
Citation: Pacini, F.; Pacini, T.; Lai, G.;

Zocco, A.M.; Fanucci, L. Design and

Evaluation of CPU-, GPU-, and

FPGA-Based Deployment of a CNN

for Motor Imagery Classification in

Brain–Computer Interfaces. Electronics

2024, 13, 1646. https://doi.org/

10.3390/electronics13091646

Academic Editors: Pratheepan

Yogarajah, Muthu Subash Kavitha,

Lamiaa Abdel-Hamid and

Ananthakrishnan Balasundaram

Received: 21 March 2024

Revised: 15 April 2024

Accepted: 22 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Design and Evaluation of CPU-, GPU-, and FPGA-Based
Deployment of a CNN for Motor Imagery Classification in
Brain-Computer Interfaces
Federico Pacini 1,∗ , Tommaso Pacini 1 , Giuseppe Lai 2 , Alessandro Michele Zocco 1 and Luca Fanucci 1,∗

1 Department of Information Engineering, University of Pisa, 56122 Pisa, Italy;
tommaso.pacini@phd.unipi.it (T.P.); a.zocco@studenti.unipi.it (A.M.Z.)

2 Department of Psychology, Goldsmiths, University of London, London WC1E 7HU, UK; glai002@gold.ac.uk
* Correspondence: federico.pacini@phd.unipi.it (F.P.); luca.fanucci@unipi.it (L.F.)

Abstract: Brain–computer interfaces (BCIs) have gained popularity in recent years. Among non-
invasive BCIs, EEG-based systems stand out as the primary approach, utilizing the motor imagery
(MI) paradigm to discern movement intentions. Initially, BCIs were predominantly focused on
nonembedded systems. However, there is now a growing momentum towards shifting computation
to the edge, offering advantages such as enhanced privacy, reduced transmission bandwidth, and
real-time responsiveness. Despite this trend, achieving the desired target remains a work in progress.
To illustrate the feasibility of this shift and quantify the potential benefits, this paper presents a
comparison of deploying a CNN for MI classification across different computing platforms, namely,
CPU-, embedded GPU-, and FPGA-based. For our case study, we utilized data from 29 participants
included in a dataset acquired using an EEG cap for training the models. The FPGA solution emerged
as the most efficient in terms of the power consumption–inference time product. Specifically, it
delivers an impressive reduction of up to 89% in power consumption compared to the CPU and 71%
compared to the GPU and up to a 98% reduction in memory footprint for model inference, albeit
at the cost of a 39% increase in inference time compared to the GPU. Both the embedded GPU and
FPGA outperform the CPU in terms of inference time.

Keywords: brain–computer interface; motor imagery; assistive technologies; convolutional neural
network

1. Introduction

In recent years, Brain-Computer Interfaces (BCIs) have emerged as a groundbreaking
technology within the broader Human-Machine Interface framework. They offer innovative
communication and control options for individuals with severe neuromuscular disorders
like amyotrophic lateral sclerosis, those with spinal cord injuries [1], or those recovering
from strokes [2,3]. BCIs enable tasks such as controlling robotic limbs [4], exoskeletons [5],
and wheelchairs [6]. Among the various modalities of BCIs, noninvasive approaches
leveraging Electroencephalography (EEG) have gained significant attention due to their
accessibility and clinical utility [7]. These painless systems decode users’ intentions from
EEG signals, captured through electrodes placed on the scalp.

The effectiveness of noninvasive BCIs relies heavily on employing various control
paradigms, with Motor Imagery (MI) being particularly notable. MI involves mentally
simulating specific motor actions by imagining the kinesthetic sensations, activating the
motor cortex, and generating distinct EEG patterns [8,9]. Unlike visual imagery, MI evokes
kinesthetic sensations of movement, resulting in the suppression of activity in the contralat-
eral sensorimotor cortex across alpha (8–13 Hz) and beta (14–30 Hz) frequency bands [9–11].
This phenomenon plays a crucial role in decoding motor intentions within BCI systems.

Electronics 2024, 13, 1646. https://doi.org/10.3390/electronics13091646 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091646
https://doi.org/10.3390/electronics13091646
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0007-5721-7963
https://orcid.org/0000-0001-8551-717X
https://orcid.org/0009-0006-4499-212X
https://orcid.org/0000-0001-5426-4974
https://doi.org/10.3390/electronics13091646
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091646?type=check_update&version=1


Electronics 2024, 13, 1646 2 of 14

Since the EEG is weak and has a poor signal-to-noise ratio, it is not easy to extract
and classify features [12]. In EEG-based BCI research, feature extraction techniques play
a crucial role in translating raw EEG signals into useful information. Common methods
like common spatial patterns [13] assist in extracting spatial patterns related to different
motor intentions, facilitating subsequent Machine Learning (ML) model training. However,
the emergence of Deep Learning (DL) models, such as Convolutional Neural Networks
(CNNs), presents a promising shift towards the automated extraction of spatial–spectral–
temporal features from EEG data. This advancement has the potential to enhance BCIs’
performance and usability significantly [14–17].

While initial BCI efforts primarily targeted nonembedded systems, typically relying on
general-purpose computing platforms, there is an increasing need to adapt BCI technologies
for deployment at the edge, near the sensors generating the data. Processing BCI algo-
rithms at the edge offers several advantages over the traditional cloud or offline approach.
Firstly, it significantly reduces latency by performing computations closer to the data source,
thereby enhancing responsiveness and real-time performance crucial for seamless user
interaction. This latency reduction is particularly vital in applications demanding rapid
feedback, such as neuroprosthetics or assistive communication devices. Moreover, edge
computing reduces the requirement for continuous high-bandwidth data transmission,
easing network congestion and enabling BCI systems to function reliably in various envi-
ronments, including remote or resource-constrained settings. Additionally, edge processing
enhances data privacy, a crucial feature, especially in healthcare applications.

In this scenario, the acceleration at the edge of computationally intensive and power-
hungry Deep Neural Networks (DNNs) for BCI applications is still an open challenge [18].
Hardware platforms for the execution of BCI algorithms at the edge encompass a diverse
array of technologies tailored to enhance the efficiency and performance of neural signal pro-
cessing. These platforms often integrate dedicated hardware components such as Central
Processing Units (CPUs), Graphics Processing Units (GPUs), or Field-Programmable Gate
Arrays (FPGAs) to expedite computationally intensive tasks like signal filtering, feature ex-
traction, and classification directly at the edge. CPUs offer versatility and general-purpose
computation suitable for basic BCI tasks but might lack efficiency for complex algorithms
due to their sequential processing nature. GPUs excel in parallel processing, enhancing
performance for tasks requiring extensive data parallelism, such as deep learning-based
BCI models [19,20]. However, they can be power-hungry and less energy-efficient for
lightweight edge devices. On the other hand, FPGAs provide hardware customization,
offering low-latency, energy-efficient solutions tailored to specific BCI algorithms [21,22].
While their development requires specialized expertise and longer design cycles, FPGAs of-
fer unparalleled efficiency for real-time BCI applications at the edge. Choosing among these
accelerators depends on the specific requirements of the BCI system, including performance,
power consumption, and resource constraints.

Overall, the shift towards embedded BCI processing represents a paradigmatic ad-
vancement in neurotechnology, promising to democratize access to BCI capabilities while
unlocking new opportunities for human–computer interaction and augmentation. By har-
nessing the computational power and efficiency of edge devices, embedded BCIs pave the
way for a future where seamless brain–machine communication becomes not only feasible
but also ubiquitous across diverse domains and user populations.

Authors’ Contributions

This article aims to promote the adoption of BCI applications at the edge to ensure
shorter response times, improved privacy, and the possibility of executing the algorithm
also in the absence of connectivity. The primary contributions of this study are outlined
as follows:

• Preliminary validation of a newly collected dataset composed of 29 patients using a
BioSemi Active Two gel-based EEG cap.



Electronics 2024, 13, 1646 3 of 14

• Training and fine-tuning of a CNN for motor imagery on the collected data in of-
fline mode.

• Deployment and comparison of the trained CNN over multiple hardware technologies
for edge computing: CPU, embedded GPU, and FPGA.

The following sections of this document are organized as follows: Section 2 outlines
the system explanation, data utilized, neural network architecture, and methods proposed
for comparing the various deployment architectures. Section 3 showcases the experimental
findings. Section 4 comprises the discussion, while Section 5 contains the conclusions.

2. Materials and Methods
2.1. System Architecture

Aligned with the MI paradigm, the proposed system aims at recognizing the mental
representation of limb movement. Specifically, our goal is to classify whether the participant
has imagined moving the left hand or the right hand. The system configuration for this
application is illustrated in Figure 1. Starting with the collection of EEG data from a
participant, the information undergoes preprocessing to eliminate artifacts and enhance the
signal-to-noise ratio. Subsequently, the preprocessed data are fed into the feature extraction
block, responsible for processing and extracting features that accurately represent the
information to be classified. The extracted features then serve as input to the classification
process, and the resulting label is displayed on the screen. However, this is not the sole
outcome; in certain scenarios, the actuation may manifest as a concrete action, such as
moving a robotic arm or controlling a wheelchair. Regardless of the action, the outcome is
fed back to the patient.

Figure 1. Brain–computer interface system overview.

2.2. Data

The overall dataset includes 29 right-handed healthy volunteers (females = 16;
age = 18–40; mean age: 20.20; standard error of the mean, SEM = 0.66). Data collec-
tion was carried out at Goldsmiths, University of London, as part of a different study that
received ethical approval.

The experimental paradigm was adapted from previous studies in the field of MI-based
BCIs [23]. Participants were required to wear a gel-based EEG cap (BioSemi ActiveTwo,
BioSemi Inc., Amsterdam, Netherlands BioSemi Active Two) [24] composed of 64 sensors
and positioned on the scalp following the 10–20 electrode placement system. During the
experiment, participants sat in a dimly lit room before a computer screen. Here, they were
instructed to rehearse the kinesthetic sensations of left or right imaginary thumb abduction
based on the presentation of an arrow on the screen (Figure 2). This MI task followed a
real motor execution task of the same movements so that participants could familiarize
themselves with kinesthetic sensations.

In the MI task, participants completed a total of 200 trials (100 for each thumb). The
order of trials was randomly generated, with each trial lasting for 8 s (±250 ms), as depicted
in Figure 2. During the initial two seconds, participants fixated on a cross presented on
the screen. At the 2 s mark, the cross was replaced by an arrow indicating which thumb



Electronics 2024, 13, 1646 4 of 14

to move, lasting for 4 s. During this window, participants were required to imagine the
movements within the first second after the presentation of the cue. The cross replaced the
arrow during the last two seconds.

Figure 2. Illustration of the motor execution and imagery tasks.

The raw EEG data require a series of preprocessing steps to improve the signal-to-noise
ratio. Following a standard preprocessing pipeline, we applied a band-pass filter in the
frequency range of interest, 1–40 Hz (zero-phase, FIR design). The data were segmented
around the timing of the experimental cues—the left/right arrows. This procedure, also
known as epoching, improves the signal by (i) reducing nonstationarity at the local level [25]
and (ii) reducing some of the noise present during the less relevant times of the experiment.
Epoching occurred between −1 and 4 s around the cue.

The filtered EEG data include a series of artifacts that require further attention. Firstly,
for very noisy EEG epochs where large muscle artifacts were present, we employed visual
inspection. During this procedure, we manually rejected noisy EEG epochs and interpolated
noisy channels with a spherical spline [26]. This process led to an average of 190 epochs
(SEM = ±1.7) remaining for each participant, reflecting a 5 percent rejection rate. Finally,
to correct for recurrent artifacts like eye blinks and eye saccades, independent component
analysis (ICA, fastICA, [27]) was employed. Moreover, we removed the heartbeat artifact
using a regression-based method, similar to a previous study [28].

Before training, the preprocessed EEG epochs were down-sampled at 256 Hz and
cropped between 0.0 and 2.0 s postcue. This temporal window was selected based on
previous research, indicating that alpha and beta power suppression in the contralateral
sensorimotor cortex occurs within the first two seconds postcue [23,29,30]. Moreover,
during our task, participants were instructed to initiate the movement immediately after
the cues, imagining kinesthetic sensations within the first second.

Finally, to increase the number of training examples, the cleaned epochs were sub-
jected to a commonly used data augmentation technique [31]. This involved employing a
windowing approach with an overlapping factor of 75 percent. As a result, five examples
were generated from each original, each maintaining a one-second duration (1: 0.0–1.0 s;
2: 0.25–1.25 s; 3: 0.5–1.5 s; 4: 0.75–1.75 s; 5: 1.00–2.00 s). The original label was assigned to
all five new examples.

2.3. Convolutional Neural Network Architecture

For our MI classification task, we employed the EEGNet neural network [32]. Illus-
trated in Figure 3, EEGNet is a specialized 4-layer CNN designed specifically for EEG-based
BCIs. This CNN is designed to process EEG input with C channels and T samples per
channel. The C parameter is determined by the number of electrodes employed during data
collection, while the parameter T is influenced by the time-window frame and the sampling
frequency. To clarify, if the time window is xs seconds and the sampling frequency is x f Hz,
the number of samples would be xs × x f . Notably, this CNN stands out as it incorporates
both temporal and spatial convolution layers.

The first layer of the CNN employs a temporal convolution, namely, a traditional
convolution with a kernel height of one and a width proportional to T. Specifically, to
capture frequency information at 2 Hz and beyond, the kernel width is configured as T/2.
The objective of this layer is to extract features from individual channels over time. If we



Electronics 2024, 13, 1646 5 of 14

denote F1 as the number of temporal filters applied to the CNN input, this layer generates
F1 feature maps with dimensions identical to the input.

Figure 3. Architecture of EEGNet neural networks.

The second layer utilizes a spatial convolution, specifically a depthwise convolution
with a kernel height of C and a width of 1. In this configuration, the layer directly learns
spatial filters for each temporal filter, aiming to capture spatial correlations among different
input channels. An added advantage of employing a depthwise convolution is the reduction
in the number of trainable parameters because these convolutions are not fully connected
to all preceding feature maps. An essential parameter for this layer is D, representing the
depth parameter, which governs the number of spatial filters to be learned for each feature
map. For visual clarity, Figure 3 represents D = 1.

The result from the second layer serves as input to an activation function that computes
the exponential linear unit (ELU). Subsequently, it applies a pooling operation with a
reduction factor of 4 and a dropout with a probability of p1 to mitigate overfitting.

The third layer utilizes a separable convolution, which involves a sequence of depth-
wise and pointwise convolutions. The pointwise convolution is a specialized operation
with a kernel size of 1 × 1. The objective of this layer is, through the first convolution, to
learn distinct features over time (similar to the spatial convolution layer), and through the
second one, to effectively combine them; this is achieved thanks to the 1 × 1 convolutions,
which takes as input all the previously obtained filters, combined linearly. An essential
parameter for this layer is F2, representing the number of pointwise filters that determines
the quantity of feature maps produced by this layer.

Once more, the result from the third layer is utilized as input to an activation function,
which implements the exponential linear unit (ELU), followed by a pooling operation with
a factor of 8 and dropout with a probability of p2.

Given that the primary objective of this CNN is to categorize EEG signals into a
predefined set of N classes, the final layer incorporates a softmax function. This function
takes as input all the preceding feature maps and produces N distinct probabilities. Each
probability is associated with the likelihood that the input signals belong to the i-th class.

EEGNet was implemented using Tensor Flow (TF) 2.0 [33], a well-established frame-
work for machine learning development. The training of EEGNet took place on a computer
equipped with an Intel Core i7-7500U CPU and 16 GB of RAM. Hyperparameter tuning was
performed using the Optuna framework [34], and the final selection of hyperparameters is
detailed in Appendix A in Table A1. A model was trained for each participant with the
hyperparameter values specified in Table A1, incorporating early stopping. Individual
training is necessary due to the collected data, which are highly dependent on the partici-
pant given the difference in the brain activities, potentials of the neurons, and their varying



Electronics 2024, 13, 1646 6 of 14

abilities to visualize movement. Sporty individuals, accustomed to engaging their muscles,
often exhibit higher proficiency in imagining movements.

Figure A2 in Appendix A illustrates the training process. The weights of the trained
models were saved and subsequently utilized for testing.

2.4. Hardware Deployment and Benchmarking

The acceleration of BCI applications based on CNNs poses a significant challenge due
to the computational complexity of these workloads. This challenge is further amplified
when deploying BCI systems at the edge, such as on battery-based platforms, where
additional constraints on power consumption and resource utilization must be considered.
To address this open research question, we accelerated the trained EEGNet model using
different hardware technologies. The goal of this study was to provide a comprehensive
analysis of the trade-offs offered by each solution.

The selected hardware technologies include a CPU, GPU, and FPGA. To compare the
different solutions together, we selected the following metrics that were collected on all
three systems:

• Accuracy.
• Inference time.
• Power consumption.
• Memory footprint.

The following sections will delve into each device, providing more details to fully
characterize the proposed experiment.

2.4.1. CPU

CPUs are one of the most popular components of computing devices, engineered
to accommodate a wide array of instructions. While they offer advantages in flexibility
and the ability to handle diverse computing tasks, their primary drawback lies in power
consumption. This factor holds significant importance in embedded systems. Additionally,
due to their focus on supporting a broad spectrum of instructions, CPUs are not fully
optimized for ML computing, particularly for operations like matrix additions and multi-
plications. The execution of a CNN on a CPU comprises the classical programming flow,
namely, compilation/interpretation and execution of binary instructions. For our tests, we
utilized a desktop computer equipped with an Intel Core i7-7500U CPU.

2.4.2. GPU

Originally developed for graphics computing, GPUs have recently found application
in machine learning due to their ability to optimize matrix operations and high levels of
parallelization. Different GPU brands offer specific tools, such as NVIDIA’s CUDA [35], to
execute specialized and highly optimized operations. To broaden the scope and enhance
the significance of the comparison across various architectures, we decided to utilize a GPU
on an embedded device. Specifically, we chose the NVIDIA Jetson Nano 2GB Developer
Kit [36] because it was designed for accelerating ML inference and is equipped with an
NVIDIA Maxwell 128 CUDA Core GPU. Due to memory constraints imposed by the
Jetson Nano, model optimization was necessary. We utilized the TF Lite framework 2.10,
specifically designed for on-device inference. This framework takes a trained model and a
representative dataset, producing an optimized version of the model through quantization,
which involves reducing the model’s arithmetic precision, along with hardware-specific
optimization techniques. An interpreter utilizing GPU manufacturer APIs (CUDA in our
case) then executes inference on the device. For an overview of the process, refer to Figure 4.

2.4.3. FPGA

FPGAs are reconfigurable hardware devices that can be programmed to perform CNN
inference efficiently. Indeed, the programmable logic enables the design of accelerators
customized for the specific model. These devices achieve high performance and power



Electronics 2024, 13, 1646 7 of 14

efficiency since they allow one to push further the specificity of the design up to the model
level. The main drawback of FPGA technology regards the long development time and
the high design costs necessary to configure the programmable logic to implement an
accelerator for a DNN model.

Figure 4. Overview of the model optimization for inference on an embedded device with NVIDIA
GPU support.

To turn around this problem, the trained EEGNet model was implemented on this
technology exploiting FPG-AI [37,38], a novel end-to-end tool flow for the automatic
deployment of CNNs on FPGAs.

FPG-AI receives as input the pretrained network model, the application dataset, and
the FPGA device chosen for acceleration. The user can also provide additional constraints
in terms of accuracy, inference time, and resource occupancy. The tool flow first applies
post-training model compression techniques to shrink the model size and shift from floating-
point to fixed-point arithmetic. The featured accelerator is a fully handcrafted, third-party
IP-free hardware description language (HDL)-based architecture referred to as the modular
deep learning engine (MDE). By undertaking a comprehensive design space exploration
(DSE) and leveraging a highly detailed analytical hardware model, FPG-AI autonomously
generates a CNN-specific hardware accelerator, adept at efficiently harnessing FPGA
resources while maintaining high-performance levels and adhering to the user’s constraints.
The list of supported layers of the tool flow is reported in [37]. For an overview of the
process, refer to Figure 5.

Figure 5. FPG-AI end-to-end tool flow.



Electronics 2024, 13, 1646 8 of 14

To successfully process EEGNet with FPG-AI, modifications had to be performed on
the tool flow to ensure support for a broader set of layers’ configurations. More specifically,
FPG-AI was updated to support convolutional kernels with generic shapes, improving the
tool flow’s usability in diverse application domains. The selected device for the charac-
terization of EEGNET on FPGA technology is the Xilinx Ultrascale+ ZU7EV FPGA [39], a
commonly used device for development and prototyping purposes. No specific constraints
were provided on resource utilization and postquantization accuracy. With no directives,
FPG-AI automatically generates as output the configuration with the highest computational
parallelism achievable for the target CNN-FPGA pair that does not degrade the accuracy
by more than 5%.

3. Results

The trained EEGNet models were deployed on the three different architectures fol-
lowing the strategies listed in Section 2.4. For each participant, the model’s inference was
executed on the testing dataset, and the metrics values were recorded. For the sake of
comparison, we report the average values among the participants.

3.1. Inference on CPU

The trained models, having a 32-bit floating-point value representation, were deployed
without alterations on the desktop computer. Consequently, the test accuracy remains
unchanged. The average values of the participants are available in Table 1.

Table 1. Aggregate results of model deployment on the desktop computer.

Average
Inference Time

(ms)

Average Power
Consumption

(W)

Average
Memory

Footprint (Mb)

Average Test
Accuracy

Average over
participants 121.57 13.22 476 81

3.2. Inference on GPU

To deploy the trained models on the NVIDIA Jetson Nano 2GB Developer Kit, the
procedure described in Section 2.4.2 was followed. Due to limitations in resources, model
optimization was necessary. Leveraging the TF Lite framework, an optimized model was
generated. Specifically, a 16-bit floating-point arithmetic was chosen, reducing the model’s
footprint while maintaining negligible impact on accuracy. Consequently, test accuracy
remains unaffected. The Jetson Nano offers two operational modes, 5 W and 10 W power
consumption, with lower power consumption naturally resulting in longer inference times.
For a comprehensive analysis, both modes were evaluated, and the average results of the
participants can be found in Table 2.

Table 2. Results of model deployment on the NVIDIA Jetson Nano 2GB Developer Kit.

5 W Mode 10 W Mode
Average

Inference Time
(ms)

Average
Inference Time

(ms)

Average
Memory

Footprint (Mb)

Average Test
Accuracy

Average over
participants 15.85 12.21 415 81

Considering the two operational modes, passing from 5 W to 10 W resulted in an
average relative inference time enhancement of 23%.



Electronics 2024, 13, 1646 9 of 14

3.3. Inference on FPGA

To deploy the trained models on the Xilinx Ultrascale+ ZU7EV FPGA, the process
described in Section 2.4.3 was followed. Due to resource constraints, a trade-off between
model resource usage and accuracy was made. In particular, the weights were represented
on 4 bits and the input values on 8 bits. The average results of the participants are detailed
in Table 3.

Table 3. Results of model deployment on the Xilinx Ultrascale+ ZU7EV FPGA.

Average
Inference Time

(ms)

Average Power
Consumption

(W)

Average
Memory

Footprint (Mb)

Average Test
Accuracy

Average over
participants 12.97 1.47 6.37 77

The synthesized resources for allowing the model inference are reported in detail in
Figure A3.

For further investigations, we calculated the average number of clock cycles spent on
each convolutional layer for an inference run; the results are graphically represented in
Figure A1.

4. Discussion

To facilitate the comparison among the different approaches, we reported the mean
values for each approach together in Table 4. For easier comparison, we also calculated a
figure of merit (FOM) for each approach, which is defined as the product value between
the inference time and the power consumption. Given that both metrics are inversely
proportional, a single value makes it easier to decide which strategy yields the best result.
The smaller the value is, the better it is.

Table 4. Results aggregation among the different platform deployments.

CPU FPGA Jetson Nano

Power
consumption

(W)
13.22 1.47 5 10

Inference time
(ms) 121.57 19.97 15.85 12.21

FOM (W × s) 1.61 29.36 × 10−3 79.25 × 10−3 122.1 × 10−3

Memory
footprint (Mb) 476 6.37 415

Test accuracy 81% 77% 81%

From an FOM ranking point of view, the FPGA appears to be the best solution, fol-
lowed by the Jetson Nano (GPU-based) and finally the CPU. This aligns with our assump-
tion: transitioning from a general-purpose platform (CPU) to a specialized one (FPGA)
decreases the figure of merit (FOM). Considering power consumption, FPGA implementa-
tion, facilitated by FPG-AI frameworks, achieved a reduction of nearly 89% compared to
CPU implementation, and 71% and 85% reduction for 5 W and 10 W Jetson Nano modes,
respectively. A similar pattern emerges when considering the memory footprint required
for model inference. Moving from CPU to GPU, we notice a decrease of approximately
12% in resource usage, mostly attributed to model optimization and the adoption of the
TF Lite framework. However, the most significant reduction in resources occurs when
transitioning to the FPGA, achieving a remarkable 98% decrease. However, in terms of
inference time, Jetson Nano emerges as the optimal solution, with 39% less inference time



Electronics 2024, 13, 1646 10 of 14

than the GPU. Upon further investigation, we observed that for the FPGA, approximately
96% of total clock cycles during inference are due to CNN first-layer computing, as depicted
in Figure A1. This is due to the underlying FPG-AI framework’s microarchitecture, which
was conceived for handling large-dimensional filters in terms of height but not for those
with significant width, as seen in the first layer. Given the relative novelty of the framework,
further optimizations can be reasonably expected in terms of inference time, potentially
widening the gap between GPU- and FPGA-based deployments. In terms of accuracy, both
the CPU and Jetson Nano yield similar results. This parity is attributed to the use of the TF
Lite framework for deployment on the Jetson Nano, where the required quantization was
minimal and did not notably affect the outcome. Conversely, the optimization applied by
FPG-AI marginally impacted accuracy, with the severity of the effect heavily dependent on
the specific use case under analysis.

5. Conclusions

Brain–computer interfaces (BCIs) have gained popularity in recent years, promising
to alleviate, and sometimes circumvent, neuromuscular disorders. Among noninvasive
BCIs, electroencephalography (EEG) stands out as the primary approach, utilizing the
motor imagery (MI) paradigm to discern movement intentions. Early BCIs primarily
focused on nonembedded systems. However, there is now a growing demand for edge
computing, offering advantages such as privacy, the ability to function even without remote
connectivity, reduced bandwidth for data transmission, and real-time responsiveness.
Consequently, we undertook a comparison of different deployment strategies—specifically,
deployment on a CPU, embedded GPU, and FPGA. Utilizing a newly acquired EEG dataset
focused on the MI paradigm, we trained EEGNet, a convolutional neural network (CNN),
on an unconstrained device. Subsequently, we deployed this trained CNN on a CPU,
GPU, and FPGA, collecting associated metrics. By defining a figure of merit (FOM) as the
product of power consumption and inference time, we observed that the FPGA yielded
the best results. Upon analyzing the factors contributing to the FOM, the FPGA exhibited
a remarkable 89% reduction in power consumption compared to the CPU and a 71%
reduction compared to the embedded GPU. Moreover, transitioning to the FPGA enabled
a reduction in memory footprint of approximately 98%. However, the FPGA incurred
an inference time 39% higher than the GPU, attributed to the specific implementation
of the FPG-AI framework used for compressing and optimizing the CNN, which lacks
optimization for convolutional filters with large widths. Nevertheless, the FPGA’s inference
time could be reduced by modifying the underlying FPG-AI framework microarchitecture,
potentially widening the gap between GPU- and FPGA-based deployment.

Author Contributions: Conceptualization, F.P., T.P., G.L. and L.F.; methodology, F.P., G.L. and
L.F.; software, F.P., T.P., A.M.Z. and G.L.; validation, F.P. and G.L.; formal analysis, F.P. and G.L.;
investigation, A.M.Z.; resources, A.M.Z.; data curation, G.L.; writing—original draft preparation, F.P.,
T.P., G.L. and A.M.Z.; writing—review and editing, F.P., T.P. and L.F.; funding acquisition, L.F. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was partially supported by the Italian Ministry of Education and Research
(MUR), Act 11 December 2016, n. 232, in the framework of the FoReLab project (Department of
Excellence), CUP I53C23000340006.

Institutional Review Board Statement: The study received ethical approval on the 24th June 2021
with number PS240621GLS by the ethics committee of the psychology department at Goldsmiths,
University of London.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.



Electronics 2024, 13, 1646 11 of 14

Data Availability Statement: Relevant data is contained within the article. For additional data, please
send an email to federico.pacini@phd.unipi.it

Acknowledgments: Commercial-free icons present in the images were downloaded from flaticon.com.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. List of hyperparameters used for EEGNet training.

Parameter Value

T 512
C 64
D 2

Kernelw 16
F1 8
F2 16
p1 0.25
p2 0.25
N 2

Figure A1. Clock cycles spent in each convolutional layer per inference run on FPGA technology.

flaticon.com


Electronics 2024, 13, 1646 12 of 14

Figure A2. Training process results for participants.



Electronics 2024, 13, 1646 13 of 14

Figure A3. Resource usage on the Xilinx Ultrascale+ ZU7EV FPGA for the accelerator generated by
FPG-AI in the highest parallelism configuration.

References
1. Zhang, R.; Wang, Q.; Li, K.; He, S.; Qin, S.; Feng, Z.; Chen, Y.; Song, P.; Yang, T.; Zhang, Y.; et al. A BCI-Based Environmental

Control System for Patients with Severe Spinal Cord Injuries. IEEE Trans. Biomed. Eng. 2017, 64, 1959–1971. [CrossRef]
2. Biasiucci, A.; Leeb, R.; Iturrate, I.; Perdikis, S.; Al-Khodairy, A.; Corbet, T.; Schnider, A.; Schmidlin, T.; Zhang, H.; Bassolino, M.;

et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 2018, 9, 2421.
[CrossRef] [PubMed]

3. Ang, K.K.; Guan, C. Brain-computer interface for neurorehabilitation of upper limb after stroke. Proc. IEEE 2015, 103, 944–953.
[CrossRef]

4. Cho, J.H.; Jeong, J.H.; Shim, K.H.; Kim, D.J.; Lee, S.W. Classification of hand motions within EEG signals for non-invasive
BCI-based robot hand control. In Proceedings of the 2018 IEEE international conference on systems, man, and cybernetics (SMC),
Miyazaki, Japan, 7–10 October 2018; pp. 515–518.

5. Frolov, A.A.; Mokienko, O.; Lyukmanov, R.; Biryukova, E.; Kotov, S.; Turbina, L.; Bushkova, Y. Post-stroke rehabilitation training
with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: A randomized controlled multicenter
trial. Front. Neurosci. 2017, 11, 253346. [CrossRef]

6. Li, Y.; Pan, J.; Wang, F.; Yu, Z. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE
Trans. Biomed. Eng. 2013, 60, 3156–3166.

7. Tariq, M.; Trivailo, P.M.; Simic, M. EEG-based BCI control schemes for lower-limb assistive-robots. Front. Hum. Neurosci. 2018,
12, 312. [CrossRef]

8. Decety, J. The neurophysiological basis of motor imagery. Behav. Brain Res. 1996, 77, 45–52. [CrossRef] [PubMed]
9. Yang, Y.J.; Jeon, E.J.; Kim, J.S.; Chung, C.K. Characterization of kinesthetic motor imagery compared with visual motor imageries.

Sci. Rep. 2021, 11, 3751. [CrossRef] [PubMed]
10. Lotze, M.; Halsband, U. Motor imagery. J. Physiol. 2006, 99, 386–395. [CrossRef]
11. Ridderinkhof, K.R.; Brass, M. How kinesthetic motor imagery works: A predictive-processing theory of visualization in sports

and motor expertise. J. Physiol. 2015, 109, 53–63. [CrossRef]
12. Vaid, S.; Singh, P.; Kaur, C. EEG signal analysis for BCI interface: A review. In Proceedings of the 2015 Fifth International

Conference on Advanced Computing & CommunicationTechnologies,Haryana, India, 21–22 February 2015; pp. 143–147.
13. Blankertz, B.; Tomioka, R.; Lemm, S.; Kawanabe, M.; Muller, K.r. Optimizing Spatial filters for Robust EEG Single-Trial Analysis.

IEEE Signal Process. Mag. 2008, 25, 41–56. [CrossRef]
14. Al-Saegh, A.; Dawwd, S.A.; Abdul-Jabbar, J.M. Deep learning for motor imagery EEG-based classification: A review. Biomed.

Signal Process. Control 2021, 63, 102172. [CrossRef]
15. Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; Mcalpine, D.; Zhang, Y. A survey on deep learning based brain computer interface:

Recent advances and new frontiers. arXiv 2019, arXiv:1905.04149.
16. Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S.U.; Altuwaijri, G.A.; Abdul, W.; Bencherif, M.A.; Faisal, M. Deep learning

techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review. Neural Comput. Appl. 2023,
35, 14681–14722. [CrossRef]

http://doi.org/10.1109/TBME.2016.2628861
http://dx.doi.org/10.1038/s41467-018-04673-z
http://www.ncbi.nlm.nih.gov/pubmed/29925890
http://dx.doi.org/10.1109/JPROC.2015.2415800
http://dx.doi.org/10.3389/fnins.2017.00400
http://dx.doi.org/10.3389/fnhum.2018.00312
http://dx.doi.org/10.1016/0166-4328(95)00225-1
http://www.ncbi.nlm.nih.gov/pubmed/8762158
http://dx.doi.org/10.1038/s41598-021-82241-0
http://www.ncbi.nlm.nih.gov/pubmed/33580093
http://dx.doi.org/10.1016/j.jphysparis.2006.03.012
http://dx.doi.org/10.1016/j.jphysparis.2015.02.003
http://dx.doi.org/10.1109/MSP.2008.4408441
http://dx.doi.org/10.1016/j.bspc.2020.102172
http://dx.doi.org/10.1007/s00521-021-06352-5


Electronics 2024, 13, 1646 14 of 14

17. Saibene, A.; Caglioni, M.; Corchs, S.; Gasparini, F. EEG-based BCIs on motor imagery paradigm using wearable technologies: A
systematic review. Sensors 2023, 23, 2798. [CrossRef] [PubMed]

18. Khademi, Z.; Ebrahimi, F.; Kordy, H.M. A review of critical challenges in MI-BCI: From conventional to deep learning methods. J.
Neurosci. Methods 2023, 383, 109736. [CrossRef]

19. Wilson, J.A.; Williams, J.C. Massively parallel signal processing using the graphics processing unit for real-time brain-computer
interface feature extraction. Front. Neuroeng. 2009, 2, 653. [CrossRef]

20. Raimondo, F.; Kamienkowski, J.E.; Sigman, M.; Slezak, D.F. CUDAICA: GPU optimization of infomax-ICA EEG analysis. Comput.
Intell. Neurosci. 2012, 2012, 2. [CrossRef] [PubMed]

21. Shyu, K.K.; Lee, P.L.; Lee, M.H.; Lin, M.H.; Lai, R.J.; Chiu, Y.J. Development of a low-cost FPGA-based SSVEP BCI multimedia
control system. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 125–132. [CrossRef]

22. Heelan, C.; Nurmikko, A.V.; Truccolo, W. FPGA implementation of deep-learning recurrent neural networks with sub-millisecond
real-time latency for BCI-decoding of large-scale neural sensors (104 nodes). In Proceedings of the 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 1070–1073.

23. Sannelli, C.; Vidaurre, C.; Müller, K.R.; Blankertz, B. A large scale screening study with a SMR-based BCI: Categorization of BCI
users and differences in their SMR activity. PLoS ONE 2019, 14, e0207351. [CrossRef]

24. Ins, B. BioSemi Active Two EEG Cap, 2001. Available online: https://www.biosemi.com/products.htm (accessed on 21
April 2024) .

25. Klonowski, W. Everything you wanted to ask about EEG but were afraid to get the right answer. Nonlinear Biomed. Phys. 2009,
3, 1–5. [CrossRef] [PubMed]

26. Perrin, F.; Pernier, J.; Bertrand, O.; Echallier, J.F. Spherical splines for scalp potential and current density mapping. Electroen-
cephalogr. Clin. Neurophysiol. 1989, 72, 184–187. [CrossRef] [PubMed]

27. Hyvärinen, A.; Oja, E. Independent component analysis: algorithms and applications. Neural Netw. Off. J. Int. Neural Netw. Soc.
2000, 13, 411–430. [CrossRef]

28. Arnau, S.; Sharifian, F.; Wascher, E.; Larra, M.F. Removing the cardiac field artifact from the EEG using neural network regression.
Psychophysiology 2023, 60, e14323. [CrossRef]

29. Yuan, H.; Liu, T.; Szarkowski, R.; Rios, C.; Ashe, J.; He, B. Negative covariation between task-related responses in alpha/beta-band
activity and BOLD in human sensorimotor cortex: An EEG and fMRI study of motor imagery and movements. NeuroImage 2010,
49, 2596–2606. [CrossRef] [PubMed]

30. De Lange, F.; Jensen, O.; Bauer, M.; Toni, I. Interactions between posterior gamma and frontal alpha/beta oscillations during
imagined actions. Front. Hum. Neurosci. 2008, 2,269. [CrossRef] [PubMed]

31. Lashgari, E.; Liang, D.; Maoz, U. Data augmentation for deep-learning-based electroencephalography. J. Neurosci. Methods 2020,
346, 108885. [CrossRef] [PubMed]

32. Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural
network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [CrossRef]

33. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/
(accessed on 21 April 2024).

34. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,Anchorage, AK, USA,
4–8 August 2019; pp. 2623–2631.

35. NVIDIA; Vingelmann, P.; Fitzek, F.H. CUDA, release: 10.2.89, 2020. Available online: https://developer.nvidia.com/cuda-toolkit
(accessed on 21 April 2024).

36. NVIDIA. Jetson Nano 2GB Developer Kit, 2020. Available online: https://developer.nvidia.com/embedded/learn/get-started-
jetson-nano-2gb-devkit (accessed on 21 April 2024) .

37. Pacini, T.; Rapuano, E.; Fanucci, L. FPG-AI: A Technology-Independent Framework for the Automation of CNN Deployment on
FPGAs. IEEE Access 2023, 11, 32759–32775. [CrossRef]

38. Pacini, T.; Rapuano, E.; Tuttobene, L.; Nannipieri, P.; Fanucci, L.; Moranti, S. Towards the Extension of FPG-AI Toolflow to
RNN Deployment on FPGAs for On-board Satellite Applications. In Proceedings of the 2023 European Data Handling & Data
Processing Conference (EDHPC), Juan-Les-Pins, France, 2–6 October 2023; pp. 1–5. [CrossRef]

39. Xilinx, A. Xilinx Ultrascale+ ZU7EV Datasheet, 2022. Available online: https://docs.xilinx.com/v/u/en-US/ds891-zynq-
ultrascale-plus-overview (accessed on 21 April 2024) .

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s23052798
http://www.ncbi.nlm.nih.gov/pubmed/36905004
http://dx.doi.org/10.1016/j.jneumeth.2022.109736
http://dx.doi.org/10.3389/neuro.16.011.2009
http://dx.doi.org/10.1155/2012/206972
http://www.ncbi.nlm.nih.gov/pubmed/22811699
http://dx.doi.org/10.1109/TBCAS.2010.2042595
http://dx.doi.org/10.1371/journal.pone.0207351
https://www.biosemi.com/products.htm
http://dx.doi.org/10.1186/1753-4631-3-2
http://www.ncbi.nlm.nih.gov/pubmed/19470156
http://dx.doi.org/10.1016/0013-4694(89)90180-6
http://www.ncbi.nlm.nih.gov/pubmed/2464490
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
http://dx.doi.org/10.1111/psyp.14323
http://dx.doi.org/10.1016/j.neuroimage.2009.10.028
http://www.ncbi.nlm.nih.gov/pubmed/19850134
http://dx.doi.org/10.3389/neuro.09.007.2008
http://www.ncbi.nlm.nih.gov/pubmed/18958208
http://dx.doi.org/10.1016/j.jneumeth.2020.108885
http://www.ncbi.nlm.nih.gov/pubmed/32745492
http://dx.doi.org/10.1088/1741-2552/aace8c
https://www.tensorflow.org/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-2gb-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-2gb-devkit
http://dx.doi.org/10.1109/ACCESS.2023.3263392
http://dx.doi.org/10.23919/EDHPC59100.2023.10396607
https://docs.xilinx.com/v/u/en-US/ds891-zynq-ultrascale-plus-overview
https://docs.xilinx.com/v/u/en-US/ds891-zynq-ultrascale-plus-overview

	Introduction
	Materials and Methods
	System Architecture
	Data
	Convolutional Neural Network Architecture
	Hardware Deployment and Benchmarking
	CPU
	GPU
	FPGA


	Results
	Inference on CPU
	Inference on GPU
	Inference on FPGA

	Discussion
	Conclusions
	Appendix A
	References

