-parallel
distributed protocol, irrespective of the online or offline status of the node. This poses
a higher privacy threat to anonymous or malicious nodes. Therefore, to properly han-
dle the issue of privacy preservation challenges for multi-edge devices in the ecosystem,
asynchronous federated learning will be appropriate. Thus, this paper proposes an asyn-
chronous privacy preservation federated learning method that enhances secured resource
sharing, reduces loss function, and adopts double-weight modification by gradient com-
pression and convergence boosting. This allows more secured real-time connected edge
nodes to upload/download, while offline nodes are granted minimal upload status. Thus,
the main contributions include the following:

1. We propose an Asynchronous Privacy-Preservation Federated Learning model, by lever-
aging the iteration model design update strategy scheme for more participation of

Electronics 2024, 13, 1610 5 of 20

online edge nodes, and fewer offline nodes instead of the all-at-once update, to miti-
gate the privacy threat by malicious adversaries.

2. We enhance the asynchronous federated learning for optimized adaptation and the
secured model training process by incorporating the double-weighted modification
to mitigate the effect of asynchronous federated learning which allows mobile trans-
mitting units (MTUs) to upload the received model immediately from nodes without
waiting for other nodes that reflect the level of staleness, the multi-edge computing
power of the online edge nodes.

3. We use the proposed iteration model design update strategy (IMDUS) to ensure the
integrity of each node to provide the correct least absolute error for the updated model
in the asynchronous scenario to reduce the effect of error and loss function from nodes
going offline, by ensuring an increased gradient compression level.

4. To guarantee the optimization of the convergence boosting process, we use the real
model enhancement algorithm for validating updates and a reward system for in-
creased participation of online nodes with good model updates, while reducing
participation of offline nodes with bad model updates.

The remaining part of the paper is organized as follows; Section 3 shows the system
model, threat model, and a formulated threat scenario. In Section 4, we provide the
full details of the APPFL-MEN, the dual weight modification and convergence process,
and the response-adaptive threshold gradient compression. Section 4 presents the system
configuration and numerical and analytical results of the proposed scheme. The final
section, Section 5, concludes and discusses the whole research work.

3. Methodology and System Threat Model

The conventional IIoT network infrastructure relies on real-time data uploads to en-
sure prompt processing. However, device heterogeneity, high network latency, or hostile
systems might cause communication overhead and loss of model accuracy. Federated
learning becomes a perfect fit, as we propose an asynchronous privacy-preservation fed-
erated learning method for mobile edge networks (APPFL-MEN) in the IIoT ecosystem
that incorporates the IMDUS scheme, enabling the edge server to share more real-time
model updates from online edge nodes and less data sharing from offline edge nodes,
without exposing the data privacy to a malicious node [22]. In addition, it uses a double-
weight modification method during communication between the edge node and the edge
server or gateway to improve model training. A gradient compression method by edge
nodes reduces the dataset to the smallest possible size during the training and transmission
processes. Then, it enables a convergence-boosting process, resulting in a less error-prone,
more secure global model. The dataset includes the MNIST picture dataset, which will
be trained and classified depending on their type. The edge nodes read these datasets
as local models in the compressed mode before securely uploading them. These datasets
are securely managed via IMDUS, an asynchronous federated learning method that han-
dles model training. It operates in rounds (iterations) of upload and download channels
and time slots between edge servers and edge nodes (IIENs). The major role of this IMDUS
is to ensure that up-to-date local models and global updates are uploaded and down-
loaded, with priority given to models from online nodes [9]. In building the system, we use
EdgeCloudSim v4.0 to create a computer model of the edge network-enabled IIoT system
using the Hierarchical Edge Computing architecture depicted in Figure 2, and we use the
basic Python language for testing on the Windows 10 operating system. To assess the
performance of the proposed strategy, experiments are conducted on the MNIST dataset,
a database of [1, 0] digits used as a benchmark for image classification tasks in machine
learning. According to numerical evaluation, our result shows a relative advantage over
the DP and the DroppFL methods based on accuracy, efficiency, and bandwidth utilization
while maintaining model privacy [25].

Federated learning is designed to be a super artificial intelligent technology entrenched
in the Industrial Revolution 4.0 and the current Society 5.0, deployed to execute a well-

Electronics 2024, 13, 1610 6 of 20

organized machine learning operation within multi-edge nodes and still maintain a secured
and private nature of data [26,27]. Different algorithms are used for machine learning in
federated learning. Examples include the recurrent neural network (RNN), convolutional
neural network (CNN), and other traditional algorithms. Traditional federated learning
technique is enabled by edge servers, devices, and MTUs. The MTUs are responsible for
providing a network service to the nodes, as the edge server collects the upload gradi-
ents/locally trained model by the edge device and updates the parameter of the global
model based on an optimized algorithm. The edge devices conduct the model training
locally and send updated gradient information to the edge server after each round of
training. In return, edge nodes receive the updated global model from the edge server. This
form of interaction is one-to-one, between an edge node and the edge server, with little or
no information about the next edge node. However, global models are jointly maintained
as this ensures the confidentiality and integrity of data as shown in Figure 2.

Figure 2. Asynchronous federated learning mobile edge network.

The asynchronous federated learning technique in the smart edge network is consid-
ered a solution for proper task distribution and handling of privacy protection challenges
for mobile multi-edge devices. Although asynchronous federated learning has its setbacks
in the timing to manage the re-connection of offline nodes and transfer of trained models,
it is a good technique in mobile multi-edge networks of devices, for prorating resources for
needed tasks such as data sharing. In addition to sharing the generated dataset, data gener-
ators take advantage of federated learning to jointly partake in the training of the global
data model. Since the benefit outweighs the cost, we attempt to implement the federated
learning in the industrial internet of (network) things for dataset training roles in the MEC.
In contrast to the traditional method of centralization of a single-point learning technique,
the deployment of federated learning is a viable solution to security and privacy concerns,
as it adopts the local training model. With the increase in heterogeneous devices and speci-
fications, more exposure and vulnerability issues are being discovered. This includes the
centralization challenge of the edge controller/server that collects, updates, and aggregates
all datasets in the federated learning scheme. If there is a record of system breakdown,
there will be a crash in the whole process due to a single point of failure, giving access to
adversaries to eavesdrop on private data. However, having this fault tolerant system that
works out a self-recovery plan from model training error, and loss function due to going
offline, makes it resilient [28]. It does this by re-routing and connecting to a nearby edge
server (Mobile T/R unit) or a load balancer/fail-over system to return as an online node
and restart the model training process for data set upload. Although, this disconnection
makes an edge node susceptible to eavesdropping and malicious adversary attack.

Furthermore, it is known that the training of local models by the edge devices is carried
out based on the global model sent by the edge server [5,9]. If a malicious edge server

Electronics 2024, 13, 1610 7 of 20

learns the edge device’s private dataset by broadcasting a hazardous model to recipient
devices without their knowledge and collecting their parameters in return, a poisoning
attack may occur. This may cause the edge devices to increase the likelihood function of
parameter sharing and distribution on their data instead of reducing the loss function [23].
Another threat model is a probable orchestrated attack by adversaries through learning the
information and analyzing updates confidential to edge devices. The adversary device can
also send out a pseudo update in exchange for an authentic global model, thereby reducing
the efficiency and accuracy level of the model and then a possible breakdown of the model
learning and training process, leading to possible misinformation and system degradation.
Thus, mitigating this requires a well-organized federated learning technique for enhanced
privacy protection for the edge device, ensuring gradient communication level reduction
and convergence enhancement.

4. APPFL-MEN for Industrial Internet of Things Ecosystem

The three components of the APPFL-MEN include gradient compression, convergence
boosting, and weight modification. Traditional federated learning treats all edge nodes
within the network equally, irrespective of their role of obtaining the global model after the
training and sharing of the model which is not a suitable reward for online nodes with a
good model and offline nodes with an error-prone model. The seamless method to achieve
weight modification is to alter the asynchronous nature of the dual weight (parameter and
sample weights). The parameter weight is first determined by a node’s parameter download
time and the corresponding gradient upload time. The sample weight is determined by the
fraction of a sample of a node sample to the summed-up sample of all the participating
edge nodes, Qi = N−1 ∗ N. This is to ascertain the number of participating nodes per
time. The parameter weight is determined by a node’s parameter download time and
the corresponding gradient upload time, T

′
= (T

′
U)− (T

′
D). The convergence boosting

process thus allows for more good models, with less error-prone models to complete the
process of gradient compression, update verification, and double weight modification.
Furthermore, to ensure that a true error rate is generated, a guided federated learning
IMDUS scheme is adopted in an asynchronous mode to show the true position of the model
trainer and the correct minimum error in its up-to-date model. The operation within the
three components of our proposed model is represented in Figure 3.

Figure 3. Proposed APPL-MEN showing A: local model training stage; B: IMDUS strategy stage; C:
Convergence Boosting Process, and D: Global Model download to the IIoT Ecosystem.

Electronics 2024, 13, 1610 8 of 20

4.1. Problem Formulation

The set MTU is represented by X = x1, x2, . . . xi and the set of smart mobile edge
devices by N = N1, N2, N3, . . . Ni. With each mobile edge device generating local data,
wi = input of the ML model and zi = trained model output. Therefore, the local dataset is
di = (w1, z1), (w2, z2),. . . (wi, zi), where di ∈ D or D = (∪ di).

The connection to the smart network is achieved when the edge device comes within
the network area of coverage. The objective is to learn a widely acceptable predictive
trained model M = h(s, w), with the training dataset D, but when an edge device goes
offline, leading to a loss function for each edge node’s locally generated dataset Di.

Fi(s) = |Di|−1 ∑
i
∈ Dj ∗ fi ∗ (h(s, w), z) (1)

Having Fi(h(s, w), z) as a loss function for the ith dataset (wi, zi), with model output s,
the objective loss function is

F(s) = |Di|−1 ∑
i=1

|Di| ∗ Fi(s) (2)

This makes the target of the asynchronous federated learning to be, firstly, to train
and update the global model as soon as it is received from an online IIEN, instead of
waiting for all connected IIEN within the context of the smart edge network [24], ensure
the minimization of the error (e) and loss function F(s) and, lastly, to compress the trained
model as a means to strengthen the privacy protection mechanism even in a situation where
an edge device may go offline due to mobility and lack of connectivity.

h(s) = arg min
s

F(s) subject to s ∈ {s(r) : r < R}

s.t. Pr(CL(si ∈ Rd)) ≥ exp(e) · Pr(CL(si ∈ Rd)

∀yi ∈ Y, i ∈ {1, 2, . . . , k} (3)

The s(r) is the set of highly compressed, aggregated models at iteration r, and R is the
highest updating iteration.

Pr(CL(mi ∈ Rd) ≥ exp(ePr(CL(mi ∈ Rd),

where compression as a privacy measure is guaranteed for updated parameters i and s(r),
obtained from the equation.

s(r + 1) = s(r) + k−1 ∑
i=1

si (4)

where si is the update from edge device yi in iteration r.

4.2. Gradient Compression and Object Function

The gradient compression mechanism is an integrated algorithm that reduces the
communication overhead. The number of locally trained and uploaded models from an
edge node is reduced to the smallest possible size during transmission to the edge server.
Moreover, since the nodes consist of online and offline entities, priority is given to the
online nodes to communicate with the parameter of the edge server, thereby reducing
network congestion, the probability of privacy breach, and any loss function that may arise
as a result of an increase in the number of transmitting nodes. This also boosts the accuracy
and efficiency of the learning process. Hence, to further describe and represent the context
of the edge network system in terms of the gradient compression and descent algorithm,
the parameter server (the edge server) connects and communicates with the learning node
N, where the learned model parameters are updated. All learners receive a broadcast of

Electronics 2024, 13, 1610 9 of 20

si−1 from the parameter server in the ith iteration. A computation of N − 1(s1) is carried
by each learning node n ∈ N and then uploaded to the edge server. This edge server then
updates the learned model by an iteration in the gradient compression algorithm.

s1 = si−1 − αNi−1 (5)

The representation of the iteration of variation in the model has α, Ni−1 as the learning
rate and aggregation gradient, respectively. The algorithm can complete an iteration by
ensuring communication between the learning nodes, specifically between “real-time or
active nodes” and the edge server while communicating less with other “off-line or inactive
nodes”, N, resulting in NR + NF = N. This idea is to reduce the communication overhead
such as time, power, and bandwidth usage during compression [6,7]. Although, nodes
NF that “talk less” with the server still individually accumulate or aggregate the gradient
and eventually increase wide enough to engage in communication. This aggregation
gradient becomes

N = Ni−1
F + Ni−1

R (6)

With the N and NF having a total number of parameters in the set, respectively, let the
set NF satisfy the following equation.

||Ni−1
R ||2

n
≥

||Ni−1
F ||2

n f
(7)

If Equation (5) is substituted into (7) , it gives

||Ni−1
F ||2 ≤ nF

α2n

∥∥∥si − si−1
∥∥∥2

(8)

Furthermore, given as, ||Ni−1
F ||2 = ok. This implies that by the inequality of basic

mathematical and geometric means, ||Ni−1
F ||2 infers that the equation

||Ni−1
F ||2 ≤ NF ∑

n∈NF

||n(si)||2 (9)

Equation (7) holds, if the node n ∈ NF satisfies the conditions

||n(si)||2 ≤ 1
α2n f n

||SI − SI−1||2 (10)

As the total number of sets of NF is not obtained beforehand, we input a proportional
coefficient δ to show the sum of nodes in the set, NF, which results in NF = nδ. Thus, from
Equation (10),

||n(si)||2 ≤ 1
α2n f n

||Si − Si−1||2 (11)

It is however clear that acquiring si − (si − 1) is quite hard. However, during the
learning process, it is observed that the parameter changes tend to happen smoothly, thus
having si − (si − 1) estimated as

|SI − SI−1|2 ≈ ∑x
x−1Y(Si−x − SI−1−x) (12)

Having Y and x as coefficients, we put Y = 1/x. Let the values of (12) be substituted
into (11);

|n(si)|2 ≤ 1/α2δn2|SI − SI−1|2 (13)

Here, the node carries out a self-testing examination for the gradient compression
check of the federated learning after each iteration of learning. It is however observed
that the gradient scarcely or partially meets the requirement for (13), making the node

Electronics 2024, 13, 1610 10 of 20

interact with the parameter server. This will occur; otherwise, there will be a skipping of
communication in this iteration, and the learning nodes gradient locally will continue to
perform the next iteration of learning. It is observed that the compression mechanism is a
privacy-protective technique, as it gives little or no room for easy deciphering of the trained
model by a malicious edge node or exposure to the same as summarized in Algorithm 1.

Algorithm 1 APPLM Algorithm

1: Compute: local dataset D, global model parameters mi(r)
2: Output: trained global model M
3: for each edge device E do
4: for each Mobile Transmission Unit (MTU) T do
5: for r ≤ R do
6: while r = 1 do
7: Train an updated model ME using the local dataset DE
8: Compute the updated model parameters mi(r)
9: Send out mi(r) to the edge server

10: if edge server receives mi(r) from edge nodes then
11: Get mi(r) from edge nodes
12: end if
13: end while
14: end for
15: end for
16: Compute updated global model M
17: Compress the model parameters Pr to guarantee privacy
18: Sample a subset of MTU, edge nodes
19: Send out mi(r) and Pr to edge server
20: if edge server receives mi(r) and Pr then
21: Return M
22: end if
23: end for
24: Output M

4.3. Convergence Process

One of the discoveries in the deployment of federated learning in the MEC is the
challenges encountered in sustaining synchronized updates between the central edge
server and edge device of this smart network. Due to the mobile nature of smart edge
devices, some devices participate in getting global model updates during the learning
phase. This makes an edge device to participate in real-time or asynchronously. Therefore,
to ensure convergence where devices train, learn good data, and compute models accurately,
we allow the secured connected nodes with less error to generate more good global models
and fewer bad models from offline nodes having more errors. An edge device has its locally
generated dataset,

Di = (w1, z1), (w2, z2) . . . (wi, zi), global model, (r − 1) and receives a set of up-
dated models

n

∑
i=1

Mi (14)

weighted alongside an error rate of model S. The edge node (IIEN) Ni picks the model with
a minimum error rate to carry out data aggregation and discards the model with a high
error rate as represented.

mi(r) = mi(r − 1) + n−1 · · ·
N

∑
i=1

error ∗ si(r) (15)

Electronics 2024, 13, 1610 11 of 20

We use NF as a set of offline nodes and s as the size of the compressed model update.
All possible errors are eliminated from the input model. Thus,

w = 1 − error ∗
N

∑
i−1

error (16)

To ensure a smooth convergence process, the nodes responsible for training models
are allowed to generate the minimum error rate of the up-to-date model, which shows
the efficient nature of the gradient aggregation process. Furthermore, to ensure that a
true error rate is generated, a guided federated learning IMDUS scheme is adopted in an
asynchronous mode to show the true position of the model trainer and the correct minimum
error in its up-to-date model. All updated models in the verification scheme are represented
by an edge node, with the value of r, minimum error rate, and size. During every round of
training, an edge node can verify the minimum error rate of the updated models it receives
with a proportion P, depending on its data. The edge node then shares the verified data
with other edge nodes. The total size of the node mi(r) can be calculated by

Size(i) = error(mi(r)) · · ·+
N

∑
i−1

error(mi(r)) (17)

With the minimum error rate received by the edge node yi within round r, the edge
node in the IMDUS scheme shows that a node is certified by other connected edge nodes
within its training circle. The recorded certified results give a total node size, T(Ni), for an
IIEN which, if substituted, gives

mi(r) = mi(r − 1) + n−1
N

∑
i=1

. . . error.(Ni) ∗ wi(r) (18)

The significant error rate in this asynchronous transmission of the dataset, maybe
caused by differences in the computation power, bandwidth, participation time of the
federated learning process, gradient compression, or interruptions due to a loss of network
connection. Thus, the proposed APPFL-MEN can deploy the dual weight amendment as a
privacy measure and solution to the asynchronous federated learning challenges.

4.4. Asynchronous Federated Learning Dual-Weighted Modification Process

This modification aims to ensure a seamless model training and upload process.
To modify the asynchronous nature of the dual weight of both sample and parameter
weights, it is deduced that the parameter weight is determined by a node’s parameter
download time and the corresponding gradient upload time. The sample weight is deter-
mined by the fraction of a sample of a node sample to the summed-up sample of all the
participating edge nodes [29]. Where participating edge nodes = N1, N2, N3, . . . , Ni, the
sample weight is

Qi = N−1 ∗ N (19)

Furthermore, for the edge server at the MTU, the complete iteration shows that the
edge node (IIEN) uploads the gradient parameter (mL) and then downloads the updated
parameter (mg) from the server (MTU) as shown in Figure 4. The edge node has records
of other nodes’ distribution about the time difference between when there is an upload
T′U of learned model parameters to the edge server and the equivalent download T′D
of parameter gradient. This time lag, T′, requires an optimization of the parameter to
compensate for the delay and the weakening of the transmission due to the out-of-network
coverage as represented by

T′ = (T′U)− (T′D) (20)

Electronics 2024, 13, 1610 12 of 20

Figure 4. Iteration model design update strategy scheme.

This parameter time lag incidence T′ shows the network connectivity strength of the
edge node. Hence, to ensure nodes with high T′ have very reduced parameter weight
and limited signal weakening issues, a reduced function speed is identified as a challenge
that weakens the signal strength of the parameter weight [9,26]. This is based on the time
lag T′ of the edge node and the speed of reduced function q, which is set between 0 and
1. From observation, the q is directly proportional to the result of T′. As q tends to 1, T′

increases. For the sake of this research, let q = 0.2. This will result in the double-weight
modification equation being

m′ = Qi N ∗ Qi(m) (21)

where m = initial model parameter, and m′= upgraded model parameter.
Based on the findings about the asynchronous federated learning, the modified global

model to be uploaded to the edge server from the edge node as a gradient parameter must
first undergo a double-weight modification. This modified gradient updates the global
model parameter based on an optimized algorithm, which after the round of optimized
iteration, the edge node downloads the up-to-date global parameter and clears off the
locally cached parameter to carry out the next round of training.

5. Experimental Analysis and Outputs

This section shows the needed experiments to display the veracity of our proposed
privacy-preserving asynchronous federated learning for the IIoT mobile edge system
and the dual weight modification and convergence improvement.

5.1. Experimental Settings

We deploy the EdgeCloudSim v4.0 to simulate the edge network-enabled IIoT system,
adopting the Hierarchical Edge Computing architecture shown in Figure 2 and employing
the basic Python language for testing purposes on the Windows 10 operating system [30].
To evaluate the effectiveness of the proposed method, experiments are performed using
the MNIST dataset [31]. The sample scenario is an edge network with dispersed MTU and
multi-mobile edge servers and devices distributed within the mobile network coverage.
The strongest coverage radius is within 200 m. The MTU, parameter server, and edge nodes
are needed to collaborate to train the parameter model using the MNIST dataset which is
made up of 600 labeled training and testing parameter samples, which are image digits.
To create a non-IID scenario, a random distribution of training samples is needed from the

Electronics 2024, 13, 1610 13 of 20

dataset of about 152 to 951 in quantity to the eight edge devices. The categories of parameter
samples range from 1 to 4 in each edge node. The loss function in the training process is
equivalent to the entropy loss, with the number of training rounds for the global model
set to 4 and the learning rate = 0.9 based on the simulation setting. With an exponential
term of 0.1, the distance (m) d is set between MTU and IIEN for network coverage, and an
approximate path loss is set between the edge node and MTU to be 121.0 + 32.2log10.
There exist 32 Rbs in the uplink channel with a bandwidth of 140 bit/s, while the downlink
channel has a bandwidth of 4.8 bits/s for transmission of the global parameter model to
edge nodes. The configuration setting makes it possible to calculate the network latency
between the edge node and MTU as shown earlier in Figure 3.

Furthermore, the latency of the edge node’s local model training is determined by two
conditions: the computational ability of the processing unit and the network’s bandwidth.
In arriving at the outcome, the local training latency and bandwidth usage of each IIEN
were measured using a laptop with an Intel core i7-5580 processor by carrying out the local
model training for six iterations where we assume the training time and computational
capacity Co of the heterogeneous IIEN to be directly proportional to the parameter sample.
To test the efficiency of APPFL-MEN, we check using the Mth ≈ 100, a synchronized
setting where the MTU collates the model training result in Mth for the IIEN per iteration
while implementing the federated learning in heterogeneous nodes and networks. We put
in the effort to carry out an analysis and comparison of Mth ≈ 100, synchronized setting,
and DropPPFL methods, despite the slight difference in system architecture and algorithm
for more objectivity under a similar communication scheme.

For the DropPPFL, we use the poly function of m(r − τ), a = 0.6, ρ = 0.05, t − 1 ≤ 15,
a better option to adopt in FedAsync. The MTU executes the global parameter update
after it receives a local parameter model from the IIEN. However, our proposed APPFL-
MEN allows the MTU to receive multiple serial local models compressed from the IIENs
within one iteration. When the MTU receives a model other than the programmed default
parameter model, there will appear to be a significant variance between the sent global
parameter model and the received local parameter model, which increases at an appreciable
rate amount. Thus, we propose to ensure that the MTU receives a complete, rightly
weighted local parameter model, and its equivalent type accordingly. This is to ensure
proper compression, where the compressed weight of the local parameter model and
its equivalent type corresponds with the IIEN’s communication sample shared in the
set of all the IIEN’s communication in the present iteration. This will ensure that all
local parameter models uploaded as well as global parameter downloads through the
communication channels are properly compressed without any collision, adversary attack,
and extra communication overload that will arise as a result of IIEN (Ni−1

F) going offline.

5.2. Experimental Analysis

The evaluation criteria used include the accuracy of the dual weight modification,
compression level, and convergence optimization. The level of accuracy of the modification
process is measured by

Accuracy =
l
L
∗ 100 (22)

where l and L are the percentage of the number of completely trained parameter samples
and the total number of parameter samples, respectively. This implies that the higher
the value of l, the higher the throughput which results in higher accurate model training
and classification [32].

Furthermore, since we use the sparsification compression technique which involves
zeroing out on communication from offline nodes due to higher level of error and suscepti-
bility to adversary attack, we give communication priority to more online nodes, thereby
transmitting only parameters of non-zero gradients or online nodes. This reflects the rate
of gradient compression. The lower the compression level, the higher the compression.

Electronics 2024, 13, 1610 14 of 20

Therefore, the compression level of samples communicated through the online node is
measured by

CL =
ψ

φ
∗ 100 (23)

where ψ is the percentage of the time taken for communication, post-compression, and φ is
the time taken for communication pre-compression.

As seen in Table 2, the compression level shows that as the size of the parameter
increases, the communication time post-compression increases, therefore the CL decreases
and the accuracy decreases as well, due to the longer time taken for gradient compression.
However, the different value of Q affects the CL and accuracy with the CL increasing at the
interval of 0.3, 0.4. When the interval increases to 0.3, 0.9, the CL increases infinitesimally.
Thus, the bigger the value of Q, the bigger the compression level resulting in an increased
level of parameter gradient communication. This shows that the accuracy increases as the
gradient communication compression level increases. Furthermore, it shows the outcome of
the experiments for comparing sample number datasets and the time interval. However, it
can be seen that the increase in the compression level is directly proportional to the increase
in the model’s accuracy. The arbitrary communication has lower gain in the trained model
that has attained saturated learning.

Table 2. Compression level comparison result.

Dataset for Comparision

CL DroPPFL Differential Privacy APPL-MEN

w1, w2 q Accuracy (%) q Accuracy (%) q Accuracy (%)

0.0, 0.1 0.2 85.0 0.2 40.1 0.2 87

0.1, 0.2 0.3 86.0 0.3 43.1 0.3 93

0.2, 0.3 0.4 87.0 0.4 45.7 0.4 95

0.4, 0.5 0.5 89.0 0.5 44.0 0.5 95

0.4, 0.5 0.6 89.3 0.6 45.1 0.6 96

0.6, 0.7 0.7 89.7 0.7 47.3 0.7 96

0.7, 0.8 0.8 90.0 0.8 51.3 0.8 96

5.3. Gradient Compression Level Analysis

In balancing the gradient compression level to obtain the best value for q, a calculation
within the interval for q = [0.2, 0.3] shows that the best value for Q is 0.2. In general, in the
comparison based on the effectiveness of gradient compression in APPFL-MEN with other
algorithms such as by Lu et al., 2020 [7], we evaluate using accuracy, compression level,
and gradient compression level. From the findings, the compression level of DropPPFL
is lower than APPFL-MEN, q = 0.2, and q = 0.22, respectively. Conversely, the proposed
method outperformed DropPPFL in accuracy using the trained model dataset. We further,
compare our method with the DropPPFL by measuring the balance in the gradient compres-
sion level, using w1, w2 (as shown in Table 2). Our method shows optimum performance,
compared with DropPPFL, where the two values’ compression level is slightly better.

5.4. Accuracy, Running Time and Bandwidth Usage

Achieving higher accuracy often requires more complex models, larger input data,
and longer training times. However, larger input data wi may also increase computational
requirements and resource consumption. Conversely, reducing running time often involves
using simpler models and smaller input data, whereas a less compressed model or reducing
input size may degrade accuracy, and reducing bandwidth usage typically involves trans-
mitting compressed data. Still, extensive data compression may influence model accuracy
while hindering model convergence or update frequency. Thus, in our work, as compared

Electronics 2024, 13, 1610 15 of 20

to DP and DroPPFL, we balance the compression level to reduce the model complexity and
input data size without compromising accuracy. Furthermore, we dynamically allocate
computational resources and bandwidth based on the data models from online edge nodes
of specific tasks and the available resources in the edge network. The trade-off is that
our evaluation identifies the optimal balance between accuracy, running time, and band-
width usage as compared to other methods [33]. The accuracy of the APPFL-MEN, DP,
and DropPPFL methods was tested. Results indicate that at the 15th epoch, the trio had
an accuracy of 29%, 28%, and 27% respectively. Furthermore, during the 22nd epoch, our
method shows better 96.4% of accuracy against the 94% and 93%, respectively, for the other
asynchronous methods in Figure 5.

Figure 5. Accuracy of the APPFL-MEN, DP, and DroPPFL

In carrying out the model training as seen in Figure 4 previously, we discovered
that the bandwidth usage increased during the different model uploads and downloads,
which impacted the model’s accuracy. The outcome shows the evolved accuracy during
the federated learning round and the bandwidth cost for about 25 rounds. The model
configuration used the RNN b-directional using the MNIST dataset aggregated to IIENs.
As shown in Figure 6, the running time for offline nodes is reduced to 794 ms, while
that of the online nodes is 996 ms which is a good convergence process. For randomly
selected IIENs to train models, the size is constant, using the backward regression where an
accuracy of about 64% after 24 iterations is achieved using about 0.18 MB, in contrast to an
accuracy of 62% using RNN at 0.1 MB, as deduced from Table 3 and shown in Figure 7. This
method utilizes more bandwidth as more dataset samples are trained during the upload
and subsequent download of the predicted global model. Furthermore, the compression
level during upload for connected nodes is relatively high, but the upload of the local
model has a minimum error rate and good accuracy.

Table 3. Bandwidth usage.

Online Nodes Offline Nodes Avg (Online + Offline)

Iteration Accuracy BW Accuracy BW Accuracy BW

0 67 0.15 28.4 0.12 66 0.135

50 76 0.8 29.4 0.5 72 0.65

100 79 3.4 33.7 0.9 73 2.15

Electronics 2024, 13, 1610 16 of 20

Table 3. Cont.

Online Nodes Offline Nodes Avg (Online + Offline)

Iteration Accuracy BW Accuracy BW Accuracy BW

200 79 3.95 40.1 3.669 76 3.8075

400 80 4.2 45.1 4.023 78 4.115

500 85 4.4 51.3 4.202 86 4.301

700 86 6.1 66.7 5.87 93 5.985

800 89 6.34 70.2 6.308 95 6.324

900 89.7 6 71.4 6.543 96 6.2715

1000 90.3 6.1 70.4 6.689 89.3 6.3945

Figure 6. Running time for iteration on dataset by edge devices.

Figure 7. Comparison of bandwidth usage.

5.5. Privacy Accuracy Level

The trade-off between privacy preservation and model accuracy in asynchronous
federated learning is that stronger privacy parameters or a more aggressive perturbation
method may result in privacy protection, but at the expense of model accuracy. However,
this work deploys the compression of models to make them less susceptible to adversary

Electronics 2024, 13, 1610 17 of 20

attacks. Furthermore, the convergence process uses its mechanism to minimize error and
any possible loss function that may arise as a result of a dataset generated by offline
nodes. Thus, it prioritizes the models from online nodes, thereby preserving the privacy
of the model while maintaining the accuracy of training of models [33]. Using the MNIST
dataset, we chose the typical synchronous federated learning algorithms of the DP, a privacy
protection based on the noise addition, and the offline scheme, DropPPFL, for the evaluation
of the privacy protection capacity of our scheme. As can be seen in Figure 8, measuring the
values of 0.001, 0.002, 0.1, and 2 where n = 25, R − r = 800, α = 0.2, deduced from Table 3,
it is seen that a non-optimized α gives a value of within the acceptable limit of ≈ 64%,
APPL-MEN = 84%, DropPPFL= 82%, and 29% privacy level, respectively. Comparing
our scheme with DP and DropPPFL, it was discovered that offline edge nodes reduce
the robustness and slow down the convergence boosting, as well as the accuracy of the
trained model, by about 9%. For the r − r = 400, we evaluate for accuracy using the range
for α = 0.10, 0.20, 0.30, where n = 25. The result revealed that with an increase in the
learning rate α, the convergence enhancement slows down significantly, but with relatively
good accuracy. Thus, with an increase in the edge nodes, the training rounds needed for
convergence increased.

Figure 8. Asynchronous privacy accuracy level.

6. Conclusions

This work proposes an asynchronous privacy-preservation federated learning method
in the industrial IoT mobile edge devices to ascertain that the privacy of trained and up-
dated models by edge devices is protected. Enhancing the privacy-preserving capabilities,
and ensuring its effectiveness, the double-weighted modification for asynchronous learn-
ing that considers the sample size and parameter weight are introduced. We calculate
the measure of the node sample size compared to the sum of the sample learning node
sample weight, Qi = N−1 ∗ N, m = Qi N ∗ Qi(m), as well as the time lag between gradient
upload/parameter download during the model training, T

′
= (T

′
U)− (T

′
D), respectively.

This shows the level of staleness and uploads while the offline nodes will have little par-
ticipation to prevent an adversary attack on the dataset. We introduce the convergence
enhancement process to allow the increase in good models uploaded by online edge nodes
while reducing the error-prone model from being uploaded by the offline nodes. We lever-
age the IMDUS to guarantee the integrity of each trained model to produce the correct value
of the less error-prone updated model. Individual edge node in the IMDUS represents
an updated version of the model having the traits of the verified value of minimum error,
compressed weight, and output model M.

Electronics 2024, 13, 1610 18 of 20

Author Contributions: Conceptualization, J.O.O. and X.Y.; methodology, all authors contributed
equally; software, J.O.O. and X.Y.; validation, J.O.O. and X.Y.; formal analysis, J.O.O.; investigation,
all authors contributed equally; data curation, J.O.O.; writing—original draft preparation, J.O.O. and
X.Y.; writing—review and editing, J.O.O., X.Y., C.I.N. and S.D.; visualization, J.O.O., X.Y. and C.I.N.;
supervision, X.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (NSFC) under
Grants 61971033 and 61941113.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: This manuscript has not been published or presented elsewhere in part or
entirety and is not under consideration by another journal. There are no conflicts of interest to declare.

Abbreviations
The following abbreviations are used in this manuscript:

Notation Meaning
CL compression level
CNN Convolutional Neural Network
BW bandwidth
D trained dataset
di local dataset
DP Differential Privacy
DP-AFL Differentially Private Asynchronous FL
FL Federated Learning
F(s) Loss function
HE Homomorphic Encryption
IMDUS Iteration Model Design Update Strategy
IIEN Industrial Internet edge node
IoT Internet of Things
MEC Mobile Edge Computing
MED multi-edge device
MEN Mobile Edge Network
MTU mobile transmission unit
mg updated parameter
mL gradient parameter
n set of offline edge nodes
Q sample weight
q function speed
R highest updating iteration
r iteration
RNN Recurrent Neural Network
si compressed parameter model
wi input of the ML model
X MTU
Y edge node
zi trained model output
Ni−1

R online nodes
Ni−1

F offline nodes
Ni−1 all sets of edge nodes with parameter weight

References
1. Shao, Z.; Zhao, R.; Yuan, S.; Ding, M.; Wang, Y. Tracing the evolution of AI in the past decade and forecasting the emerging

trends. Expert Syst. Appl. 2022, 209, 118221. [CrossRef]
2. Al-Quraan, M.; Mohjazi, L.; Bariah, L.; Centeno, A.; Zoha, A.; Arshad, K.; Assaleh, K.; Muhaidat, S.; Debbah, M.; Imran, M.A.

Edge-Native Intelligence for 6G Communications Driven by Federated Learning: A Survey of Trends and Challenges. IEEE Trans.
Emerg. Top. Comput. Intell. 2023, 7, 957–979. [CrossRef]

http://doi.org/10.1016/j.eswa.2022.118221
http://dx.doi.org/10.1109/TETCI.2023.3251404

Electronics 2024, 13, 1610 19 of 20

3. Vailshery, L.S. Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2023, with Forecasts from 2022 to 2030;
Statista: Hamburg, Germany, 2023. Available online: http://xxx.lanl.gov/abs/https://www.statista.com/statistics/1183457/iot-
connected-devices-worldwide/ (accessed on 27 July 2023).

4. Melis, L.; Song, C.; De Cristofaro, E.; Shmatikov, V. Exploiting Unintended Feature Leakage in Collaborative Learning. In
Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 691–706.
[CrossRef]

5. Wang, R.; Lai, J.; Zhang, Z.; Li, X.; Vijayakumar, P.; Karuppiah, M. Privacy-Preserving Federated Learning for Internet of Medical
Things Under Edge Computing. IEEE J. Biomed. Health Inform. 2023, 27, 854–865. [CrossRef] [PubMed]

6. Ksentini, A.; Frangoudis, P.A. On Extending ETSI MEC to Support LoRa for Efficient IoT Application Deployment at the Edge.
IEEE Commun. Stand. Mag. 2020, 4, 57–63. [CrossRef]

7. Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; Zhang, Y. Differentially Private Asynchronous Federated Learning for Mobile Edge
Computing in Urban Informatics. IEEE Trans. Ind. Inform. 2020, 16, 2134–2143. [CrossRef]

8. Yang, Z.; Chen, M.; Wong, K.K.; Poor, H.V.; Cui, S. Federated Learning for 6G: Applications, Challenges, and Opportunities.
Engineering 2022, 8, 33–41. [CrossRef]

9. Yan, X.; Miao, Y.; Li, X.; Choo, K.K.R.; Meng, X.; Deng, R.H. Privacy-Preserving Asynchronous Federated Learning Framework in
Distributed IoT. IEEE Internet Things J. 2023, 10, 13281–13291. [CrossRef]

10. Qolomany, B.; Ahmad, K.; Al-Fuqaha, A.; Qadir, J. Particle Swarm Optimized Federated Learning For Industrial IoT and
Smart City Services. In Proceedings of the GLOBECOM 2020–2020 IEEE Global Communications Conference, Taipei, Taiwan,
7–11 December 2020; pp. 1–6. [CrossRef]

11. James Singh, K.; Huang, Y.M.; Ahmed, T.; Liu, A.C.; Huang Chen, S.W.; Liou, F.J.; Wu, T.; Lin, C.C.; Chow, C.W.; Lin, G.R.; et al.
Micro-LED as a Promising Candidate for High-Speed Visible Light Communication. Appl. Sci. 2020, 10, 7384. [CrossRef]

12. Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible Light Communication in 6G: Advances, Challenges, and Prospects. IEEE Veh. Technol.
Mag. 2020, 15, 93–102. [CrossRef]

13. McMahan, H.B.; Ramage, D.; Talwar, K.; Zhang, L. Learning Differentially Private Recurrent Language Models. arXiv 2018,
arXiv:1710.06963. [CrossRef]

14. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure
aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1175–1191.

15. Zhao, C.; Zhao, S.; Zhao, M.; Chen, Z.; Gao, C.Z.; Li, H.; an Tan, Y. Secure Multi-Party Computation: Theory, practice and
applications. Inf. Sci. 2019, 476, 357–372. [CrossRef]

16. Sun, Y.; Uysal-Biyikoglu, E.; Yates, R.D.; Koksal, C.E.; Shroff, N.B. Update or Wait: How to Keep Your Data Fresh. IEEE Trans. Inf.
Theory 2017, 63, 7492–7508. [CrossRef]

17. Zhang, C.; Li, S.; Xia, J.; Wang, W.; Yan, F.; Liu, Y. {BatchCrypt}: Efficient homomorphic encryption for {Cross-Silo} federated
learning. In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC 20), Online, 15–17 July 2020;
pp. 493–506.

18. Wang, Y.; Su, Z.; Zhang, N.; Benslimane, A. Learning in the Air: Secure Federated Learning for UAV-Assisted Crowdsensing.
IEEE Trans. Netw. Sci. Eng. 2021, 8, 1055–1069. [CrossRef]

19. Yu, Z.; Hu, J.; Min, G.; Lu, H.; Zhao, Z.; Wang, H.; Georgalas, N. Federated Learning Based Proactive Content Caching
in Edge Computing. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi,
United Arab Emirates, 9–13 December 2018; pp. 1–6. [CrossRef]

20. Giovanelli, C.; Kilkki, O.; Sierla, S.; Seilonen, I.; Vyatkin, V. Task Allocation Algorithm for Energy Resources Providing Frequency
Containment Reserves. IEEE Trans. Ind. Inform. 2019, 15, 677–688. [CrossRef]

21. Coutinho, R.W.L.; Boukerche, A. Modeling and Analysis of a Shared Edge Caching System for Connected Cars and Industrial
IoT-Based Applications. IEEE Trans. Ind. Inform. 2020, 16, 2003–2012. [CrossRef]

22. Xie, C.; Koyejo, S.; Gupta, I. Asynchronous Federated Optimization. arXiv 2020, arXiv:1903.03934. [CrossRef]
23. Wang, Z.; Zhang, Z.; Wang, J. Asynchronous Federated Learning over Wireless Communication Networks. In Proceedings of the

ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–7. [CrossRef]
24. Nowak, T.W.; Sepczuk, M.; Kotulski, Z.; Niewolski, W.; Artych, R.; Bocianiak, K.; Osko, T.; Wary, J.P. Verticals in 5G MEC-Use

Cases and Security Challenges. IEEE Access 2021, 9, 87251–87298. [CrossRef]
25. Froehlich, A.; Ferguson, K. Bandwidth (network bandwidth). In TechTarget; West Gate Networks: Chicago, IL, USA, 2021.

Available online: http://xxx.lanl.gov/abs/https://www.techtarget.com/searchnetworking/definition/bandwidth (accessed on
15 April 2024).

26. Mengistu, T.M.; Kim, T.; Lin, J.W. A Survey on Heterogeneity Taxonomy, Security and Privacy Preservation in the Integration of
IoT, Wireless Sensor Networks and Federated Learning. Sensors 2024, 24, 968. [CrossRef] [PubMed]

27. Mahbub, M.; Shubair, R.M. Contemporary advances in multi-access edge computing: A survey of fundamentals, architecture,
technologies, deployment cases, security, challenges, and directions. J. Netw. Comput. Appl. 2023, 219, 103726. [CrossRef]

28. Mudassar, M.; Zhai, Y.; Lejian, L. Adaptive Fault-Tolerant Strategy for Latency-Aware IoT Application Executing in Edge
Computing Environment. IEEE Internet Things J. 2022, 9, 13250–13262. [CrossRef]

http://xxx.lanl.gov/abs/https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
http://xxx.lanl.gov/abs/https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
http://dx.doi.org/10.1109/SP.2019.00029
http://dx.doi.org/10.1109/JBHI.2022.3157725
http://www.ncbi.nlm.nih.gov/pubmed/35259124
http://dx.doi.org/10.1109/MCOMSTD.001.1900051
http://dx.doi.org/10.1109/TII.2019.2942179
http://dx.doi.org/10.1016/j.eng.2021.12.002
http://dx.doi.org/10.1109/JIOT.2023.3262546
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322464
http://dx.doi.org/10.3390/app10207384
http://dx.doi.org/10.1109/MVT.2020.3017153
https://doi.org/10.48550/arXiv.1710.06963
http://dx.doi.org/10.1016/j.ins.2018.10.024
http://dx.doi.org/10.1109/TIT.2017.2735804
http://dx.doi.org/10.1109/TNSE.2020.3014385
http://dx.doi.org/10.1109/GLOCOM.2018.8647616
http://dx.doi.org/10.1109/TII.2018.2821676
http://dx.doi.org/10.1109/TII.2019.2938529
https://doi.org/10.48550/arXiv.1903.03934
http://dx.doi.org/10.1109/ICC42927.2021.9500860
http://dx.doi.org/10.1109/ACCESS.2021.3088374
http://xxx.lanl.gov/abs/https://www.techtarget.com/searchnetworking/definition/bandwidth
http://dx.doi.org/10.3390/s24030968
http://www.ncbi.nlm.nih.gov/pubmed/38339685
http://dx.doi.org/10.1016/j.jnca.2023.103726
http://dx.doi.org/10.1109/JIOT.2022.3144026

Electronics 2024, 13, 1610 20 of 20

29. Thantharate, P.; Anurag, T. CYBRIA—Pioneering Federated Learning for Privacy-Aware Cybersecurity with Brilliance. In
Proceedings of the 2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life Using AI, Robotics
and IoT (HONET), Boca Raton, FL, USA, 4–6 December 2023; pp. 56–61. [CrossRef]

30. Sonmez, C.; Ozgovde, A.; Ersoy, C. EdgeCloudSim: An environment for performance evaluation of Edge Computing systems. In
Proceedings of the 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), Valencia, Spain, 8–11 May
2017; pp. 39–44. [CrossRef]

31. LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database; ATT Labs: Atlanta, GA, USA, 2010; Volume 2. Available
online: http://yann.lecun.com/exdb/mnist (accessed on 15 April 2024).

32. Jiang, C.; Li, Y.; Su, J.; Chen, Q. Research on new edge computing network architecture and task offloading strategy for Internet
of Things. Wirel. Netw. 2021, 1–13. [CrossRef]

33. Zhao, S.; Zhou, L.; Wang, W.; Cai, D.; Lam, T.L.; Xu, Y. Toward Better Accuracy-Efficiency Trade-Offs: Divide and Co-Training.
IEEE Trans. Image Process. 2022, 31, 5869–5880. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/HONET59747.2023.10374608
http://dx.doi.org/10.1109/FMEC.2017.7946405
http://yann.lecun.com/exdb/mnist
http://dx.doi.org/10.1007/s11276-020-02516-8
http://dx.doi.org/10.1109/TIP.2022.3201602
http://www.ncbi.nlm.nih.gov/pubmed/36063503

	Introduction
	Related Works
	 Methodology and System Threat Model
	APPFL-MEN for Industrial Internet of Things Ecosystem
	Problem Formulation
	Gradient Compression and Object Function
	Convergence Process
	Asynchronous Federated Learning Dual-Weighted Modification Process

	Experimental Analysis and Outputs
	Experimental Settings
	Experimental Analysis
	Gradient Compression Level Analysis
	Accuracy, Running Time and Bandwidth Usage
	Privacy Accuracy Level

	Conclusions
	References

