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Abstract: The pursuit of Artificial Intelligence (AI) that emulates human cognitive processes is a
cornerstone of ethical AI development, ensuring that emerging technologies can seamlessly integrate
into societal frameworks requiring nuanced understanding and decision-making. Zero-Shot Instance
Retrieval (ZSIR) stands at the forefront of this endeavour, potentially providing a robust platform for
AI systems, particularly large visual language models, to demonstrate and refine cognition-aligned
learning without the need for direct experience. In this paper, we critically evaluate current cognition
alignment methodologies within traditional zero-shot learning paradigms using visual attributes
and word embedding generated by large AI models. We propose a unified similarity function
that quantifies the cognitive alignment level, bridging the gap between AI processes and human-
like understanding. Through extensive experimentation, our findings illustrate that this similarity
function can effectively mirror the visual–semantic gap, steering the model towards enhanced
performance in Zero-Shot Instance Retrieval. Our models achieve state-of-the-art performance on
both the SUN (92.8% and 82.2%) and CUB datasets (59.92% and 48.82%) for bi-directional image-
attribute retrieval accuracy. This work not only benchmarks the cognition alignment of AI but also
sets a new precedent for the development of visual language models attuned to the complexities of
human cognition.

Keywords: large visual language models; zero-shot instance retrieval; cognition alignment

1. Introduction

The advent of large-scale Artificial Intelligence (AI) models has marked a transforma-
tive era in computational learning, with their unprecedented capacity for data processing
and pattern recognition shaping the trajectory of technological advancement. As these
behemoths of AI continue to burgeon, their integration into diverse societal sectors un-
derscores a critical need. Cognition alignment ensures that AI models not only perform
tasks efficiently but also reflect the intricacies of human thought processes. Cognition-
aligned models promise to deliver more intuitive interactions, enhance decision-making
compatibility, and foster trust, as their operational logic mirrors the cognitive frame-
works humans use to understand, reason, and contextualise. In essence, aligning AI
with human cognition is not merely a technical aspiration but the foundation for the
harmonious coexistence of AI systems and their human counterparts in an increasingly
automated world.

The notion of cognition alignment in AI is deeply rooted in the rich soil of cognitive
psychology and constructivist theory. Cognitive psychology, a discipline that develops
from understanding mental processes, posits that human cognition is a complex interplay
of various mental activities. This field has long been fascinated with how people perceive,
remember, think, speak, and solve problems. Constructivist theory complements this by
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suggesting that learners construct knowledge through an active learning process rather than
absorbing information passively. It emphasises the learner’s critical role in making sense of
new information by linking it to prior knowledge and experiences stored in memory.

Cognition alignment theory extrapolates these principles to the realm of AI. It ad-
vocates for the design of AI systems that ‘learn’ as much as humans do—by connecting
new data to pre-existing knowledge frameworks and by abstracting underlying principles
through reflection. The theory underscores the importance of AI systems being able to not
only recall information but also apply it to novel situations, predict future scenarios, and
adaptively learn from experiences. This approach ensures that AI can engage with tasks in
a way that is reminiscent of human problem-solving and decision-making processes, with
the flexibility and creativity that are hallmarks of human cognition.

In essence, cognition alignment theory in AI calls for the development of intelligent
systems that go beyond pattern recognition and data analysis. It seeks to create AI that
can understand the context of data, draw upon a wealth of experiences (real or simulated),
make inferences, and anticipate future needs or actions—much like a human would when
faced with new and complex challenges. It is a pursuit to bridge the gap between human
and machine learning processes to create AI that not only computes but comprehends.

Zero-shot learning (ZSL) refers to a classification problem where the learning algorithm
must correctly classify objects or data points that it has not seen during training. It is a
machine learning technique where the model is expected to infer information about unseen
classes by only learning about seen classes, usually through some form of transfer learning
or by exploiting commonalities between classes. In ZSL, the model typically uses attributes
or descriptions of objects to make these inferences. For example, if a model is trained on
a dataset of animal images that includes various seen classes like ‘tiger’, ‘elephant’, and
‘horse’, it might later be tested on its ability to recognise an ‘antelope’, which it has never
seen before, by using learnt attributes such as ‘four legs’, ‘hooves’, and ‘horns’.

ZSL emerges as an ideal testbed for the study of cognition alignment precisely because
it encompasses many of the challenges and intricacies of replicating human cognitive
processes in AI systems. The paradigm of ZSL fundamentally relies on the ability of neural
networks to engage in visual perception, not by merely recognising patterns through brute
computational power but by understanding and extrapolating concepts in the absence of
explicit prior examples.

This learning paradigm calls upon advanced knowledge representation techniques that
are vital to human cognition, such as the identification of visual attributes, the interpretation
of free text, and the application of knowledge encapsulated in ontological taxonomies.
Furthermore, zero-shot learning utilises similes and exemplars that are inherently tied to
the way humans draw analogies and learn from abstract examples. These methodologies
are cornerstones in the extraction and emulation of human cognitive strategies, allowing
AI to go beyond simple task execution to demonstrate an understanding of context.

As shown in Figure 1, in traditional ZSL research, ZSL models are designed to match
images to human cognition. Human cognition is represented by free text or attributes that
can guide the ZSL model to recognise images from unseen classes. An LLM explores human
cognition from online information. We ask the LLM to create the same representation as
human cognition, such as free-text descriptions or visual attributes. We can then use ZSL to
measure whether the LLM’s cognition can align well with human cognition so that the ZSL
model still recognises the same images from unseen classes. The cognition alignment be-
tween an LLM and a human is then measured by the final ZSL recognition rate. The neural
network is tasked with the challenge of transferring its learnt knowledge to entirely new
classes, samples, tasks, or domains that it never encountered during training. The success
of this transfer hinges on the model’s alignment with human cognitive representations—its
ability to generalise and apply abstract principles to new and unseen data. Hence, ZSL does
not just assess an AI’s learning efficiency; it evaluates the AI’s cognitive congruence with
human thought patterns. It is in this rigorous testing of generalisation capabilities that the
true measure of cognition alignment is found, making zero-shot learning a prime candidate
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for advancing our understanding of how AI can not only mimic but also meaningfully
engage with human cognitive processes.

Human Information Visual Language Models

Human Cognition

Machine Cognition

Zero‐Shot Learning
Cognition Alignment

Images of World

Figure 1. The main aim of this paper is to use visual perception to measure the alignment between
human and AI cognition.

While traditional ZSL is usually concerned with classification tasks, Zero-Shot Instance
Retrieval (ZSIR) [1] is about retrieving particular instances of data that match a given
description or query without having seen examples of that specific category or instance
during training. It is a more specific task where the model needs to understand and match
a complex query to instances of an unseen category. The difference lies in the output and
the nature of the task: ZSL is about classifying an instance into a category not seen during
training, while ZSIR is about retrieving all relevant instances that match a zero-shot query,
even when the model has not been trained with any examples from the category of the
query. Essentially, ZSL is about ‘what’ an object is, and ZSIR is about finding ‘where’ or
‘which’ objects fulfil the criteria described in the query.

ZSIR requires the model to have a sophisticated understanding of attributes and their
relationships, as it may need to retrieve specific instances based on descriptions that involve
unseen combinations of attributes. This is a more complex task since the model must deal
with a more nuanced space of attributes and must be able to rank instances in terms of their
relevance to a query. Our contributions are summarised as follows:

• We introduce a novel framework that utilises Zero-Shot Instance Retrieval (ZSIR)
as a method to study and analyse the cognitive alignment of large visual language
models. This approach allows us to simulate and evaluate how AI interprets and
processes visual information in a manner that parallels human cognitive abilities, par-
ticularly in scenarios where the model encounters data it has not been explicitly trained
to recognise.

• A key innovation of our research is the development of a unified similarity function
specifically designed to quantify the level of cognitive alignment in AI systems. This
function provides a metric that correlates the AI’s interpretations with human-like
cognition, offering a quantifiable measure of the AI’s ability to align its processing
with human thought patterns.

• The effectiveness of our proposed similarity function was thoroughly tested through
extensive experiments on the SUN and CUB datasets. Our results demonstrate that
the function is versatile and robust across different forms of knowledge representation,
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including visual attributes and free text generated by large AI models. This versatility
is critical, as it reflects the level of cognition alignment between humans and AI.

• Our experiments not only establish the validity of the proposed similarity functions
but also showcase the enhanced performance of our model in the context of ZSIR tasks.
The model demonstrates superior capabilities compared to existing state-of-the-art
models on both the SUN (92.8% and 82.2%) and CUB datasets (59.92% and 48.82%)
for image-to-attribute and attribute-to-image retrieval accuracy.

2. Related Work

The recent surge in research on cognition-aligned Large Language Models (LLMs)
reflects a growing interest in developing AI systems that can reason, understand, and
interact in ways that align with human cognitive processes. This literature review provides
insights from key papers in this domain and discusses related zero-shot learning (ZSL)
techniques that are related to our work. The reviewed studies are summarised in Table 1.

Table 1. Summary of literature on cognition-aligned LLMs and zero-shot learning.

Authors Year Focus Area Key Contributions

Xu et al. [2] 2023 Cognition alignment in LLMs
Proposing a risk taxonomy and policy

framework for aligning LLMs with
human preferences.

Wang et al. [3] 2023 Enhancing reasoning in LLMs
Introducing the AFT paradigm to

improve the reasoning capabilities of
LLMs.

Lester et al. [4] 2021 Cognition alignment in LLMs
Emphasising the alignment of textual
neural representations with cognitive

language processing signals.

Xu et al. [5] 2023 Cultural specificity in LLMs Exploring the values of Chinese LLMs
for cultural alignment.

Sengupta et al. [6] 2023 Linguistic alignment in LLMs Developing Arabic-centric LLMs.

Zhang et al. [7] 2023 Cross-lingual alignment Bridging cross-lingual alignment
through interactive translation.

Wang et al. [8] 2023 Emotional intelligence in LLMs Assessing emotional intelligence
crucial for effective communication.

Bhardwaj et al. [9] 2023 Safety alignment in LLMs Proposing red-teaming techniques for
safety alignment.

Liu et al. [10] 2023 LLM alignment surveys Discussing key dimensions crucial for
assessing LLM trustworthiness.

Gu et al. [11] 2023 Application in ZSL

Focusing on zero-shot NL2SQL
generation combining pre-trained

language models
with LLMs.

Kirk et al. [12] 2023 Personalisation in LLMs Discussing the personalisation of
LLMs within societal bounds.

Petroni et al. [13] 2019 Capability of LLM to recall knowledge
Investigating the LLM as an

unstructured
knowledge base.

2.1. Cognition-Aligned AI

Cognition alignment has become an emerging trend in the AI research community. The
sharp-rising intelligence capacity of LLMs has caused both technical and social concerns.
Xu et al. (2023) [2] addressed the challenges in aligning LLMs with human preferences,
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proposing a risk taxonomy and policy framework for personalised feedback. Their work
underscores the complexity of aligning LLMs with diverse human values and preferences.

Another trend in cognition alignment studies focuses on enhancing reasoning in LLMs.
Wang et al. (2023) [3] and Lester et al. (2021) [4] focused on improving the reasoning capa-
bilities of LLMs. An Alignment Fine-Tuning (AFT) paradigm was introduced to address
the Assessment Misalignment problem in LLMs, enhancing their reasoning abilities. Lester
et al.’s work on CogAlign emphasised the alignment of textual neural representations with
cognitive language processing signals, highlighting the importance of cognitive alignment
in LLMs.

For broader concerns and applications in the linguistic and social domains, the papers
by Xu et al. (2023) [5], Sengupta et al. (2023) [6], and Zhang et al. (2023) [7] explored
the alignment of LLMs in specific cultural and linguistic contexts. Xu et al. focused
on the values of Chinese LLMs. Sengupta et al. developed Arabic-centric LLMs, and
Zhang et al. bridged cross-lingual alignment through interactive translation. Another
research direction for the cognition alignment of AI focuses on the emotional and safety
guarantees of AI models. Wang et al. (2023) [8] and Bhardwaj et al. (2023) [9] explored
the emotional intelligence of LLMs and their safety alignment. Wang et al. assessed LLMs’
emotional intelligence, crucial for effective communication, while Bhardwaj et al. proposed
red-teaming techniques for safety alignment.

Considering that cognition alignment in the contexts of LLMs and AI is still a new
research topic that just started gaining interest at the beginning of 2023, there are only
a few survey papers summarising the progression and challenges in this domain. Liu
et al. (2023) [10] and Petroni et al. (2019) [13] provided comprehensive surveys on LLM
alignment and their potential as knowledge bases, respectively. Liu et al. discussed key
dimensions crucial for assessing LLM trustworthiness. In contrast, Petroni et al. explored
the capability of LLMs to store and recall factual knowledge in 2019. By comparing the
differences between and the progression of the two survey papers from 2019 and 2023, we
found that one of the topics of cognition alignment related to our work aims to apply the
aligned cognition representation to improve the performance of AI training and machine
learning. Gu et al. (2023) [11] and Kirk et al. (2023) [12] presented application-specific
advancements in LLMs. Gu et al. focused on zero-shot NL2SQL generation, combining
pre-trained language models with LLMs, while Kirk et al. discussed the personalisation of
LLMs within societal bounds.

As a short summary, this review highlights the diverse approaches and challenges in
aligning LLMs with human cognition, values, and preferences. From enhancing reasoning
capabilities to addressing cultural specificity and emotional intelligence, these studies
collectively contribute to the development of more aligned, effective, and ethically sound
LLMs. In line with our research focus in this paper, we also explore a new paradigm that
can use well-aligned AI cognition to seamlessly improve the efficiency of human ontolog-
ical engineering, i.e., brainstorming for conceptualisation; data collection; labelling and
tagging of class embeddings, descriptions, and attributes; annotation via crowd-sourcing
approaches; validation of the ontological structure via theoretical analysis and discussion;
etc. In contrast to all of the existing work mentioned above, our unique contribution in
this paper is the introduction of the ZSL task ZSIR as a quantitative measurement for the
level of cognition alignment between AI and humans. This is considered to be a bilateral
reciprocal benefit. For one thing, it is crucial to understand how well AI LLMs are aligned
with human cognition so that the data annotation and interpretation work can be reliably
handed over to the machine. Otherwise, the poisoned, biased cognition of the LLM can
exaggerate the risk when it is applied to downstream supervised learning tasks. From
another perspective, AI with well-aligned cognition can efficiently improve the model
performance in downstream tasks. At such an early stage, our work aims to establish
a healthy paradigm that both assesses the level of cognition alignment and applies the
method to improve the downstream task, e.g., ZSL image recognition.
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2.2. Zero-Shot Learning

Zero-shot learning (ZSL) has undergone significant advancements, marked by key con-
tributions that have shaped its current state. The journey began with Larochelle et al. [14],
who introduced the concept of zero-data learning, proposing a method to learn new tasks
without training data, a foundational idea in ZSL. The first mention of ZSL was made
by Palatucci et al. [15], who explored semantic output codes in ZSL, demonstrating how
semantic information could be used to recognise classes unseen during training. Lampert
et al. [16] then introduced an attribute-based approach to detecting unseen object classes, a
seminal work that showed the effectiveness of shared attributes in identifying novel objects,
which popularised ZSL paradigms in the computer vision domain.

The integration of deep learning with semantic embeddings was significantly ad-
vanced by Frome et al. [17] with the DeViSE model, which combined visual and textual
information for ZSL. Norouzi et al. [18] further contributed by combining multiple se-
mantic embeddings, improving the accuracy of ZSL models. The concept of synthesised
classifiers, which was crucial for generalising from seen to unseen classes, was introduced
by Changpinyo et al. [19].

A comprehensive evaluation of various ZSL approaches was presented by Xian et al. [20],
establishing a benchmark for future research in the field. This was crucial for understanding
the strengths and weaknesses of different ZSL methodologies. Liu et al. [21] addressed the
problem of generalised zero-shot learning, where the test set contains both seen and unseen
classes, proposing a deep calibration network to balance the learning between these classes.

Wang et al. [22] conducted a detailed survey that provided an extensive overview
of the methodologies, datasets, and challenges in ZSL, offering insights into the state of
the field. This survey was instrumental in summarising the progress and directing future
research efforts. In recent years, the focus of ZSL has shifted towards more complex and
realistic scenarios. This includes the integration of unsupervised and semi-supervised
techniques, the use of generative models to synthesise features for unseen classes, and
the exploration of cross-modal ZSL. These advancements aim at improving the scalability,
robustness, and practical applicability of ZSL models.

Zero-shot learning has been applied to various downstream tasks, each marked by key
milestone papers that have significantly advanced the field. Khandelwal et al. [23] proposed
a simple yet effective method for zero-shot detection and segmentation, outperforming
more complex architectures. This work was pivotal in demonstrating the effectiveness of
straightforward approaches in ZSL for object detection and segmentation. Chen et al. [24]
described a vision-based method for analysing excavators’ productivity using zero-shot
learning. This method identifies activities of construction machines without pre-training,
showcasing the practical application of ZSL in real-world scenarios. Díaz et al. [25] pre-
sented a novel zero-shot prototype recurrent convolutional network for human activity
recognition via channel state information. This method enhances cross-domain transferabil-
ity, a crucial aspect of ZSL in activity recognition. Nag et al. [26] designed a transformer-
based framework, TranZAD, for zero-shot temporal activity detection. This framework
streamlines the detection of unseen activities, demonstrating the potential of transformers
in ZSL.

Zero-Shot Instance Retrieval via Dominant Attributes [1] is a methodology that reflects
the core strengths and challenges in the development of cognitively aligned LLMs. It is a
novel approach to semantic searching in the context of zero-shot learning. This paradigm
is particularly relevant for measuring the cognitive alignment of Large Language Models
(LLMs). Firstly, the paper’s focus on semantic searching aligns well with the cognitive
capabilities of LLMs, which rely on understanding and processing semantic information.
Secondly, the use of dominant attributes in zero-shot retrieval mirrors the way that LLMs
leverage contextual cues and attributes to generate responses, making it a fitting method to
evaluate their cognitive alignment. Thirdly, the approach emphasises affordability, which
is crucial in making advanced semantic searching techniques more accessible, a goal that
aligns with the democratisation efforts in AI and LLMs. In addition, the zero-shot aspect of
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the retrieval process is akin to the generalisation capabilities of LLMs, making it an ideal
testbed to assess how well these models can adapt to new, unseen data while maintaining
semantic coherence. In contrast to ZSIR model research, this paper focuses on introducing
ZSIR to measure cognition alignment via the visual perception task of image retrieval. Both
synthetic attributes and class descriptions are explored and compared with the human
cognition representation. To the best of our knowledge, this is the first-ever paradigm
that can quantitatively measure cognition alignment between AI and humans via visual
perception tasks and ontological engineering.

3. Methodology

Our key contributions are reflected and illustrated in the framework shown in Figure 2.
First, our work introduces LLMs to autonomous ontological engineering, which improves
the efficiency of human labour by over 1500 times. Second, our ZSIR model, with the
selected base model and similarity functions, can measure cognition alignment between
AI and humans via ontological engineering. In addition, we found that hybrid AI–human
cognition can be reflected by improved ontological engineering and, in turn, can improve
the ZSIR model performance. In traditional zero-shot learning (ZSL), X denotes the
visual space, where each instance x ∈ X represents a visual instance. Correspondingly, Y
represents the label space for seen classes, and Yu represents the label space for unseen
classes, where Y ∩Yu = ∅. The objective of ZSL is to learn a mapping function f : X → Yu

that can accurately associate unseen visual instances with their corresponding category
label. Because the distribution between Y and Yu is disjoint, the association between the
two domains is required. Φ(.) and Ψ(.) denote the perception and cognition functions
needed to process visual features in X and labels in Y , respectively. As collecting category
attributes requires considerable human cognitive labour, it is infeasible to collect instance-
level annotations for large datasets. In other words, existing ZSL can only map an unseen
instance to a category, while ZSIR requires retrieving a specific instance of the category.
Our approach adopts both human- and AI-generated attribute representations A = Ψ(Y)
so that each attribute dimension a ∈ A corresponds to a data-driven feature that captures
explicit and latent attributes pertinent to cognitive alignment.

Ontological Engineering

• Class Labels
• Hierarchical Structure
• Attributes & Description

Visual Spaces Human Cognition Process Semantic Spaces

Base Model Selection Similarity Functions

AI Cognition Process

Figure 2. Our key contributions are reflected and illustrated in the framework.

To measure human–AI cognitive alignment, we introduce a cognitive alignment
function L : Φ(X )× Ψ(Y) → R, which measures the degree of alignment between the
AI’s data-driven representation of a visual instance and human cognitive processes. The
function L assesses how closely the AI’s output for an unseen instance x aligns with human-
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like cognition, e.g., visual attributes, free texts, and knowledge graphs, when classifying it
into an unseen class yu.

The methodology concentrates on optimising the cognitive alignment function L by
adjusting the mapping from both visual and attribute spaces to the latent instance attribute,
ensuring that AI’s interpretation of visual data not only aligns with human cognition in
recognising unseen classes but also adheres to the cognitive processes that humans employ
in categorising and understanding visual stimuli.

3.1. Cognition Representation

In addressing the challenge of cognitive alignment using the realm of ZSL, our ap-
proach begins with the fundamental premise that visual stimuli serve as a common infor-
mational foundation. We operate under the assumption that both AI systems and humans
perceive the same visual information, yet their methods of processing and interpreting this
information lead to divergent cognitive representations. Traditional human cognition in
ZSL research encompasses a variety of forms, including visual attributes, free-text descrip-
tions, and ontological taxonomies such as similes. A critical challenge in this context is the
unification of these diverse cognitive representations into a coherent framework that AI can
understand and utilise while minimising the need for extensive manual labour typically
required for such tasks.

To bridge this gap, we propose the integration of Large Language Models (LLMs)
like ChatGPT to facilitate the automated generation of labels and annotations A. These
models can provide a scalable and efficient means of translating the rich paradigms of
human cognitive representations into a format that AI systems can process. In this paper,
we consider the two most frequently used paradigms as a comparison:

• Automated Attribute Generation: LLMs can be used to automatically generate de-
scriptive attributes for visual data. Similar to human attributes [16], this paradigm
provides a structured and detailed attribute set that mirrors human perception.

• Free-Text Description Synthesis: LLMs can be employed to create comprehensive
free-text descriptions of visual stimuli represented by word embeddings [1]. These
narratives offer a deeper, more contextual understanding of the images, akin to how
humans might describe them.

Through these methods, we aim to significantly reduce the manual labour involved
in the annotation process while ensuring that the AI system’s understanding of visual
information aligns closely with human cognitive processes. This approach not only en-
hances the cognitive alignment of AI models but also paves the way for more intuitive and
human-like AI interactions and interpretations in the field of ZSL.

For example, we estimate the total hours that humans might take to build up the
“SUN attribute database”. The process can be broken down into three main stages: (1) De-
veloping a Taxonomy of 102 Discriminative Attributes: This initial stage involves crowd-
sourced human studies. The complexity here depends on the methodology (e.g., sur-
veys, workshops) and the level of agreement required to finalise the list. For estima-
tion, we can assume that this stage requires several rounds of surveys and analysis.
An initial setup, literature review, and preparation phase are assumed: 40 h (5 work
days). Each round of survey and analysis is expected to take 20 h. At least 3 rounds
are assumed for a robust taxonomy: 3× 20 = 60 h. (2) Building the SUN Attribute
Database: This involves annotating over 700 categories and 14,000 images. Each image
needs to be reviewed and annotated with relevant attributes of the established taxon-
omy. The time to annotate one image can vary significantly, but we can just assume
an average of 2 min per image. The total time for one annotator is estimated to be
14,000 × 2 min = 28,000 min. (3) Annotation by Three Human Annotators: The total
effort will be multiplied by three, as each image is annotated by three different people to
ensure accuracy and consistency. The total annotation time is 467× 3 = 1401 h. So, the
estimated total time would be approximately 100 + 1401 = 1501 h. This is a rough estimation,
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and the actual time may vary based on the efficiency of the process, the complexity of the
images, and the proficiency of the annotators.

While an LLM can significantly reduce the time to build up class associations, hierar-
chies, and attribute annotations, we are curious whether the cognition of LLM can align
well with the time-consuming ontological engineering processed by human annotators.
In this paper, we consider the following paradigms, which have been widely adopted in
previous ZSL research:

• Class Embedding: An automatic description is provided by AI for each given class.
• AI-Revised Human Attributes: By incorporating the class names and human-designed

attributes, AI revises the attribute list and makes the words more related to visual
perception for the image retrieval task.

• AI-Generated Attributes: AI creates attributes that are associated with the class names
without any constraints.

• ZSL-Contextualised AI Attributes: Based on the AI-generated attributes, the prompt-
ing further constrains the task for ZSL purposes to focus on improving the visual
perception association and generalisation for unseen classes and instances.

AI-revised human attributes aim to demonstrate whether the AI model can enhance
human-designed attributes using its own cognition. The new list combines specific ele-
ments that are more directly applicable to individual scenes, such as ‘Traffic Intensity’ or
‘Flora Types’, which were aspects highlighted in the human-generated list. While main-
taining specificity, these attributes are still broad enough to apply across various scenes,
unlike some of the very niche attributes in the human-generated list. The attributes balance
physical characteristics (e.g., ‘Rock Formations’, ‘Weather Elements’), emotional or atmo-
spheric qualities (e.g., ‘Emotional Atmosphere’, ‘Safety Perception’), and functional aspects
(e.g., ‘Commercial Features’, ‘Conservation Efforts’). The list includes attributes related
to human experiences and activities, reflecting the way that people interact with and
perceive different environments. Attributes related to sensory experiences (e.g., ‘Aroma
Characteristics’, ‘Acoustic Qualities’) are included, emphasising the multisensory nature
of human scene perception. By combining specificity, broad applicability, and a balance
of different types of descriptors, this AI-revised human attribute list aims to offer a more
comprehensive and nuanced framework for scene classification than the human-generated
list. It acknowledges the complexity of scenes and the multifaceted ways in which they can
be understood.

While the first baseline is more constrained by human cognition inputs, e.g., class
descriptions and human-designed attributes, the two other baselines provide more freedom
for AI to incorporate its own cognition to create task-specific attributes. AI-generated
attributes create a free attribute list using only given class names. This baseline can best
reflect the true AI cognition based on concept-level associations. However, our cognition
alignment approach is based on the assumption that both AI and humans aim to describe
the same visual perception. The validation of cognition alignment is based on whether
the multi-sourced cognition representation by human and AI can lead to accurate image
retrieval in the ZSIR task. Therefore, in the final proposed paradigm, the prompting
information constrains the AI to create more visual-specific attributes, and the list should
be applied to both seen and unseen classes to test the generalisation of the association.

The final proposed ZSL-contextualised AI attributes focus on improving the generalisa-
tion, visual discriminators, balance between abstract and concrete levels, relevance to scene
understanding, and compatibility with downstream visual–semantic modelling. These at-
tributes are broad enough to be applicable across a wide range of scenes, which is essential
for zero-shot learning, where the model needs to generalise from seen to unseen classes.
The attributes are chosen for their potential to be visually discriminative. They capture key
aspects of scenes that can distinguish one class from another. The list balances abstract qual-
ities (like ‘tranquil’ or ‘bustling’) with concrete, visually identifiable features (like ‘wooden’
or ‘mountainous’). This mix is crucial for a model that needs to understand and categorise
scenes it has not been explicitly trained on. Attributes are relevant to understanding and
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describing scenes, which is the primary goal of the classifier. They cover a range of aspects,
including material properties, environmental characteristics, and human-made vs. natural
elements. These attributes are conducive to the creation of visual–semantic models, as they
can be easily linked to visual data and semantic descriptions, forming a bridge between
the visual appearance of a scene and the language-based descriptors. This revised list is
designed to optimise the effectiveness of zero-shot learning models in classifying images by
focusing on attributes that are both descriptive and discriminative, enhancing the model’s
ability to make accurate predictions on unseen data.

3.2. Latent Instance Attributes Discovery

As shown in Figure 2, for both ZSL and ZSIR, it is essential to establish class associa-
tions so that the training set of seen class samples can be generalised to the unseen domain.
Visual spaces need to be projected into semantic spaces created by either human annotators
or AI models, as mentioned above. Class embedding is the baseline approach that has been
widely used in text-based ZSL methods. The generated class descriptions are then encoded
by traditional word embedding, the intermediate BERT model, and GPT3 LLMs.

Once class embedding is achieved, ZSL models extract visual features using base
models and learn to project them into semantic spaces via similarity functions. As shown
in Figure 3, ZSIR is different from ZSL since the task requires differentiating instances in
the same class, while ZSL aims to reduce the intra-class distances and enhance the inter-
class distances. During the training stages, each class (of ABC) has a class-level attribute
provided by either humans or AI (ChatGPT). LIAD aims to discover instance-specific
attributes with both an orthogonal constraint and prototype grouping. Using the trained P1
and P2 networks, a cognition alignment score can be obtained during the test phase. ZSIR
generalisation ensures that the test is applied to new classes from an unseen distribution so
that the overall retrieval performance can better reflect the cognition alignment. Therefore,
the semantic representation of attributes or word embeddings in ZSIR needs to reflect the
detailed differences between instances in the same class. Although the SUN and CUB
datasets provide both class-level and instance-level attributes, it is a very challenging
task for AI-generated approaches. We follow the paradigm of Latent Instance Attributes
Discovery [1], which is formalised as follows:

min
P1,P2
L1(X P1 − V) + L2(AP2 − V), s.t. V⊤V = I, (1)

where L1(X P1 − V) and L2(AP2 − V) are the loss functions to learn a mapping from the
visual space and attribute space to a shared latent space to discover the instance-level
visual–semantic attributes. The latent space is constrained by an orthogonal projection so
that the discovered attributes in V are uncorrelated. Each dimension of the discovered
attributes can be considered an independent visual–semantic vocabulary formally written
as follows, which ensures that each latent attribute dimension vi, vj ∈ [v1, ..., vk] is compact
and not redundant. k is a hyper-parameter that controls the dimension of the latent space:

< vi, vj >=

{
1, if i = j,

0, otherwise.
(2)

Note that the cardinality |X | = N equals the sample size of the images, but the
cardinality |A| is the number of categories. Therefore, we would expect a reduced rank
from the visual space to the latent space and an increased rank from the attribute space
to the latent space. In other words, for each attribute provided by either humans or
LLMs, there are richer image examples to support the concept. In this paper, we introduce
a prototype grouping (PG) method to (1) encourage more diverse prototypes of each
visual–semantic attribute to be learnt and (2) encourage inter-class association so that
the ZSIR generalisation to an unseen domain can be achieved. Firstly, to discover the
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intrinsic relationship between training samples xi, xj ∈ [x1, ..., xN ], we construct a graphical
adjacency matrix S ∈ RN×N for X :

Sij = max(0, δ(x⊤i xj)− ϵ), (3)

where δ is a non-linear mapping function that can keep high-similarity responses while
eliminating low-similarity responses to ensure that connected neighbours have strong
intrinsic associations. ϵ is a threshold hyper-parameter that ensures that the neighbourhood
connection in S is stronger so that the learnt prototypes can eliminate outliers. The property
of δ is shown in Figure 4.

Orthogonal

Prototype Grouping

A

B

C

A

B

C
ZSIR 

Generalisation

X: Visual Space V: Latent Space A: Attribute Space

Restaurant?

P1 P2

Cognition 
Alignment Score

Figure 3. Cognition alignment involves training and test stages. Orthogonal Projection (in red)
reduces redundant dimensions in the latent space. Prototype grouping (blue circles) selects only
representative samples rather than putting the whole classes A and C to learn the attributes.

Figure 4. Property of non-linear mapping function δ compared with other functions.
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Similar to the visual space, we apply the same adjacency matrix approach to the
attribute space. As illustrated in Figure 3, A is a low-rank matrix since the rank equals
the number of classes C, which is much smaller than the sample size N. As a result, the
adjacency matrix will have a block of connections for the same class samples, and the
inter-class associations are also reflected at the category level. Finally, Latent Instance
Attributes Discovery consists of two mapping functions as follows:VX = softmax(D̂−

1
2

X ŜXD̂
− 1

2
X X P1)

VA = softmax(D̂−
1
2

A ŜAD̂
− 1

2
A AP2)

, (4)

where, for both domains X and A, Ŝ = S + I is the enhanced adjacency matrix by the
identity matrix I, and D̂ii = ∑j Ŝij is the degree matrix with values on the matrix diagonal

and zeros elsewhere. D̂− 1
2 ŜD̂− 1

2 is the normalised adjacency matrix so that the graphical
condition can be applied to the projections from visual and attribute spaces P1 ∈ Rdx×k and
P2 ∈ Rda×k to provide the prototype grouping condition. dx and da are the dimensions of
raw visual and attribute spaces X and A, and k is the dimension of the shared latent visual
attribute space V .

3.3. Cognition Alignment via ZSIR

Using both the orthogonality and PG constraints, we can project the visual perception
X and semantic cognition A into the shared latent space to achieve cognition alignment
(CA). The equation serves to ensure our essential promise that different cognition represen-
tations in the attributes are aligned with the same visual stimuli in X .

LCA =
1

2N
∥VX − VA∥2

F. (5)

Optimisation Strategy: Solving the above Equation (5) is a dynamic NP-hard problem
because either visual or attribute projection to the latent space is unknown. In this paper,
we propose an alternating optimisation strategy, which is summarised in Algorithm 1.

Algorithm 1 LIAD optimisation for ZSIR cognition alignment
Input: Visual features of training images X = Φ(imgss); attributes of seen classes A = Ψ(Y);

test images from unseen classes X u = Φ(imgsu) with the attributes Au = Ψ(Yu).
Output: Gallery and query instances VXu and VAu .
1. Initialise: P1 and P2;
2. While L1 and L2 not converge:

3. V ← VX = softmax(D̂−
1
2

X ŜXD̂
− 1

2
X X P1);

4. for iter ∈ 0, 1, ..., MaxIter:
5. P2 ← min

P2
L2 := 1

2N ∥VA − V∥2
F + ∥V⊤AVA − I∥2

F;

6. V ← VA = softmax(D̂−
1
2

A ŜAD̂
− 1

2
A AP2);

7. for iter ∈ 0, 1, ..., MaxIter:
8. P1 ← min

P1
L1 := 1

2N ∥V − VX∥2
F + ∥V⊤X VX − I∥2

F;

9. Return: VXu and VAu according to Equation (4).

To calculate the cognition-alignment score via ZSIR, the process involves evaluating the
system’s ability to correctly match queries with their corresponding instances in a gallery,
where both queries and gallery instances belong to unseen classes Yu. This evaluation is
conducted under two distinct scenarios: attributes to image (A2I) and image to attributes
(I2A). In the A2I scenario, the system is provided with a set of attributes as the query. The
objective is to accurately retrieve the visual instance in the image gallery that best matches
these attributes. Conversely, in the I2A scenario, the system is given a query image and
must predict its identity by matching it to the exact attribute instance in the gallery. For
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both scenarios, the initial step involves inferring the full instance attribute vectors from the
given class attributes, along with the visual features of the query, and then projecting them
into the orthogonal space. The retrieval process occurs within this space, where the system
attempts to find the closest match between the query’s projected representation and the
projected representations of instances in the gallery.

The cognition-alignment score is derived from the accuracy of these retrieval tasks.
It quantifies the system’s proficiency in aligning its data-driven representations (inferred
attribute vectors and visual features) with human cognitive processes (dominant attributes
and visual identity). High accuracy in retrieval, reflected in a high cognition-alignment
score, indicates effective alignment, demonstrating the system’s capability to generalise
and accurately interpret unseen classes based on the cognitive congruence between its
learnt representations and human-understandable attributes.

4. Experimental Results
4.1. Experimental Setup

Datasets: The assessment of our approach was conducted using two established
benchmarks for ZSIR: the SUN dataset introduced by Patterson et al. [27] and the CUB
dataset presented by Wah et al. [28], with detailed results presented in Table 2. Both SUN
and CUB are fine-grained tasks, where SUN contains 717 classes of scene images, while CUB
has 200 classes of birds. The visual features leveraged in our study are derived from [29].
For the purpose of word embedding, our study utilised the conventional GoogleNews-
vectors-negative 300 [1] , which underwent training on a segment of the Google News
dataset, encompassing approximately 100 billion words. Our methodology adheres to
the traditional splits between seen and unseen classes typical in zero-shot learning (ZSL)
frameworks [20], with an emphasis placed on evaluating ZSIR capabilities. In scenarios
involving image-to-attribute (I2A) and attribute-to-image (A2I) conversions, attributes and
images of unseen instances are interchangeably utilised as gallery and query sets.

Table 2. Key statistics of the experimental datasets. For both datasets, the attributes were provided by
a human annotator at the instance (ins.) level with either continuous values (cont.) or binary values
(bin.). # indicates the number.

Dataset SUN CUB

# of instances 14,340 11,788
# of attributes 102 312

seen/unseen splits 707/10 150/50
attribute type ins. + cont. ins. + bin.

# of total concepts 819 512
unseen gallery size 200 2933

Evaluation Methodology: The primary metric for our evaluation is the hit rate,
e.g., the accuracy (%) of instance retrieval which assesses whether a given query’s cor-
responding instance can be retrieved within the top ranks. To provide a comprehensive
overview, we calculated the average hit rates across various classes, reflecting the general
performance trend.

Implementation Details: We employed a cross-validation approach for all hyper-
parameters within LIAD on the training dataset. Given the absence of attribute usage
during training, we introduced a five-fold cross-validation strategy tailored for the CA
challenge. This involves initially determining V across the entire training dataset, which
represents the dominant attributes’ inferred outputs, denoted by VA. The training classes
were subsequently segmented into five groups. For each group, we calculated a new pair
of projections, P1 and P2, utilising the remaining four groups. The obtained P1 was then
applied to map visual instances from the validation group to VX . The retrieval performance
was assessed by comparing Vu

A and Vu
X for unseen classes.
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4.2. ZSIR Main Results

Table 3 presents a comprehensive evaluation of our proposed method for Zero-Shot
Instance Retrieval (ZSIR) using human attributes, benchmarked against both baseline
and state-of-the-art approaches on the SUN Attribute and CUB datasets. Our method
significantly outperforms existing methods across all ranks, showcasing its effectiveness in
ZSIR tasks. Baseline methods such as DAP, ALE, ESZSL, LatEm, and LIAD show varying
degrees of success, with LIAD previously leading with scores up to 28.7% at Rank1 and
86.2% at Rank50. In comparison, our approach not only surpasses these baselines but
also demonstrates superior performance to additional methods like CCA and the Siamese
Network, particularly noted in the more challenging scenario of retrieving images based
on attributes (A2I) and vice versa (I2A).

Table 3. Main ZSIR results (shown as hit rate accuracy from Rank1 to Rank50) using human attributes
compared to state-of-the-art approaches. The first- and second-half sections demonstrate I2A and
A2I retrieval, respectively.

SUN Attribute Dataset CUB Dataset
Methods @Rank1 @Rank5 @Rank10 @Rank20 @Rank50 @Rank1 @Rank5 @Rank10 @Rank20 @Rank50
DAP [16] 7.5 18.8 34.9 48.5 61.2 3.80 5.82 12.61 17.92 24.25
ALE [30] 14.8 29.6 47.5 64.2 78.4 7.81 18.23 22.52 30.74 38.72
ESZSL [31] 19.9 38.8 56.2 69.7 82.8 15.28 20.34 25.88 38.21 40.72
LatEm [32] 25.3 38.4 62.8 70.1 85.2 17.42 24.82 32.48 40.96 46.81
LIAD [1] 28.7 42.2 68.5 72.8 86.2 19.82 27.53 36.20 44.12 48.83
CCA 8.3 18.2 33.2 56.2 63.2 7.63 11.32 18.89 27.53 28.76
Siamese Network 12.8 22.5 40.2 57.2 69.8 8.52 12.42 18.92 28.42 30.79
Ours (orthogonal only) 26.6 38.2 58.8 65.2 79.9 17.72 26.85 29.97 37.72 40.12
Ours (PG only) 28.9 44.6 69.7 74.4 87.7 20.28 28.82 38.83 46.62 50.53
Ours 35.5 49.8 71.0 79.9 92.8 25.52 32.74 48.85 52.88 59.92
DAP [16] 8.8 19.2 32.6 44.7 52.5 5.42 8.82 14.27 16.82 22.36
ALE [30] 12.2 26.7 43.0 61.5 72.2 12.87 16.43 24.50 29.98 34.71
ESZSL [31] 18.8 34.2 49.1 66.2 76.9 14.31 17.40 23.65 36.48 39.22
LatEm [32] 17.3 36.4 58.8 67.6 80.8 15.82 20.26 29.48 36.25 43.82
LIAD [1] 18.7 37.7 61.9 70.2 78.8 18.61 26.62 32.81 39.42 44.28
CCA 13.8 27.4 44.5 62.8 70.7 10.43 14.52 18.85 25.58 30.76
Siamese Network 15.5 30.2 49.9 58.8 69.4 11.13 18.82 24.95 31.10 37.74
Ours (orthogonal only) 17.2 35.2 58.8 64.9 72.2 17.72 24.32 28.81 35.52 39.98
Ours (PG only) 18.9 38.1 63.2 73.2 79.1 19.21 27.78 37.75 42.29 46.62
Ours 20.5 40.2 65.5 75.8 82.2 28.21 30.87 39.92 44.97 48.82

A key innovation in our method is the introduction of the prototype grouping (PG)
technique, which significantly enhances the diversity of prototypes for each visual–semantic
attribute and strengthens inter-class associations. This is evident from the performance leap
observed when comparing our method’s orthogonal-only and PG-only variants to the com-
bined approach. Specifically, our full method achieves remarkable improvements, reaching
up to 35.5% at Rank1 and 92.8% at Rank50 for the SUN Attribute dataset, outperforming the
PG-only variant’s 28.9% at Rank1 and 87.7% at Rank50, and the orthogonal-only variant’s
26.6% at Rank1 and 79.9% at Rank50.

These results underscore the efficacy of our method in generalising ZSIR to unseen
domains through enhanced attribute representation and cognitive alignment. The prototype
grouping method, in particular, stands out as a pivotal advancement, enabling more
nuanced and contextually rich retrieval outcomes that closely align with human cognitive
processes. This breakthrough underscores the potential of our approach in bridging the
gap between AI-driven visual recognition and human-like understanding. The evaluation
of our methods ensures reliable alignment between visual and cognition spaces and the
method’s ability to generalise to unseen classes. Qualitative results in Table 4 and the
ablation study are discussed as follows.
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Table 4. Comparison of human attributes, AI-revised human attributes, AI-generated attributes, and
ZSL-contextualised AI.

Human Attributes AI-Revised Human
Attributes AI-Generated Attributes ZSL-Contextualised

AI Attributes

‘sailing/boating’ Open Space Natural Natural
‘driving’ Enclosed Space Man-made Man-Made
‘biking’ Natural Landscape Indoor Indoor
‘transporting things or people’ Man-made Structures Outdoor Outdoor
‘sunbathing’ Urban Environment Urban Urban
‘vacationing/touring’ Rural Setting Rural Rural
‘hiking’ Water Presence Modern Bright
‘climbing’ Vegetation Density Historical Dim
‘camping’ Color Palette Spacious Colorful
‘reading’ Textural Qualities Cramped Monochrome
‘studying/learning’ Lighting Conditions Bright Spacious
‘teaching/training’ Weather Elements Dim Cramped
‘research’ Architectural Style Colorful Populated
‘diving’ Historical Context Monochrome Deserted
‘swimming’ Modern Elements Busy Vegetated
‘bathing’ Artistic Features Tranquil Barren
‘eating’ Functional Aspects Populated Watery
‘cleaning’ State of Maintenance Deserted Dry
‘socializing’ Population Density Greenery Mountainous
‘congregating’ Noise Level Barren Flat
‘waiting in line/queuing’ Movement Dynamics Waterbody Forested
‘competing’ Activity Presence Dry Open
‘sports’ Cultural Significance Mountainous Enclosed
‘exercise’ Geographical Features Flat Architectural
‘playing’ Seasonal Characteristics Forested Naturalistic
‘gaming’ Time of Day Open Ornate
‘spectating/being in an audience’ Material Dominance Enclosed Simple
‘farming’ Symmetry Architectural Cluttered
‘constructing/building’ Asymmetry Naturalistic Minimalistic
‘shopping’ Spaciousness Ornate Artistic
‘medical activity’ Clutter Simple Functional
‘working’ Tranquility Cluttered Symmetrical
‘using tools’ Bustle Minimalistic Asymmetrical
‘digging’ Accessibility Artistic Traditional
‘conducting business’ Seclusion Functional Contemporary
‘praying’ Safety Perception Symmetrical Luxurious
‘fencing’ Risk Elements Asymmetrical Modest
‘railing’ Sensory Stimuli Traditional Cultivated
‘wire’ Emotional Atmosphere Contemporary Wild
‘railroad’ Privacy Level Luxurious Paved
‘trees’ Connectivity Modest Unpaved
‘grass’ Isolation Cultivated Vibrant
‘vegetation’ Ecological Elements Wild Muted
‘shrubbery’ Industrial Presence Paved Textured
‘foliage’ Commercial Features Unpaved Smooth
‘leaves’ Educational Aspects Vibrant Reflective
‘flowers’ Recreational Facilities Muted Matte
‘asphalt’ Religious Symbols Textured Elevated
‘pavement’ Cultural Diversity Smooth Ground-level
‘shingles’ Historical Monuments Reflective Aerial

4.3. Ablation Study

In our ablation study, we meticulously analysed the impact of two critical components
of our framework: orthogonal projection and prototype grouping (PG). This analysis is
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grounded in the comparative performance of our method against established baselines, as
delineated in the results table.

Effect of Orthogonal Projection: The influence of orthogonal projection on Zero-
Shot Instance Retrieval (ZSIR) performance is evident when comparing the outcomes of
Canonical Correlation Analysis (CCA), the Siamese Network, LIAD, and our method with
orthogonal projection only. CCA, which focuses on extracting correlation information
between visual features and attributes without imposing specific constraints, offers a foun-
dational comparison point. The Siamese Network, leveraging a deep architecture based on
triplet contrastive learning, aims to minimise distances within classes while maximising
distances between classes, offering a nuanced approach to learning separable feature spaces.
LIAD, incorporating an orthogonal constraint alongside augmented attributes, introduces a
structured approach to aligning visual and semantic spaces. Our method, when employing
orthogonal projection exclusively, demonstrates a marked improvement over these base-
lines, underscoring the efficacy of orthogonal constraints in enhancing cognitive alignment
and retrieval accuracy. Specifically, the orthogonal-only variant of our method outperforms
CCA and the Siamese Network across all ranks, indicating orthogonal projection’s pivotal
role in achieving more discriminative and well-aligned feature representations.

Effect of Prototype Grouping: The prototype grouping (PG) mechanism’s contribution
is highlighted through a comparison between our method’s PG variant and the baseline
approaches. The PG approach is designed to foster more diverse and representative
prototypes for each visual–semantic attribute, thereby facilitating better generalisation to
unseen classes through enhanced inter-class associations. The results table reveals that our
method with PG significantly surpasses the performance of all baseline methods, including
the orthogonal projection variant. This superiority is particularly pronounced at higher
ranks, suggesting that PG effectively captures the complex underlying structures of the data,
enabling the more accurate retrieval of unseen instances. The comparison underscores PG’s
critical role in bridging the semantic gap between visual features and attributes, thereby
bolstering the model’s zero-shot retrieval capabilities.

The results provide a quantitative testament to the individual and combined impacts
of orthogonal projection and prototype grouping. Notably, our method, which integrates
both components, outperforms all other approaches, consistently achieving the highest
retrieval accuracy across the board. This comprehensive performance boost, observed
across different datasets and ranking metrics, attests to the synergistic effect of orthogonal
projection and PG in refining the model’s ability to navigate the complex landscape of
ZSIR. The orthogonal projection’s role in structuring the feature space, coupled with PG’s
enhancement of prototype diversity and inter-class connectivity, culminates in a robust
framework that adeptly aligns AI’s cognitive processes with human-like understanding.
These findings not only validate the proposed components’ effectiveness but also pave
the way for future explorations into optimising ZSIR frameworks for improved cognitive
alignment and retrieval performance.

4.4. Cognition Alignment Analysis

The analysis of the results in Figure 5 for ZSIR on the SUN and CUB datasets provides
insightful observations into the performance of various AI approaches in comparison
to human attributes. This analysis is pivotal for understanding the cognitive alignment
between AI-generated attributes and human perception in the context of ZSIR tasks.
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Figure 5. Cognition alignment reflected by the performance evaluation across ranks (green, purple,
yellow, orange, and blue indicate retrieval rate 1, 5, 10, 20 and 50.

4.5. Observations and Discussion

W2V Word Embedding: The Word2Vec (W2V) embeddings exhibit stable performance
across both tasks (image to attributes and attributes to image), slightly trailing behind the
results achieved using human attributes. This consistency underscores the robustness
of W2V embeddings in capturing semantic relationships, albeit with a marginal gap in
cognitive alignment compared to human-derived attributes.

AI-Revised Attributes’ Performance: The AI-revised attributes, while maintaining
the conceptual framework of attributes defined by human experts, show an interesting
dichotomy in performance. On the SUN dataset, these revised attributes outperform both
W2V embeddings and human attributes, suggesting a closer alignment with AI’s visual–
semantic understanding for this dataset. Conversely, on the CUB dataset, their performance
dips below that of both W2V and human attributes. This variation highlights the context-
dependent effectiveness of AI revisions, particularly struggling with the fine-grained
classification required by the CUB dataset. Moreover, Table 5 demonstrates the ability that
the AI can explain the rationale of each assigned attribute value based on common sense
and human-understandable language. This may become an efficient paradigm for future
data annotation approaches.

AI-Generated Attributes’ Limitations: The approach based on generating attributes
and their values entirely through AI results in the lowest performance across all tasks
and datasets. This outcome points to a significant misalignment in the AI’s generation
process with the specific demands of visual-semantic learning and zero-shot generalisation.
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The lack of proper scoping using prompt engineering in attribute generation and value
assignment critically hampers the effectiveness of this method.

Table 5. Augmented attribute example: AI-assigned class–attribute association values and the
rationale explained by AI as to why the association makes sense.

Attributes Value Association with the Class Abbey as an Example

Natural 0 (Abbeys are man-made structures, though they may be situated in natural settings.)
Indoor 1 (Abbeys typically have significant indoor areas.)
Outdoor 1 (They also have outdoor components like courtyards.)
Urban 0 (Generally, abbeys are in rural or secluded settings, but some may be in urban areas.)
Bright 0 (Traditional abbeys might have a dimmer, more solemn interior.)
Colorful 0 (Abbeys often have a more muted, monastic color scheme.)
Spacious 1 (They usually have spacious interiors like chapels and halls.)
Populated 0 (Abbeys are often associated with tranquility and seclusion.)
Vegetated 1 (Many abbeys have gardens or are located in green settings.)
Watery 0 (Unless located near a water body, which is not typical for all abbeys.)
Mountainous 0 (This is location-dependent.)
Forested 0 (Again, location-dependent.)
Open 1 (They often have open courtyards.)
Enclosed 1 (Enclosed structures like cloisters are common.)
Architectural 1 (Abbeys are known for their distinctive architecture.)
Ornate 1 (Many abbeys are ornately decorated, especially older ones.)
Simple 0 (Abbeys are typically not simple in design.)
Artistic 1 (Abbeys often contain artistic elements like stained glass.)
Symmetrical 1 (Many have symmetrical architectural designs.)
Modest 1 (Abbeys are often modest in terms of luxury.)
Cultivated 1 (Gardens or cultivated lands are common.)
Paved 1 (Pathways and internal floors are typically paved.)
Textured 1 (Stone walls, woodwork, etc.)
Elevated 0 (Dependent on the specific location.)
Underground 0 (Some abbeys may have crypts or basements.)
Foggy 0 (Location-specific.)
Daytime 1 (Abbeys are typically functional during the day.)
Weathered 1 (Many abbeys are old and show signs of weathering.)
Secluded 1 (Abbeys are often in secluded locations.)
Quiet 1 (Associated with quietude and peace.)
Cool 1 (Stone buildings often have a cool interior.)

ZSL-Contextualised Attributes Success: When the LLM of ChatGPT is informed
about the ZSL and image retrieval tasks, the resulting ZSL-contextualised attributes signifi-
cantly improve performance, particularly on the SUN dataset. This improvement indicates
a higher degree of cognitive alignment, as the attributes and their values are more precisely
tailored to the tasks at hand.

Challenges with Fine-Grained Classification: Despite the advancements in AI ap-
proaches, human attributes remain the superior cognitive representation for the CUB
dataset, which demands extensive expert knowledge for fine-grained bird classification.
The ZSL-contextualised model and W2V embedding exhibit similar performance in this
domain, underscoring the challenge that AI faces in matching human expertise in highly
specialised tasks.

The comparative analysis of AI approaches against human attributes in ZSIR tasks
reveals critical insights into the cognitive alignment of AI with human perception. While
AI-revised and AI-generated attributes show potential under certain conditions, they also
highlight the limitations of current AI methodologies in fully grasping the nuances of visual–
semantic relationships, especially in specialised domains like fine-grained classification.
The success of ZSL-contextualised attributes on the SUN dataset opens promising avenues
for enhancing cognitive alignment through task-aware attribute generation.
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5. Conclusions

In this study, we have introduced a groundbreaking paradigm that leverages ZSIR to
delve into the cognitive alignment of large visual language models with human cognitive
processes. Our approach, focused on a novel unified similarity function, marks a signifi-
cant stride in understanding how AI systems interpret and process visual information in
scenarios involving previously unseen data. The rigorous evaluation of our framework
across the CUB and SUN datasets has not only validated the effectiveness of our similarity
function but also highlighted its adaptability across various knowledge representations,
including visual attributes and textual descriptions generated by AI models. Our findings
underscore the potential of our method to serve as a benchmark for cognitive alignment
in AI, demonstrating superior performance in ZSIR tasks compared to existing state-of-
the-art approaches on both the SUN (92.8% and 82.2%) and CUB datasets (59.92% and
48.82%) for image-to-attribute and attribute-to-image retrieval accuracy. This research
contributes to the broader goal of developing AI technologies that can seamlessly integrate
with human-centric applications, ensuring that AI systems can interpret and respond to the
world in ways that mirror human thought and understanding. The AI-annotated attributes
significantly reduced the time cost compared to human approaches. The AI also provided
human-understand explanation about the rationale of each assigned attribute value. This
finding may have strong implication for future high-level data annotation industry.

Several avenues for future research emerge from our findings. First, exploring the
application of our unified similarity function across a wider array of datasets and in
more diverse scenarios could further validate its robustness and versatility. Additionally,
integrating our approach with other forms of knowledge representation, such as video or
audio data, could offer deeper insights into the cognitive alignment of AI across different
sensory modalities. Another promising direction involves refining the similarity function
to accommodate dynamic learning environments, where AI systems continuously adapt
to new information in a manner akin to human learning. Finally, investigating the ethical
implications of cognition-aligned AI systems and their impact on society will be crucial
as these technologies become increasingly prevalent in everyday life. Through these
future endeavours, we aim to advance the field of AI towards more intuitive, human-like
understanding and interaction with the world, fostering the development of ethical and
cognitively aligned AI systems.
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