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Abstract: A recent optimization algorithm, the Rime Optimization Algorithm (RIME), was developed
to efficiently utilize the physical phenomenon of rime-ice growth. It simulates the hard-rime and
soft-rime processes, constructing the mechanisms of hard-rime puncture and soft-rime search. In this
study, an enhanced version, termed Modified RIME (MRIME), is introduced, integrating a Polynomial
Differential Learning Operator (PDLO). The incorporation of PDLO introduces non-linearities to
the RIME algorithm, enhancing its adaptability, convergence speed, and global search capability
compared to the conventional RIME approach. The proposed MRIME algorithm is designed to
identify photovoltaic (PV) module characteristics by considering diverse equivalent circuits, including
the One-Diode Model (ONE-DM) and Two-Diode Model TWO-DM, to determine the unspecified
parameters of the PV. The MRIME approach is compared to the conventional RIME method using
two commercial PV modules, namely the STM6-40/36 module and R.T.C. France cell. The simulation
results are juxtaposed with those from contemporary algorithms based on published research. The
outcomes related to recent algorithms are also compared with those of the MRIME algorithm in
relation to various existing studies. The simulation results indicate that the MRIME algorithm
demonstrates substantial improvement rates for the STM6-40/36 module and R.T.C. France cell,
achieving 1.16% and 18.45% improvement for the ONE-DM, respectively. For the TWO-DM, it shows
significant improvement rates for the two modules, reaching 1.14% and 50.42%, respectively. The
MRIME algorithm, in comparison to previously published results, establishes substantial superiority
and robustness.

Keywords: RIME optimizer; polynomial differential learning operator; single-diode model;
double-diode model; parameter PV cell extraction

1. Introduction

A myriad of countries have noticed an ongoing rise in their energy demand due to
their quickly growing populations and aggregate industries. Furthermore, the primary
disadvantages of conventional fossil fuel supplies are environmental contamination and
fuel shortages. These factors have led scientists to discover a new energy source that may
save energy without harming the environment. As a result, scientists have considered
using alternate sources of energy that are renewable, such as solar, wind, hydroelectricity,
and geothermal power, to produce large amounts of energy without contributing to envi-
ronmental degradation. Solar PV is one of the sources of clean energy that has attracted a
lot of attention in recent decades because of its many benefits, including low maintenance
costs, low operating costs, high power density, and low computational costs [1]. PV cells
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are arranged in both parallel and series to form the PV panel. The panel output is influ-
enced by the manufacturing process as well as external factors such as light intensity and
temperature [2].

Several electrical models have been investigated in the scientific literature, among
which are the one-diode model (ONE-DM) [3] and the two-diode model (TWO-DM) [4].
The main challenge is to resolve the nonlinear formula associated with these models and
determine the unknown parameters; many approaches of different kinds have been de-
scribed in the scientific literature [5]. A myriad of approaches to precisely determine the
assessment of parameters for PV models could be broadly divided into two categories: ana-
lytical techniques and metaheuristics inspired by nature. Examples of analytical techniques
are the Lambert W function [6] and the Newton–Raphson method [7]. Nature-inspired
metaheuristics (NiMHs) can effectively handle optimization and evaluation problems, since
they function like a black box, without imposing any restrictions on the issue formulation.
Because of this, NiMH has some advantages over alternative strategies. NiMH finds use in
a wide range of industries. Consequently, in order to overcome the parametric problems
related to solar PV cell models, academics have recently employed a range of NiMHs [8].

Ridha et al. [9] established an upgraded augmented mutation Harris Hawk Optimizer
(AMHHO) to assess the parameters associated with the PV system ground accurately in
order to create a more reliable and efficient model. In order to accurately assess the solar cell
ground modelling variables, the convergence process of the algorithm can be accelerated
by using the proposed method. Chen [10] integrated the adversarial-based exploration
method and chaotic drift strategy into the Harris Hawk Optimizer (HHO). In order to
boost global convergence and local mining capabilities, the moth flame method (MFO) was
demonstrated in [11], to identify the parameters of PV modules. This led to outstanding
outcomes in the ONE-DM and TWO-DM PV models.

An Improved Sine Cosine Algorithm called ISCA was proposed by Chen et al. [12]
to evaluate the unknown parameters for the ONE-DM and TWO-DM. Wu [13] proposed
a method for parameter evaluation based on the improved ant-lion optimizer (IALO).
IALO achieved favorable results using the photovoltaic model. Liu et al. [14] employed
the upgraded Harris Hawk algorithm (CCNMHHO) to ascertain the parameters of the
solar model. Merchaoui proposed the adaptive variational Particle Swarm Optimization
(PSO) approach for identifying the unknown parameters of different photovoltaic models
and maximizing the ideal parameters for solar models under diverse conditions [15,16].
Jiao et al. [17] used orthogonal learning (OL) and generalized opposition-based learning
(GOBL) approaches to accurately and efficiently evaluate the characteristics of PV modules’
solar cells. Abbassi et al. [18] proposed an improved algorithm based on the salp swarm
method that makes use of an opposition-based learning strategy to tackle the parameter
estimation issue encountered by solar cells. Ridha et al. [19] provided a thorough analysis
based on multi-objective optimization and multi-criteria approaches on independent PV
systems in order to help select the optimal design solutions. The metaheuristic technique
and its variants have several drawbacks, even if its execution is faster and with higher
solution quality. Furthermore, the approach is a somewhat specialized, and its excellent
performance is restricted to particular kinds of optimization problems, which limits its
use cases.

Studying PV systems is crucial due to their pivotal role as ideal companions for both
renewable and traditional energy sources in hybrid energy systems. These systems are
widely adopted globally because of their reliability and stability in energy production
from individual sources; such systems include PV/Grid [20], PV energy forecasting [21],
PV/STATCOM [22], PV/Voltage regulators [23], and microgrid management [24]. Addi-
tionally, a variety of maximum power point tracking (MPPT) methodologies have been
developed to optimize the operation of solar PV arrays for maximum power output [25]. In
Ref. [26], a global MPPT-based variable vortex search (VVS) methodology was presented
for photovoltaic (PV) generation systems. In this study, several modern heuristic algo-
rithms were utilized and statistically analyzed via the Monte Carlo method under partial
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shading conditions (PSCs). In Ref. [27], several techniques were contrasted and adopted for
MPPT, including Perturb and Observe (P&O), cuckoo search, Jaya, Salp swarm, Emperor
Penguin optimization, Grey Wolf optimization, and artificial Bee colony and Ant colony
optimization algorithms, while a Chimp Optimization algorithm (ChOA) was utilized and
simulated for the same purpose via MATLAB 2017b/SIMULINK in Ref. [28].

Recently, the Rime Optimization Algorithm (RIME) method was introduced by H. Su
et al. [29]. By inspiring the natural development of soft and hard rime particles. Rime agents
experience Soft-Rime Search (SRS) and Hard-Rime Puncture (HRP) phases to simulate
environmental conditions. Parameters such as adhesion degree and attachment coefficient
impact particle distance, thereby influencing condensation probability and optimizing the
process. Also, fitness values act as guides for information exchange between agents. In re-
cent times, novel domains have surfaced in the utilization of fractional differential systems,
particularly leveraging their inherent advantages in viscoelasticity [30–33]. This paper
proposes a Modified RIME (MRIME) incorporating a Polynomial Differential Learning
Operator (PDLO). The proposed incorporation of PDLO with the presented MRIME algo-
rithm introduces diversity in the population by combining information from two randomly
selected individuals to update the position of the current individual. The randomness
introduced by the permutation helps in exploring the search space effectively. The proposed
MRIME algorithm is designed to identify PV module characteristics by considering diverse
equivalent circuits, including the ONE-DM and TWO-DM, to determine the unspecified
parameters of the PV. To showcase the effectiveness of the MRIME algorithm, it undergoes
testing against more advanced algorithms in the context of the PV ONE-DM and TWO-
DM. The experimental study illustrates the excellent outcomes achieved by the proposed
MRIME algorithm. In summary, the key contributions of this paper are as follows:

• An enhanced MRIME algorithm is proposed by incorporating the PDLO to enhance
its searching diversity.

• The proposed MRIME algorithm is implemented on two commercial PV systems of
the STM6-40/36 module and R.T.C. France cell.

• The MRIME algorithm exhibits considerable advantages and robustness for both PV mod-
els compared to the conventional RIME algorithm and previously reported outcomes.

• Tests of the MRIME algorithm’s efficacy on the PV ONE-DM and TWO-DM reveal a
very good correlation between simulated and actual data.

The remaining structure of this paper is as follows: Section 2 presents the problem
definition, considering the ONE-DM and TWO-DM frameworks. Section 3 thoroughly
describes the proposed MRIME technique. Experimental findings are examined in detail
in Section 4, confirming the effectiveness of the MRIME technique. Section 5 presents the
conclusions for this work.

2. Problem Formulation of Solar PV Parameter Extraction

This section covers the ONE-DM and TWO-DM for mathematical simulation of PV
modules [22]. Following that, the objective function will be highlighted in order to address
the problem of parameter estimation for the aforementioned PV models.

2.1. ONE-DM

The ONE-DM, represented in Figure 1 [34], is simple to create when the solar cell is
thought of as an inner parallel circuit. The entire output current of the circuit is indicated
by the symbol (I), which may be expressed using the following formula [35]:

I = Iph − ISh − Id1, (1)

where Iph stands for the photocurrent, Ish is the shunt resistor current, and Id is the
diode current.
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Figure 1. Demonstration of ONE-DM circuit.

The shunt resistor current (Ish) may be expressed using the following formula [36]:

Ish =
I·RS + V

RSh
, (2)

where V denotes the output voltage, and RS and RSh stand for the series and shunt re-
sistances. The diode current is represented mathematically by Id1, which may be com-
puted [37] by applying Equation (3).

Id1 = IS1

[
exp

(
I·RS + V

η1·Vth

)
− 1
]

, (3)

where Is1 denotes the diode reverse saturation current and η1 indicates the ideal factor for
the diode. The junction thermal voltage (Vthr) [38] is determined by Equation (4).

Vthr =
KB·T

qc
, (4)

where T signifies the temperature defined in Kelvin, qc denotes the electron charge of
1.60217646 × 10−19 C, and KB indicates the Boltzmann’s value (1.380653 × 10−23 J/K).
Finally, by combining the aforementioned formulations, Equation (5) explains the link
between various parameters with the output current [39].

I = Iph − IS1 ×
[

exp
(

I·RS + V
η1·Vthr

)
− 1
]
− V

Rsh
− I·RS

Rsh
, (5)

Five variables (Rsh, Rs, Is1, Iph, and η1) need to be extracted in the ONE-DM, as can be
determined in Equation (7).

2.2. TWO-DM

The loss of composite currents throughout the ONE-DM is addressed by the develop-
ment of the TWO-DM. Consequently, the computation of the overall current flow in the
equivalent circuit displayed in Figure 2 is indicated by Equation (6).

I = Iph − ISh − Id1 − Id2, (6)
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By integrating the aforementioned formulations, Equation (7) establishes a correlation
between the current flowing through the output, the output voltage, and multiple other
variables in the TWO-DM [38]:

I = Iph − IS1

[
exp

(
I·RS + V
η1·Vthr

)
− 1
]
− IS2

[
exp

(
I·RS + V
η2·Vthr

)
− 1
]
− V

Rsh
− I·RS

Rsh
, (7)

where Is1 and Is2 denote the first and second diode reverse saturation currents, while η1
and η2 indicate the ideal factor for the two diodes.

Seven variables (Is1, Rsh, Rs, Is2, Iph, η1, and η2) need to be extracted in the TWO-DM,
as can be determined using Equation (7).

2.3. PV Module Development

The PV module model has a more intricate design; it is primarily made up of several
solar cells coupled in parallel or series. The current flowing [40] as the output displayed in
the PV module model’s equivalent circuit can be addressed by observing Equation (8).

I = Np


Iph − IS1

[
exp

(
1

η1·Vth ·Ns
·
(
(V + I·RS·Ns)/Np

))
− 1
]

−IS2

[
exp

(
1

η2·Vth ·Ns
·
(
(V + I·RS·Ns)/Np

))
− 1
]

−IS3

[
exp

(
1

η3·Vth ·Ns
·
(
(V + I·RS·Ns)/Np

))
− 1
]

−
(
(V + I·RS·Ns)/Np

)
· 1
Np·Ns·Rsh

, (8)

where the numbers of solar cells in parallel and series are indicated by NP and NS, respectively.

2.4. Objective Model

To establish objective functions that are suitable for a number of computational meth-
ods, it must first be possible to quantify the output voltage and current that is produced
in each of the models [41–43]. As a result, the function’s target may be to find the dispar-
ity between the current that is generated in the model that has been developed and the
experimental current. The present research aims to decrease the RMSE, which is defined
as follows:

RMSE =

√√√√ 1
P·N

(
PN

∑
K=1

(IK
cal(V

K
exp, x)− IK

exp)
2
)

, (9)

where PN denotes the number of measured data points, and IK
exp and VK

exp stand for the ob-
served current and voltage. In addition, the PV determination characteristic problem—which
has to do with discovering a solution in the solution space that lessens the objective
function—is revealed by the form of (x).
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3. MRIME Algorithm for PV Parameter Estimation

The RIME algorithm draws inspiration from natural processes, specifically the growth
of soft and hard rime particles, to design its optimization strategy. The positions of rime
agents, or particles, represent the solution vectors in the search space. It mimics the
associated environmental conditions in two phases: the Soft-Rime Search (SRS) and Hard-
Rime Puncture (HRP) [29]. It requires several key steps to perform optimization, as follows.

3.1. Rime Initialization Phase

The population is initialized with Nm rime agents, each represented as a rime particle
with D dimensions. A random search is employed in the initialization process to determine
the positions of rime agents in the search space.

Consequently, the population of rime agents, denoted as RPOP, is succinctly expressed
using the positions of individual rime particles, represented by Rmi,j in Equation (10).

RPOP =
[
Rmi,j

]
Nm×D =


Rm1,j
Rm2,j

.

.
RmNm,j


i=1:D

=


Rm1,1
Rm2,1

.

.
RmNm,1

Rm1,2
Rm2,2

.

.
RmNm,2

. . .

. . .
. . .
. . .
. . .

. . .

. . .
. . .
. . .
. . .

Rm1,D
Rm2,D

.

.
RmNm,D

, (10)

where RPOP is the population matrix, which consists of the vectors of the rime agents
(Nm × 1), and each rime agent vector consists of several design parameters (1 × D).

These positions are subject to limits, with upper (Upj) and lower (Loj) boundaries
defining the permissible range for each dimension. Adopting a conventional approach ob-
served in many population-based algorithms, the rime population undergoes initialization
through a random search process during the initial phase. The resulting expression for the
position Rmi,j during this initialization is detailed below.

Rmij = Loj + rd1·
(
Upj − Loj

)
, i = 1 : Nm, j = 1 : D, (11)

where rd1 is a randomly selected number inside the range [0, 1].

3.2. SRS Phase

The algorithm simulates the freezing of rime particles on the surface of an object,
mimicking the soft-rime growth process. Rime agents move in the search space with the
influence of wind force and their own randomness, ensuring broad coverage in the early
iterations. The position update of rime agents is determined using a formula that includes
the best rime agent’s position, environmental factors, and randomness, as follows:

Rm∗
ij = Rmbest,j + rd2·β· cos(θ)·

[
AD·

(
Upj − Loj

)
+ Loj

]
, i f rd3 < E, (12)

where the degree of adhesion (“AD”) characterizes the proximity between the best rime
agent and a randomly chosen rime agent, with “AD” constrained within the range [0, 1].
The modified position of the rime agent i in the dimension j at the iteration after the SRS
phase, denoted by Rm*ij, is determined based on the position of the best rime agent in
the population (Rmbest,j). The directional control is governed by the interplay of “rd2” and
“cos(θ)”, where “rd2” is a random number in the range [−1, 1]. Also, “rd3” is a random
number in the range [0, 1], while θ is defined in Equation (13).

θ =

(
It

Itmax

)
·
( π

10

)
, (13)

In this context, the symbol “It” denotes the iteration count index, while “Itmax” repre-
sents the total number of iterations.
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The environmental factor, represented by “β”, models external conditions and ensures
the convergence of the rime population, as specified in Equation (14).

β = 1 − 1
ω
·
(

round
(

ω·It
Itmax

))
, (14)

The function “round” is employed to round numerical values, and the parameter “ω”
is introduced to regulate the segmentation of the step function, with a default value of 5 as
per [29].

Additionally, the variable “rd3” is a random number within [0, 1], and “E” signifies
the attachment coefficient, influencing the coalescence probability of the rime agent. The
attachment coefficient gradually increases throughout the search process, as follows:

E =

(
It

ItMax

)1/2
, (15)

3.3. HRP Phase

In strong wind conditions, the algorithm emulates the simpler and more regular
growth of hard-rime particles. The HRP mechanism facilitates information exchange
between agents to improve convergence and escape local optima, as follows:

Rm_newij =

{
Rmbest,j rd4 < Fitn(Rmi)
Rm∗

ij Else ; i = 1 : Nm, j = 1 : D, (16)

where Rm_newij indicates the newly created position of the rime agent i in the dimension j,
while “rd4” is a random number within [0, 1]. As shown, the positions of rime agents are
updated based on the fitness values and normalized fitness values (Fitn(Rmi)), promoting
crossover between agents, where

Fitn(Rmi) =
Fit(Rmi)√

∑Nm
i=1(Fit(Rmi))

2
, (17)

where Fin(Rmi) is the value of the fitness function regarding the current position of the rime
agent i.

3.4. Proposed PDLO Incorporation

In this paper, the PDLO is incorporated to enhance the searching capabilities and
diversity of the RIME algorithm. The PDLO is commonly used in differential evolution
(DE) algorithms for optimization [44]. This operator enhances population diversity by
merging information from two randomly chosen individuals to update the current rime
particle’s position. PDLO, an extension of DE, adapts the mutation strategy to amplify
exploration and exploitation within the search space. The mutation formula in PDLO
incorporates a polynomial function, injecting non-linear characteristics into the mutation
operation. To execute the integrated PDLO, two random integers (index1 and index2) are
drawn from the population. Subsequently, the newly derived position of rime agent i can
be formulated as follows:

Rm_newi = Rmi + ϕ·(Rmindex1 − Rmindex2), i = 1 : Nm, (18)

where ϕ is a generated random number between 0 and 1. Thus, the update involves the
weighted sum of the difference between two randomly selected elements (Rmindex1 and
Rmindex2), while the weight ϕ controls the contribution of this difference to the update.
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3.5. Positive Greedy Selection (PGS) Phase

After generating the new positions of the rime particles by the HRP-SRS phases
(Equations (12) and (16)) or the PDLO (Equation (18)), the PGS mechanism is employed to
compare fitness values before and after the update. If the updated fitness value is better,
the suboptimal solution is replaced with the optimal one, enhancing the global solution
quality. This mechanism actively replaces agents during updates, to ensure a more optimal
population evolution.

3.6. Iterative Process

Figure 3a,b displays the main steps of the standard RIME against the proposed MRIME
optimizer, where the entire process is iteratively performed until a predefined number of
iterations (ItMax) is reached. At each iteration, the proposed MRIME updates the positions of
rime agents utilizing the SRS and the HRP phases or the PDLO mechanism, evaluates fitness
values, and performs PGS. In the proposed MRIME algorithm with PDLO, the inclusion
of a polynomial function enables fine-tuned control over the impact of each mutation
vector component, contributing flexibility to the exploration process. The introduction of
randomness through permutation and the variables adds effectiveness to the exploration
of the search space. The optimal rime agent in the swarm, determined by the best fitness
value, is output as the solution to the optimization problem.
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4. Simulation Results

In this section, the proposed MRIME algorithm, along with the conventional RIME
algorithm, is expanded to estimate PV parameters for two distinct commercial systems—R.T.C.
France and STM6-40/36. The R.T.C. France cell is a commercially available silicon cell
operating at 1000 W/m2 sun irradiance and a temperature of 33 degrees Celsius. The
second module, STM6-40/36, consists of 36 monocrystalline cells linked in series, each with
dimensions of 38 mm × 128 mm, operating at 51 ◦C and an irradiation of 1000 W/m2 [45].

For both PV systems, two cases are explored, involving different equivalent circuits:
ONE-DM (Case 1) and TWO-DM (Case 2). In both algorithms, a population of one hundred
rime particles is considered, with a maximum limit of one thousand iterations. Additionally,
each technique undergoes twenty different running times for comprehensive analysis.

4.1. First Test Investigation: R.T.C. France Cell
4.1.1. Case 1: ONE-DM

In the current case, the ONE-DM characteristics of the R.T.C. France cell are extracted
using the suggested MRIME and the RIME. Table 1 lists the five unknown ONE-DM pa-
rameters for which the experiment’s best outcomes were obtained for every approach.
The results show that the suggested MRIME outperforms the RIME and comparator ap-
proaches in terms of competitiveness. This means that the regular RIME obtained an RMSE
of 9.9755 × 10−4, whereas the MRIME obtained the best RMSE value of 9.8602 × 10−4.
Additionally, the PV-derived electrical parameters utilizing the reported optimization
approaches are displayed in the table; these include the Classified perturbation mu-
tation PSO (CPMPSO) [46], HEAP Optimizer [47], multi-verse optimizer (MVO) [48],
Lightning Attachment Procedure Optimization (LAPO) [49], particle swarm optimiza-
tion (PSO) [50], Enhanced MPA (EMPA) [47], neighborhood scheme-based Laplacian
MBA (NLBMA) [51], a performance-guided JAYA (PGJAYA) [52], Forensic-Based Inves-
tigation Optimizer (FBI) [53], Barnacles Mating Optimizer (BMA) [54], Enriched Harris
Hawks optimization (EHHO) [10], Jellyfish Search (JFS) Optimizer [47], Ant Lion Opti-
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mizer (ALO) [55], Growth optimizer GO [38], flexible PSO (FPSO) [3], Hybrid Firefly and
Pattern Search (HFAPS) [56], Equilibrium Optimizer (EO) [47], hybrid PSO–GWO algo-
rithm (PSOGWO) [57], and Marine Predator Algorithm (MPA) [47]. Moreover, the table
specifies the assessed parameters of (MRIME and RIME), which are (57.37254497 Ω and
53.71865291 Ω), (0.760557 A and 0.760776 A), (1.485377 and 1.481184), (0.036257632 Ω and
0.036377096 Ω), and (3.36869 × 10−1 µA and 3.23021 × 10−1 µA) for the shunt resistance,
photo-current, ideality factor for d1, series resistance, and saturation current for d1, respec-
tively. Additionally, electrical variables acquired using various inspirational optimizers are
expressed in this table.

Table 1. Extracted PV cell parameters based on MRIME versus RIME and other reported methods
applied for the ONE-DM of the R.T.C. France cell.

Algorithm Iph (A) Isd (µA) n Rsh (Ω) Rs (Ω) RMSE

MRIME 0.760557 3.36869 × 10−1 1.485377 57.37254497 0.036257632 9.8602 × 10−4

RIME 0.760776 3.23021 × 10−1 1.481184 53.71865291 0.036377096 9.9755 × 10−4

MPA [47] 8.184927 7.94459 × 10−2 1.285180059 92.14823504 0.004537611 1.487 × 10−2

FBI [53] 8.217030039 2.72156 × 10−2 1.215208065 6.235899986 0.004814219 9.88 × 10−4

JFS [47] 8.193182 4.72 × 10−2 1.250052 14.97462 0.004679 9.477 × 10−3

PGJAYA [52] 8.2167 0.002284 58.1742 773.8117 0.3435 1.5455 × 10−4

EO [47] 8.209153 2.85 × 10−2 1.218068 7.714703 0.004815 2.888 × 10−3

CPMPSO [46] 8.21689146 0.00224195 1.07641028 763.535149 0.34381405 1.53903 × 10−3

FPSO [3] 8.2186 0.001436 56.9854 130.2813 0.2409 2.8214 × 10−2

GO [38] 8.192967 4.31808 × 10−2 1.244346 15.103921 0.004710 8.515347 × 10−3

HFAPS [56] 8.1992 0.154161 74.5795 1448.2590 0.2396 4.9863 × 10−2

EHHO [10] 8.2224 0.000001 80.6915 1806.0252 0.1835 5.9507 × 10−2

PSO [50] 8.2027 2.8852 1.6052 33.8855 0.0019 1.0195 × 10−1

PSOGWO [57] 8.2132 9.6768 1.7463 38.8968 0.0011 1.2700 × 10−1

MVO [48] 8.2527 0.063908 69.2388 134.4813 0.1341 8.3800 × 10−2

BMA [54] 8.1950 3.1015 1.6130 100.0000 0.0019 1.0244 × 10−1

LAPO [49] 8.2155 8.1491 1.7258 5.0000 0.001 1.3813 × 10−1

EMPA [47] 8.21195 3.59 × 10−2 1.232551 7.560713 0.004742 3.847 × 10−3

NLBMA [51] 8.1467 0.0022 1.0839 5.0000 0.0045 3.3610 × 10−2

HEAP [47] 8.200974 4.49 × 10−2 1.246924 11.87468 0.004696 7.425 × 10−3

The corresponding convergence lines can be seen in Figure 4. The MRIME converged
extremely quickly in the first 60 iterations, as depicted in this figure, demonstrating the
MRIME’s excellent convergence capacity. Additionally, Figure 5 shows the twenty obtained
RMSE objectives for Case 1’s RIME and MRIME. This figure illustrates that the RMSE of
RIME is between [9.9755 × 10−4 and 2.5096 × 10−3], but the RMSE of MRIME is between
[9.8602 × 10−4 and 1.0035 × 10−3]. It can be established from the figure that the enhance-
ments of the MRIME approach are 30.878%, 1.156%, 46.525%, and 99.634%, respectively,
when compared to the mean, best, worst, and standard deviation of the outcomes of the
RIME techniques. These results corroborate the superiority of the developed MRIME for
the ONE-DM of the R.T.C. France cell. Consequently, the suggested MRIME yielded the
highest value, indicating that MRIME outperforms RIME in terms of stability, accuracy,
and efficacy when determining ONE-DM parameters through comparison. It is reliable
that the MRIME identified the validity with the ONE-DM.
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For the ONE-DM, the simulated and measured I-V and P-V characteristics are shown
in Figure 6a,b. It can be proven that the data created by the MRIME technique are almost the
same as the data obtained through experimentation, indicating that the MRIME technique
proved effective in obtaining the power and current with diverse voltage levels. As
illustrated in Figure 7a,b, the absolute errors between the simulated and measured currents
are between 2.85343 × 10−9 and 6.24849 × 10−6, whereas the absolute error between the
simulated and measured powers is between 1.95909 × 10−6 and 1.4581 × 10−3.
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4.1.2. Case 2: TWO-DM

In the current case, the TWO-DM characteristics of the R.T.C. France cell are extracted
using the suggested MRIME and the RIME. Table 2 lists the seven unknown TWO-DM
parameters for which the experiment’s best outcomes were obtained for every approach.
The results show that the suggested MRIME outperforms the RIME and comparator ap-
proaches in terms of competitiveness. This means that the regular RIME obtained an RMSE
of 9.9382 × 10−4, whereas the MRIME obtained the best RMSE value of 9.8251 × 10−4.
Moreover, the table specifies the assessed parameters of (MRIME and RIME), which are
(55.64800559 Ω and 53.58354831 Ω), (0.760780758 A and 0.760864277 A), (1.999974446
and 1.827202939), (1.482783518 and 1.448694376), (0.036767981 Ω and 0.036173672 Ω),
(8.0438 × 10−7 A and 4.3113 × 10−8 A), and (2.19744 × 10−7 A and 3.25421 × 10−7 A)
for the shunt resistance, photo-current, ideality factor for d1, ideality factor for d2, series
resistance, saturation current for d1, and saturation current for d2, respectively.



Electronics 2024, 13, 1611 13 of 24

Table 2. Electrical parameters of the proposed MRIME and the standard RIME for the TWO-DM of
the R.T.C. France cell.

Applied Algorithm RIME MRIME

IPh (A) 0.760864277 0.760780758

Rs (Ω) 0.036173672 0.036767981

RSh (Ω) 53.58354831 55.64800559

IS1 (A) 4.3113 × 10−8 8.0438 × 10−7

η1 1.827202939 1.999974446

IS2 (A) 3.25421 × 10−7 2.19744 × 10−7

η2 1.482783518 1.448694376

RMSE 9.9382 × 10−4 9.8251 × 10−4

Table 3 presents a comparison between the proposed MRIME technique and both the
standard RIME and various optimization tools for the TWO-DM system that have been docu-
mented in literature, such as the flower pollination algorithm [58], teaching–learning–based
ABC [59], TLBO [60], ABC [61], Cat Swarm Algorithm (CSA) [62], SCA [12], and gener-
alized oppositional TLBO [4]. It is demonstrated that the proposed MRIME technique
outperforms other approaches in obtaining the lowest RMSE.

Table 3. Comparative assessment between the proposed MRIME technique and various optimization
tools for the TWO-DM of the R.T.C. France cell.

Algorithms RMSE

MRIME 9.8251 × 10−4

RIME 9.9382 × 10−4

ABC [61] 1.28482 × 10−3

Teaching–learning–based ABC [59] 1.50482 × 10−3

Generalized oppositional TLBO [4] 4.43212 × 10−3

TLBO [60] 1.52057 × 10−3

CSA [62] 1.22 × 10−3

SCA [12] 9.86863 × 10−4

Flower pollination algorithm [58] 1.934336 × 10−3

The corresponding convergence lines can be seen in Figure 8. The MRIME converged
extremely quickly in the first 50 iterations, as depicted in this figure, demonstrating the
MRIME’s excellent convergence capacity. Additionally, Figure 9 shows the thirty obtained
RMSE objectives for Case 1’s RIME and MRIME. This figure illustrates that the RMSE of
RIME is between [9.9382 × 10−4 and 3.1870 × 10−3], but the RMSE of MRIME is between
[9.8251 × 10−4 and 1.0135 × 10−3]. It can be established from the figure that the enhance-
ments of the MRIME approach are 45.3824%, 1.1379%, 68.1989%, and 99.0358%, respectively,
when compared to the mean, best, worst, and standard deviation of the outcomes of the
RIME techniques. These results corroborate the superiority of the developed MRIME for
the TWO-DM of the R.T.C. France cell. Consequently, the suggested MRIME yielded the
highest value, indicating that MRIME outperforms RIME in terms of stability, accuracy,
and efficacy when determining TWO-DM parameters through comparison. It is reliable
that the MRIME identified the validity with the TWO-DM.
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For the TWO-DM, the simulated and measured I-V and P-V characteristics are shown
in Figure 10a,b. It can be proven that the data created by the MRIME technique are
almost the same as the data obtained through experimentation, indicating that the MRIME
technique proved effective in obtaining the power and current with diverse voltage levels.
As seen from Figure 10a,b, the absolute errors between the simulated and measured currents
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are between 2.34255 × 10−9 and 6.33737 × 10−6, whereas the absolute errors between
the simulated and measured powers are between 1.93966 × 10−6 and 1.4684 × 10−3. In
Figures 6 and 10, negative values of voltage, current, and power indicate specific conditions
of reverse bias situations. Therefore, based on the experimental study provided by [63], the
polarity of the voltage applied to the module is opposite to its normal operating polarity.
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4.2. Simulation Results for STM6_40/36 PV Module
4.2.1. Case 1: ONE-DM

In the current case, the ONE-DM characteristics of the STM6_40/36 PV module are ex-
tracted using the suggested MRIME and the RIME. Table 4 lists the five unknown ONE-DM
parameters for which the experiment’s best outcomes were obtained for every approach.
The results show that the suggested MRIME outperforms the RIME and comparator ap-
proaches in terms of competitiveness. This means that the regular RIME obtained an RMSE
of 2.1693 × 10−3, whereas the MRIME obtained the best RMSE value of 1.7690 × 10−3. Ad-
ditionally, the PV-derived electrical parameters utilizing the reported optimization approaches
are displayed in the table, such as Enhanced MPA (EMPA) [47], Simulated Annealing (SA) [64],
equilibrium optimizer (EO) [47], improved shuffled complex evolution (ISCE) [65], gorilla
troops optimization (GTO) [47], hybridizing cuckoo search/biogeography-based optimization
(BHCS) [63], Marine Predator Algorithm (MPA) [47], Jellyfish Search (JFS) [47], three-point
based approach (TPBA) [66], heap-based algorithm (HBA) [47], forensic-based investigation
(FBI) [53], and improved cuckoo search (ImCSA) algorithm [67]. Moreover, the table speci-
fies the assessed parameters of (MRIME and RIME), which are (17.86858 Ω and 16.80129 Ω),
(1.663482 A and 1.663482 A), (1.537805 and 1.5074212), (0.003772 Ω and 0.004785 Ω), and
(2.04 µA and 1.55 µA) for the shunt resistance, photo-current, ideality factor for d1, series
resistance, and saturation current for d1, respectively. Additionally, electrical variables
acquired using various inspirational optimizers are expressed in this table. The correspond-
ing convergence lines can be seen in Figure 11. The MRIME converged extremely quickly
in the first 60 iterations, as depicted in this figure, demonstrating the MRIME’s excellent
convergence capacity. Additionally, Figure 12 shows the thirty obtained RMSE objectives
for Case 1’s RIME and MRIME. This figure illustrates that the RMSE of RIME is between
[2.1693 × 10−3 and 3.0364 × 10−2], but the RMSE of MRIME is between [1.7690 × 10−3 and
2.2155 × 10−3]. It can be established from the figure that the enhancements of the MRIME
approach are 85.3678%, 18.4506%, 92.7036%, and 98.9158%, respectively, when compared
to the mean, best, worst, and standard deviation of the outcomes of the RIME techniques.
These results corroborate the superiority of the developed MRIME for the ONE-DM of
the STM6_40/36 PV module. Consequently, the suggested MRIME yielded the highest
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value, indicating that MRIME outperforms RIME in terms of stability, accuracy, and efficacy
when determining ONE-DM parameters through comparison. It is reliable that the MRIME
identified the validity with the ONE-DM of the STM6_40/36 PV module.

Table 4. Electrical parameters accomplished by the proposed MRIME and the standard RIME for the
ONE-DM of STM6_40/36.

Algorithm Iph (A) IS1 (µA) Rs (Ω) Rsh (Ω) η1 RMSE

MRIME 1.663482 2.04 0.003772 16.80129 1.537805 1.7690 × 10−3

RIME 1.663482 1.55 0.004785 17.86858 1.5074212 2.1693 × 10−3

BHCS [63] 1.6639 1.74 0.00427 15.9283 1.5203 1.73 × 10−3

MPA [47] 1.65702 2.46 0.003831 31.50673 1.559041 3.496 × 10−3

EO [47] 1.663629 1.78 0.004205 16.24408 1.523146 1.733 × 10−3

JFS [47] 1.662589 1.84 0.004105 16.96607 1.526795 1.807 × 10−3

SA [64] 1.6609 5.90 0.0049499 26.7742 1.66602 3.399 × 10−3

EMPA [47] 1.663418 2.03 0.003788 16.878 1.537713 1.769 × 10−3

ImCSA [67] 1.663971 2 0.002914 15.84051 1.5335 1.794 × 10−3

ISCE [65] 1.66390478 1.74 0.004274 15.9283 1.5203 1.73 × 10−3

HBA [47] 1.661527 5.51 0.00001 23.6426 1.658694 3.33 × 10−3

GTO [47] 1.663905 1.74 0.004274 15.92829 1.520303 1.73 × 10−3

FBI [53] 1.66391 1.74 0.004281 15.91743 1.520073 1.73 × 10−3

TPBA [66] 1.6632 2.77 0.004186 16.7328 1.5656 1.774 × 10−3
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For the ONE-DM, the simulated and measured I-V and P-V characteristics are shown
in Figure 13a,b. It can be proven that the data created by the MRIME technique are
almost the same as the data obtained through experimentation, indicating that the MRIME
technique proved effective in obtaining the power and current with diverse voltage levels.
As illustrated in Figure 13, the absolute errors between the simulated and measured currents
are between 3.58408 × 10−9 and 3.4662 × 10−5, whereas the absolute errors between the
simulated and measured powers are between 0 and 8.7605 × 10−2.



Electronics 2024, 13, 1611 17 of 24
Electronics 2024, 13, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 12. RIME and MRIME of the thirty obtained RMSE objectives for the ONE-DM of the STM6-
40/36 PV module. 

For the ONE-DM, the simulated and measured I-V and P-V characteristics are shown 
in Figure 13a,b. It can be proven that the data created by the MRIME technique are almost 
the same as the data obtained through experimentation, indicating that the MRIME tech-
nique proved effective in obtaining the power and current with diverse voltage levels. As 
illustrated in Figure 13, the absolute errors between the simulated and measured currents 
are between 3.58408 × 10−9 and 3.4662 × 10−5, whereas the absolute errors between the sim-
ulated and measured powers are between 0 and 8.7605 × 10−2. 

  

(a) (b) 

Figure 13. (a) I-V and (b) P-V characteristics of the proposed MRIME for the ONE-DM of the STM6-
40/36 PV module. 

4.2.2. Case 2: TWO-DM of STM6_40/36 PV Module 
In the current case, the characteristics of the STM6-40/36 PV module are extracted 

using the suggested MRIME and the RIME. Table 5 lists the seven unknown TWO-DM 
parameters for which the experiment’s best outcomes were obtained for every approach. 
The results show that the suggested MRIME outperforms the RIME and comparator ap-
proaches in terms of competitiveness. This means that the regular RIME obtained an 
RMSE of 1.9468 × 10−3, whereas the MRIME obtained the best RMSE value of 1.6988 × 10−3. 
Additionally, the PV-derived electrical parameters utilizing the reported optimization ap-
proaches are displayed in the table, such as the ensemble particle swarm optimizer (EPSO) 

Figure 12. RIME and MRIME of the thirty obtained RMSE objectives for the ONE-DM of the STM6-
40/36 PV module.

Electronics 2024, 13, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 12. RIME and MRIME of the thirty obtained RMSE objectives for the ONE-DM of the STM6-
40/36 PV module. 

For the ONE-DM, the simulated and measured I-V and P-V characteristics are shown 
in Figure 13a,b. It can be proven that the data created by the MRIME technique are almost 
the same as the data obtained through experimentation, indicating that the MRIME tech-
nique proved effective in obtaining the power and current with diverse voltage levels. As 
illustrated in Figure 13, the absolute errors between the simulated and measured currents 
are between 3.58408 × 10−9 and 3.4662 × 10−5, whereas the absolute errors between the sim-
ulated and measured powers are between 0 and 8.7605 × 10−2. 

  

(a) (b) 

Figure 13. (a) I-V and (b) P-V characteristics of the proposed MRIME for the ONE-DM of the STM6-
40/36 PV module. 

4.2.2. Case 2: TWO-DM of STM6_40/36 PV Module 
In the current case, the characteristics of the STM6-40/36 PV module are extracted 

using the suggested MRIME and the RIME. Table 5 lists the seven unknown TWO-DM 
parameters for which the experiment’s best outcomes were obtained for every approach. 
The results show that the suggested MRIME outperforms the RIME and comparator ap-
proaches in terms of competitiveness. This means that the regular RIME obtained an 
RMSE of 1.9468 × 10−3, whereas the MRIME obtained the best RMSE value of 1.6988 × 10−3. 
Additionally, the PV-derived electrical parameters utilizing the reported optimization ap-
proaches are displayed in the table, such as the ensemble particle swarm optimizer (EPSO) 

Figure 13. (a) I-V and (b) P-V characteristics of the proposed MRIME for the ONE-DM of the
STM6-40/36 PV module.

4.2.2. Case 2: TWO-DM of STM6_40/36 PV Module

In the current case, the characteristics of the STM6-40/36 PV module are extracted
using the suggested MRIME and the RIME. Table 5 lists the seven unknown TWO-DM
parameters for which the experiment’s best outcomes were obtained for every approach.
The results show that the suggested MRIME outperforms the RIME and comparator ap-
proaches in terms of competitiveness. This means that the regular RIME obtained an RMSE
of 1.9468 × 10−3, whereas the MRIME obtained the best RMSE value of 1.6988 × 10−3.
Additionally, the PV-derived electrical parameters utilizing the reported optimization
approaches are displayed in the table, such as the ensemble particle swarm optimizer
(EPSO) [68], improved Rao-based chaotic optimization (LCROA) [69], bat algorithm
(BA) [21], directional bat algorithm (DBA) [70], novel bat algorithm (NBA) [70], and frac-
tional chaotic-ensemble particle swarm optimizer (FC-EPSO) algorithm [71]. Moreover, the
table specifies the assessed parameters of (MRIME and RIME), which are (17.04779 Ω and
14.54013 Ω), (1.66375 A and 1.666086 A), (1.876731 and 2), (1.361409 and 1.363856), (0.005601 Ω
and 0.006291 Ω), (6.007 µA and 7.509 µA), and (2.61 × 10−1 µA and 3.01 × 10−1 µA) for the
shunt resistance, photo-current, ideality factor for d1, ideality factor for d2, series resistance,
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saturation current for d1, and saturation current for d2, respectively. Additionally, electrical
variables acquired using various inspirational optimizers are expressed in this table.

Table 5. Electrical parameters accomplished by the proposed MRIME and the standard RIME for the
TWO-DM of STM6_40/36.

Algorithm Iph (A) IS1 (µA) IS2 (µA) Rs (Ω) Rsh (Ω) η1 η2 RMSE

MRIME 1.66375 6.007 2.61 × 10−1 0.005601 17.04779 1.876731 1.361409 1.6988 × 10−3

RIME 1.666086 7.509 3.01 × 10−1 0.006291 14.54013 2 1.363856 1.9468 × 10−3

BA [70] 1.637941 1.59 3.94 × 10−5 0.003887 24.6958 1.504536 1.4783 2.194577 × 10−2

EPSO [68] 1.6648 16.70 6.21 × 10−6 0.5000 16.858 1.16649 1.87067 1.8307 × 10−3

HPO 1.663702 4.06 5.57 × 10−10 0.008726 17.82614 1.688851 1 1.696271 × 10−3

LCROA [69] 1.6637 72.2 3.28 × 10−6 0.16717 16.7419 1.5739 2.000 1.712 × 10−3

NBA [70] 1.662865 6.60 1.61 × 10−6 0.004653 16.694049 1.678806 1.511867 1.82684 × 10−3

FC-EPSO [71] 1.6634 1.85 9.72 × 10−5 0.01101 16.5914 1.5818 1.5445 1.772 × 10−3

DBA [70] 1.663860 1.80 3.66 × 10−6 0.004167 16.066503 1.524098 1.43939 1.731960 × 10−3

The corresponding convergence lines can be seen in Figure 14. The MRIME converged
extremely quickly in the first 45 iterations, as depicted in this figure, demonstrating the
MRIME’s excellent convergence capacity. Additionally, Figure 15 shows the thirty obtained
RMSE objectives for Case 2’s RIME and MRIME. This figure illustrates that the RMSE
of RIME is between [1.9468 × 10−3 and 8.1478 × 10−3], but the RMSE of MRIME is
between [1.6988 × 10−3 and 2.7435 × 10−3]. It can be established from the figure that the
enhancements of the MRIME approach are 50.4215%, 12.7368%, 66.3287%, 76.9046%, and
99.634%, respectively, when compared to the mean, best, worst, and standard deviation
of the outcomes of the RIME techniques. These results corroborate the superiority of the
developed MRIME for the TWO-DM of the STM6_40/36 PV module. Consequently, the
suggested MRIME yielded the highest value, indicating that MRIME outperforms RIME in
terms of stability, accuracy, and efficacy when determining TWO-DM parameters through
comparison. It is reliable that the MRIME identified the validity with the TWO-DM of the
STM6_40/36 PV module.
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Additionally, Table 6 presents the statistical analysis and the percentage of improve-
ment of the statistical analysis comparing the efficacy of the proposed MRIME approach
to that of the standard RIME, EPSO [68], BA [70], FC-EPSO [71], LCROA [69], DBA [70],
and NBA [70]. The results demonstrate that the suggested HPO approach outperforms
reported optimizers in terms of overall capability. The minimum, standard deviation (SD),
maximum, and mean of the RMSE are successfully attained by the suggested HPO tech-
nique, with 1.6988 × 10−3, 2.0308 × 10−3, 2.7435 × 10−3, and 2.6355 × 10−4, respectively.

Table 6. Statistical analysis of MRIME versus other techniques for the TWO-DM of the STM6-40/36
PV module.

Algorithm Min. Improvement % Mean Improvement % Max. Improvement % SD Improvement %

MRIME 1.6988 × 10−3 2.0308 × 10−3 2.7435 × 10−3 2.6355 × 10−4

RIME 1.9468 × 10−3 12.7368% 4.0962 × 10−3 50.4215% 8.1478 × 10−3 66.3287% 1.1411 × 10−3 76.9046%

BA [70] 2.1946 × 10−2 92.2591% 0.092023 97.7931% 0.01448059 81.0541% 2.407 × 10−2 98.9051%

DBA [70] 1.7319 × 10−3 1.9095% 0.004934 58.8404% 0.01372796 80.0154% 2.893 × 10−3 90.8902%

NBA [70] 1.8268 × 10−3 7.0052% 0.0041404 50.9512% 0.007598 63.8922% 1.430 × 10−3 81.5703%

LCROA [69] 1.712 × 10−3 0.7694% - - - - - -

FC-EPSO [71] 1.772 × 10−3 4.1293% - - - - - -

EPSO [68] 1.8307 × 10−3 7.2033% - - - - - -

For the TWO-DM, the simulated and measured I-V and P-V characteristics at the
20 experimental voltage points are shown in Figure 16a,b. It can be proven that the data
created by the MRIME technique are almost the same as the data obtained through experi-
mentation, indicating that the MRIME technique proved effective in obtaining the power
and current with diverse voltage levels. As illustrated in Table 7 and Figure 17a,b, the
absolute errors between the simulated and measured currents are between 5.09971 × 10−9

and 2.5773 × 10−5, whereas the absolute errors between the simulated and measured
powers are between 0 and 7.5541 × 10−2.
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STM6-40/36 PV module.

Table 7. Simulated and experimental currents and powers and the absolute errors established by the
proposed MRIME technique for the TWO-DM of the STM6-40/36 PV module.

Point Vexp Iexp Isim Pexp Psim Absolut IAE Absolut PAE

1 0 1.663 1.665365 0 0 5.59422 × 10−6 0

2 0.118 1.663 1.665139 0.196234 0.196486 4.57617 × 10−6 0.000252425

3 2.237 1.661 1.661072 3.715657 3.715819 5.2353 × 10−9 0.000161859

4 5.434 1.653 1.654842 8.982402 8.992412 3.39332 × 10−6 0.010009956

5 7.26 1.65 1.651098 11.979 11.98697 1.20484 × 10−6 0.007968949

6 9.68 1.645 1.645317 15.9236 15.92667 1.0071 × 10−7 0.003071927

7 11.59 1.64 1.63852 19.0076 18.99044 2.19143 × 10−6 0.017157251

8 12.6 1.636 1.632709 20.6136 20.57213 1.08307 × 10−5 0.041466645

9 13.37 1.629 1.626133 21.77973 21.7414 8.2178 × 10−6 0.038327374

10 14.09 1.619 1.617132 22.81171 22.78539 3.489 × 10−6 0.026318517

11 14.88 1.597 1.602077 23.76336 23.8389 2.57728 × 10−5 0.075541147

12 15.59 1.581 1.580929 24.64779 24.64668 5.09971 × 10−9 0.001113317

13 16.4 1.542 1.54234 25.2888 25.29438 1.15907 × 10−7 0.005583398

14 16.71 1.524 1.521487 25.46604 25.42404 6.31699 × 10−6 0.041998279

15 16.98 1.5 1.499757 25.47 25.46588 5.89769 × 10−8 0.004123622

16 17.13 1.485 1.485979 25.43805 25.45483 9.59298 × 10−7 0.016777767

17 17.32 1.465 1.466515 25.3738 25.40004 2.29464 × 10−6 0.02623645

18 17.91 1.388 1.388674 24.85908 24.87116 4.54644 × 10−7 0.012076229

19 19.08 1.118 1.117554 21.33144 21.32292 1.99239 × 10−7 0.008516583

20 21.02 0 0.000137 0 0.002871 1.86503 × 10−8 0.002870618
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5. Conclusions

This study introduces the Modified RIME (MRIME) algorithm, an advanced optimiza-
tion method that integrates the Polynomial Differential Learning Operator (PDLO) with
the conventional RIME algorithm. Unlike traditional RIME methods, MRIME incorporates
non-linear elements through PDLO, enhancing its adaptability, convergence rate, and
overall search capability. Notably, MRIME addresses both the one-diode model (ONE-DM)
and TWO-DM, encompassing various equivalent circuit configurations essential for ac-
curately characterizing photovoltaic (PV) modules. Through comprehensive simulations
and comparisons with contemporary methods and standard RIME, the MRIME approach
demonstrated significant improvements, underscoring its novelty and efficacy in enhancing
PV parameter estimation. The enhanced MRIME algorithm was successfully implemented
on two commercial PV systems, and both PV models’ benefits and robustness were shown
to be significantly greater than those of conventional RIME algorithms and prior results. A
robust correlation between simulated and real data was found during the MRIME efficacy
tests on the PV ONE-DM and TWO-DM, demonstrating the algorithm’s performance and
dependability. Hence, the MRIME technique is a promising development in PV parameter
identification optimization methods.

As future studies, the proposed MRIME algorithm could include sensitivity analysis
to certain parameters, computational complexity, or constraints in handling specific types
of data or scenarios. Also, the research area could be extended to involve exploring
alternative optimization techniques, integrating additional data sources or features, or
investigating novel approaches to parameter estimation in photovoltaic systems. Moreover,
potential real-world applications and implications of the improved MRIME algorithm
could be explored.
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