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Abstract: Large language models (LLMs) are a compressed repository of a vast corpus of valuable
information on which they are trained. Therefore, this work hypothesizes that LLMs such as Llama,
Orca, Falcon, and Mistral can be used for misinformation detection by making them cross-check
new information with the repository on which they are trained. Accordingly, this paper describes
the findings from the investigation of the abilities of LLMs in detecting misinformation on multiple
datasets. The results are interpreted using explainable AI techniques such as Local Interpretable
Model-Agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), and Integrated Gra-
dients. The LLMs themselves are also asked to explain their classification. These complementary
approaches aid in better understanding the inner workings of misinformation detection using LLMs
and lead to conclusions about their effectiveness at the task. The methodology is generic and nothing
specific is assumed for any of the LLMs, so the conclusions apply generally. Primarily, when it comes
to misinformation detection, the experiments show that the LLMs are limited by the data on which
they are trained.

Keywords: large language models (LLMs); natural language processing; misinformation containment;
eXplainable Artificial Intelligence (XAI); Captum model interpretability; LLM quantization; greedy
decoding; zero-shot prompting; Matthew’s correlation coefficient (MCC); Cohen’s Kappa score

1. Introduction

Large language models (LLMs) are known to hallucinate and produce misinformation.
This work hypothesizes that the same LLMs can be used to detect misinformation. In
this paper, several LLMs are compared for their ability to detect misinformation, while
interpreting the results using explainable AI techniques such as LIME, SHAP, and Inte-
grated Gradients.

With their high level of Natural Language Understanding, LLMs have proven to be
exceptionally versatile and able to accomplish many tasks without fine-tuning gradient
updates [1]. Despite these strengths, LLMs are prone to hallucinations and exploitation,
sometimes producing output ranging from wrong to offensive to nonsensical. Yet, LLMs
also have a track record of being applied to various tasks, ranging from translation to
question answering, and setting new records on these benchmarks [1]. Therefore, in this
paper, the idea of explaining the behavior of LLMs in detecting misinformation is explored.
Specifically, the following questions are investigated:

• RQ1: How do various large language models (LLMs) compare when detecting misin-
formation?

• RQ2: Why do the LLMs differ in their abilities to detect misinformation from an
explainability perspective?
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Depending merely on machine learning evaluation metrics such as accuracy, precision,
and recall to rely on the model’s performance can be misleading [2]. It is important to cor-
roborate the results using explainable AI techniques. This work therefore uses LIME, SHAP,
and Integrated Gradients to assess the LLMs’ performance in detecting misinformation.

1.1. Related Work

Misinformation containment has been investigated extensively and significant suc-
cesses using machine learning have been claimed despite the problem being largely un-
solved [3]. A spectral analysis of the embeddings generated by language models revealed
interesting insights into why the problem is still unsolved [4]. There are numerous on-
line datasets, including the classic LIAR [5] dataset and more recent datasets such as the
COVID-19 dataset [6]. This paper uses both datasets for the experiments. The work that
published the LIAR dataset [5] used a hybrid CNN for misinformation detection. On the
other hand, the research corresponding to the COVID-19 dataset [6] used several traditional
machine learning approaches such as Decision Tree, Logistic Regression, Gradient Boosting,
and Support Vector Machine (SVM). More recent approaches [7] have integrated newer
technologies, including the use of pre-trained transformers such as BERT [8] and XLNet [9].

There seems to be substantial work conducted to mitigate the LLM hallucinations [10]
but there is hardly any work on the use of large language models for misinformation
detection when compared with the use of smaller language models. A recent work to utilize
ChatGPT 3.5 to classify multi-modal misinformation in a binary context [11] mentioned
that it was limited in the scope of its study. It uses only a small sample size. Recent work
has attempted to use ChatGPT 3.5 on misinformation datasets in Chinese and English [12],
noting that even when given Chain of Thought (CoT) prompts, ChatGPT underperformed
in fine-tuning small language models.

Moreover, these works focus only on ChatGPT. While certainly one of the most
accessible LLMs today, ChatGPT is by no means the only LLM available. Other LLMs
include Microsoft’s Orca, Google’s PaLM and Gemini, Meta’s LLaMa family [13], the Falcon
family [14], as well as Mistral [15], among many others. On relevant benchmarks, including
TruthfulQA [16], several of these LLMs perform similarly to GPT4 when compared using
HuggingFace’s Open LLM leaderboard [17]. The existing literature therefore prompts
discussion on how the various LLMs perform when used for the task of misinformation
detection and classification, leading to the research questions listed earlier.

For better understanding, there is also a need to analyze the performance of the LLMs
in this domain using explainable AI (XAI). Explainability in AI has been a fundamental issue
for a long time. Numerous methods such as feature ablation [18], LIME [19], Integrated
Gradients [20], and SHAP [21] have been proposed to provide explanations for the machine
learning models’ behavior. Perturbation-based methods, such as LIME and SHAP, adjust
model inputs to determine which are most responsible for the output. Meanwhile, gradient-
based approaches, such as Integrated Gradients, attempt to use gradients reflecting how
fast the models’ outputs change to indicate which input features are most responsible for
the output.

OpenAI has explored the possibility of using ChatGPT to explain its neurons [22] and
the role they play in generating outputs. A literature survey did not reveal a substantial
amount of literature on using traditional explainability techniques such as LIME and SHAP
on LLMs.

1.2. Contribution of the Paper

LLMs hold a huge potential to play an important role in various aspects of day-to-day
life. This work hypothesizes that in the future, they will play a major role in misinformation
containment as well. The work presented in this paper, to the best of our knowledge, is
unique in assessing and using explainable AI techniques and interpreting the performance
of LLMs in detecting misinformation. The findings are interesting and segue into an
important application domain for LLMs—that of misinformation containment.
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2. Materials and Methods

The first and second research questions have been addressed, respectively, using the
quantitative and qualitative methods described in the next few paragraphs. The second
question is addressed using a qualitative approach due to the nature of the explainability
problem. Explainability algorithms can quantitatively emphasize certain attributes in the
input features that the models focus on, but human interpretations of those highlighted
aspects are qualitative.

The approach primarily comprises prompting LLMs to classify information in datasets
as true or false or a degree between the two. The datasets already contain the correct
classifications. The accuracy of the LLMs in detecting misinformation can be computed
by comparing the predicted and correct classifications, similar to how it is performed in
machine learning classification projects. The predicted classifications are then explained
using post hoc explainability methods, LIME, SHAP, and Integrated Gradients. LLMs are
also asked to explain their classifications. The explanations from the LLMs and the post
hoc explainability methods are compared to understand the LLM behavior when it comes
to misinformation detection. The flow schematic is described in Figure 1.

Figure 1. The approach used for answering the research questions.

Concerning the methods used, two overtures are in order. Deep learning models
normally use high-precision data types, such as 32-bit floating-point numbers, abbreviated
as float32, to store and compute their weights and activations. To reduce the memory
footprint and improve the inferencing speed, a technique called quantization is typically
used. The technique converts float32 parameters into a lower-precision format such as 8-bit
integers (int8) or 4-bit integers (int4). Using fewer bits to store the parameters significantly
reduces the memory needed to store and run the model. Therefore, unless otherwise stated,
4-bit float (fp4) quantization was used for all the experiments detailed in this paper to
reduce our models’ memory footprint and allow the experiments to run efficiently on a
single GPU.

Normally, LLMs pick the next word based on the probabilities assigned by the model.
This is the basis for the technique called sampling. It makes the process stochastic and
the outputs probabilistic. This implies that different outputs are generated each time the
model is run. If sampling is not used, the LLM chooses the next word according to its
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internal understanding. This is a greedy approach as the LLM algorithm picks the most
optimal option at each step, without regard to the long-term consequences. In this greedy
approach, since the model is not making random choices, the outputs generated for a given
prompt are the same even when asked multiple times. For the experiments described in this
paper, unless stated otherwise, the models were made to generate text without sampling,
equivalent to greedy decoding, so that deterministic outputs are produced.

2.1. Quantitative Experiments

For the first research question, the misinformation detection capabilities of Mistral [15],
Llama2 [13], Microsoft’s fine-tuned Orca version [23], and Falcon [14] were explored.
Prompting in the context of large language models (LLMs) is the process by which we
give instructions to the model to carry out a particular task. Zero-shot and few-shot
prompting are two popular methods for guiding LLMs. Zero-shot prompting involves
giving the LLM precise directions without providing any examples of how the work should
be accomplished. This method depends on the LLM’s capacity to comprehend instructions,
adhere to them, and use its internal knowledge to finish the task. On the other hand,
few-shot prompting is analogous to setting an example for the LLM. This method is akin
to providing the LLM with a few examples to demonstrate the desired outcome. The
LLM is given a prompt that describes the work and the intended result, as well as a
limited number of examples, usually one to five, that show them how to perform the task.
These illustrations aid in the LLM’s understanding of the task’s subtleties and increase the
precision of its outputs.

The experiments used both zero-shot and few-shot prompting strategies to obtain a
more holistic view of model performance. Few-shot examples were sampled randomly
from the corresponding dataset for LLM’s comprehension. These samples were excluded
from the dataset used to evaluate the model’s accuracy. The algorithm for evaluating each
model’s accuracy is detailed in Algorithm 1. Accuracy is computed as follows:

Accuracy =
number o f samples correctly classi f ied by the LLM

(Size o f the dataset− number o f samples used as f ewshots

Algorithm 1 LLM performance evaluation.

i← 0
correct← 0
while i ̸= |Dataset| do ▷ For each sample in the dataset

if i /∈ Examples then ▷ If it is not in the few-shot examples used
generation← model.generate(Dataset[i]) ▷ Generate the classification
if generation = Dataset[i][′label′] then

▷ If the label matches what is in the dataset
correct← correct + 1

▷ Increment the number of correctly classified samples
end if

end if
i← i + 1 ▷ Proceed to the next sample

end while
accuracy← correct÷ (|Dataset| − |Examples|)
▷ In the denominator, subtract the samples used as few-shots from the size of the dataset

In addition to the accuracy, the F1-score, Matthew’s correlation coefficient (MCC), and
Cohen’s Kappa score [24] were also computed for all the experiments. These metrics are
generally considered to be effective even for imbalanced datasets. MCC is particularly
recommended for binary classification in all scientific domains [25].

Matthew’s correlation coefficient, MCC, is given by the following formula:
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MCC =
(TP · TN− FP · FN)√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

where (TP) is True Positive; (TN) is True Negative; (FP) is False Positive; and (FN) is False
Negative.

A comprehensive set of metrics and results is tabulated in Appendix B.

2.2. Misinformation Detection in the COVID-19 Dataset

The COVID-19 dataset [6] used for the first set of experiments contains 10,700 social
media posts and articles related to COVID-19, labeled as real or fake news. The dataset
contains conjecture and false information regarding COVID-19 gathered from fact-checking
websites, along with actual news from recognized Twitter accounts like those of the CDC
and the WHO. The information is manually checked and annotated as authentic or fraudu-
lent. There are 52.34% actual news and 47.66% fake news samples in the dataset, making
it a fairly balanced dataset. Real posts average 31.97 words, whereas false posts average
21.65 words. The total number of terms in the vocabulary is 37,503. Using machine learning
models such as SVM, Logistic Regression, Decision Trees, and Gradient Boosting, the
authors benchmarked the dataset. On the test set, SVM had the best F1-score of 93.32% for
differentiating between fake and authentic news. The algorithm and dataset are available
to the public to further study automatically detecting fake news.

For the experiments in this paper, the models were given a multiple-choice question
that prompted them to give a binary response as to whether a given claim was true or false.

2.3. Prompting Strategy for the COVID-19 Dataset

Each entry within the dataset contained the following fields:

• id;
• tweet;
• label.

The information snippets in the dataset were truncated to a maximum length of
256 tokens before converting each entry into a prompt in the following format:

Please select the option (A or B) that most closely describes the following claim:
{truncated tweet}.

(A) True

(B) False

Choice: (

The reason for the ( at the end of each prompt strategy was to prevent the undesired
behavior of models starting a new line and then elaborating on a response without giving a
single-letter answer. It was determined that by adding the (, most models responded with
a letter answer as the first new token.

No system prompts were prepended to the prompts. For few-shot prompts, the target
question was formatted as mentioned above and the examples were similarly provided to
the LLM. The few-shot examples contained the single-letter answer for the given example,
closing parentheses, and two ending newlines.

2.4. Accuracy Computation for the COVID-19 Dataset

The performance of the models is summarized in Tables 1 and 2. The former lists the
accuracy and the latter lists a more exhaustive set of metrics.
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Table 1. Model performance on the COVID-19 dataset.

LLama2-7b Falcon-7b Mistral-7b Orca-7b Avg

Zero-Shot 58.15% 49.72% 80.75% 60.50% 62.28
1-Shot 54.10% 39.44% 82.01% 57.60% 58.29
5-Shot 57.35% 52.33% 83.04% 80.69% 68.35

Table 2. Multi-class classification metrics for models evaluated on the COVID-19 dataset in a binary
classification setting.

Precision Recall F1 MCC Kappa

0-Shot
COVID

Orca 0.661 0.578 0.526 0.225 0.162
Falcon 0.465 0.500 0.346 −0.008 −0.001
Llama 0.600 0.599 0.596 0.199 0.197
Mistral 0.684 0.649 0.638 0.331 0.303

1-Shot
COVID

Orca 0.656 0.531 0.425 0.140 0.065
Falcon 0.428 0.437 0.414 −0.135 −0.123
Llama 0.618 0.532 0.417 0.123 0.061
Mistral 0.688 0.686 0.687 0.374 0.373

5-Shot
COVID

Orca 0.692 0.670 0.665 0.361 0.344
Falcon 0.262 0.500 0.344 −0.009 −0.000
Llama 0.621 0.554 0.472 0.161 0.104
Mistral 0.712 0.692 0.689 0.404 0.389

Curiously, Mistral outperforms its competitors immensely when it comes to detecting
COVID-19-related misinformation. When given 5-shot prompts, Orca performed similarly
to Mistral, perhaps because those prompts better establish the context of the problem.
However, Orca’s performance on 1-shot and 0-shot prompts is drastically less than Mistral’s.
Meanwhile, Falcon’s performance is consistently the lowest, with an average accuracy
of 47.16%, less than it would have achieved from randomly guessing. Similarly, the
performance of Llama is only slightly better than random chance.

2.5. Misinformation Detection in the LIAR Dataset

Finding the differences in their performance intriguing, the next set of experiments
was performed on the LIAR dataset [5]. The LIAR dataset is made up of a set of assertions
with labels indicating their veracity. It includes about 12,800 brief quotes taken from the
fact-checking website PolitiFact.com about political claims. On a scale ranging from “pants
on fire”, which indicates utter falsity, to “true”, each statement is given a label that indicates
its degree of veracity. The dataset is accessible to the general public and can be used to
train machine learning models that identify false information.

Similarly to how it was conducted with the COVID-19 dataset, each entry is converted
into a multiple-choice question for easy grading. However, instead of binary classification,
the models were asked to classify the given statement as one of the 6 labels in the LIAR
dataset, namely “True”, “Mostly True”, “Half True”, “Barely True”, “False”, and “Pants
on Fire”. These labels comprise 16.1%, 19.2%, 20.5%, 16.4%, 19.6%, and 8.2%, respectively,
of the dataset. Later, we convert the dataset to the binary labels True and False, which
comprise 55.8% and 44.2%, respectively, of the dataset.

2.5.1. Prompt Strategy for the LIAR Dataset

Each entry in the LIAR dataset contained the following fields:
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• id;
• label;
• statement;
• subject;
• speaker;
• job_title;
• state_info;
• party_affiliation;
• barely_true_counts;
• false_counts;
• half_true_counts;
• mostly_true_counts;
• pants_on_fire_counts;
• context.

Each entry would then be converted into a prompt of the following format:

Please select the option that most closely describes the following claim by {speaker}:

{statement}

A) True

B) Mostly True

C) Half True

D) Barely True

E) False

F) Pants on Fire (absurd lie)

Choice: (

2.5.2. Performance of the LLMs on the LIAR Dataset

Based on its performance on the COVID-19 dataset, Mistral was expected to exhibit a
similar stellar performance. Intriguingly, the results proved to be significantly different. All
the LLMs perform poorly on the LIAR dataset, barely outperforming random chance. These
results appear to contradict the results of prior research in the literature that proved LLMs
to be extremely capable of detecting misinformation [11]. Perhaps more surprising is the
fact that although 1-shot prompting outperformed zero-shot prompting, 5-shot prompting
underperformed both 1-shot prompting and 5-shot prompting. These numbers did not
change drastically even when providing the context and party affiliation in our prompts.
The results are summarized in Table 3.

Table 3. Model accuracy on the LIAR dataset.

Llama2-7b Falcon-7b Mistral-7b Orca-7b Avg

Zero-Shot 20.15% 19.36% 22.20% 16.61% 19.58
1-Shot 21.46% 19.21% 22.84% 20.83% 21.01
5-Shot 17.72% 19.12% 22.53% 12.08% 17.86

A more detailed set of metrics is presented in Table 4.

Table 4. Multi-class classification metrics for models run with deterministic outputs on the LIAR
dataset.

Precision Recall F1 MCC Kappa

0-Shot
Orca 0.295 0.171 0.063 0.014 0.005

Falcon 0.154 0.168 0.074 0.005 0.002
Llama 0.136 0.187 0.112 0.034 0.028
Mistral 0.225 0.230 0.196 0.063 0.059



Electronics 2024, 13, 1673 8 of 30

Table 4. Cont.

Precision Recall F1 MCC Kappa

1-Shot
Orca 0.206 0.190 0.120 0.038 0.023

Falcon 0.126 0.168 0.056 0.009 0.001
Llama 0.157 0.187 0.111 0.036 0.024
Mistral 0.267 0.232 0.214 0.076 0.071

5-Shot
Orca 0.187 0.192 0.081 0.032 0.018

Falcon 0.099 0.167 0.054 0.000 0.000
Llama 0.203 0.234 0.156 0.050 0.045
Mistral 0.245 0.218 0.193 0.058 0.054

The distribution of the answers produced by the LLMs is shown in Figure 2. As can
be seen from the figure, with the exclusion of Mistral, the answer distributions produced
by the LLMs were dominated by only two answers, “B”, for “Mostly True”, and “D”, for
“Barely True”. Speculating that this may be due to the LIAR dataset’s scale of True values
(“Half True”, “Mostly True”, “Barely True”, “True”) and ambiguity between such labels,
the experiments were repeated with binary True and False values, where “True”, “Mostly
True”, and “Half True” were counted as “True”, while “Barely True”, “False”, and “Pants
on Fire” were counted as “False”. Unfortunately, repeating the experiments with binary
options did not yield appreciably better results. The models still barely outperformed
random chance on average, as can be observed from Table 5 and Figure 3.

Figure 2. Zero-shot answer distribution for Falcon, Mistral, Llama, and Orca. A corresponds to True,
B to Mostly True, C to Half True, D to Barely True, E to False, F to Pants on Fire, and UNK to an
answer that fell into none of the above categories. Falcon’s answers are highly skewed toward B
(Mostly True). Mistral exhibited the most diverse answer distribution, which may be why it was
more accurate than other models. Llama’s answers are highly skewed toward B (Mostly True) and D
(Barely True). Orca is highly biased toward A (True).
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Table 5. LLM performance on the LIAR dataset with binary response. Percentages reflect the accuracy
obtained by each model.

Llama2-7b Falcon-7b Mistral-7b Orca-7b Avg

Zero-Shot 46.53% 44.98% 56.95% 59.78% 52.06
1-Shot 44.39% 44.15% 58.22% 56.53% 50.82
5-Shot 50.53% 47.51% 59.10% 58.71% 53.96

Figure 3. Models’ deterministic 0-shot answer distribution for LIAR with binary truth values. While
we expected the distributions to look much closer to a uniform distribution, the models continue to
produce skewed distributions. Orca’s distribution continues to be skewed toward A (True), while
Llama’s distribution is skewed toward B (False). While Falcon’s normal 0-shot distribution is skewed
toward Mostly True, its binary distribution is skewed toward B (False). Some of the answers are
neither A nor B, so are categorized as UNK.

To test whether the LLM settings to produce deterministic outputs were the cause for
skewed distributions and poor performance, the experiments were repeated by setting the
LLMs for nondeterministic random sampling. While the distributions of the LLM answers
were less skewed, the experiment (Table 6) yielded similar results in terms of accuracy, with
models failing to perform much better than random chance. Similarly, Table 7 shows that
repeating experiments with half-precision 7b models failed to result in any drastic changes
in model accuracy overall. This suggests that these poor results are not a random chance,
but rather the result of model weights.

Table 6. Model accuracies with nondeterministic sampling using the original 6 labels from the LIAR
dataset. The accuracies are not significantly better than those of Table 3.

Llama-2-7b Falcon-7b Mistral-7b Orca-7b Avg

Zero-Shot 18.92 14.78 21.73 17.26 18.17
1 Shot 19.78 18.42 21.97 18.81 19.74
5-Shot 14.10 18.70 21.64 13.80 17.06

Table 7. Model accuracies when models were evaluated in bfloat16 mode using the original 6 labels
from the LIAR dataset. The accuracies are only slightly better than those of Table 3.

Llama-2-7b Falcon-7b Mistral-7b Orca-7b Avg

Zero-Shot 20.43 19.44 22.46 17.72 20.01
1 Shot 14.46 16.04 24.83 21.34 19.17
5-Shot 11.98 19.21 23.61 13.85 17.16
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3. Interpretation of the Results Using Explainable AI Techniques

Given the poor performance of LLMs on the LIAR dataset, the next set of experiments
explores what features LLMs were looking at when they came up with their predictions.
While simply prompting an LLM for an answer is an option, we explore using known
explainability techniques: Integrated Gradients, LIME, and SHAP.

3.1. Integrated Gradients

Integrated Gradients [20] is an approach that integrates the gradients of each input
feature to determine the contribution of each input feature to the model’s output. In the
context of the experiments, features, words, and tokens, all refer to the constituents of
the prompt. Gradients serve as the attribution scores. As such, the result of integrating
the gradients should equal the model’s output, and the difference between the Integrated
Gradients and the model’s output with the convergence delta should give a sort of intuition
on how accurate the attributions are, as described by the axioms in the original paper [20].

Sundarajan et al. [20] formally defined Integrated Gradients by the following equation:
IntegratedGradsi(x) = (xi − x′i)×

∫ 1
α=0

∂F(x′+α×(x−x′))
∂xi

dα. In the equation, xi represents
the input data item and x′i is the baseline reference item. Thus, the aim of Integrated
Gradients is to comprehend the shift in the model’s output from the baseline (x’) to the
actual input (x). To do so, the Integrated Gradients method uses a variable alpha α, which
ranges from 0 to 1, to progress along a straight-line path between x’ and x. Along this path,
in the core equation, the gradient of the model’s output (f) with respect to the input (x)
must be integrated. When proposing Integrated Gradients, Sundararajan et al. [20] also
proposed a way to approximate the Integrated Gradients using Reimann sums according
to the following equation, which is used in our experiments:

IntegratedGradsapprox
i (x) ::= (xi − x′i)×∑m

k=1
∂F(x′+ k

m×(x−x′))
∂xi

× 1
m

3.2. LIME

Local Interpretable Model-agnostic Explanations [19], abbreviated LIME, is another
explainability approach that aims to provide localized interpretations of each feature’s
contribution to the model’s output. LIME is a perturbation-based approach that produces
an explanation based on the following formula:

E(x) = argming∈GL( f , g, πx) + Ω(g)

where G is the family of explanation functions, L is a fidelity function, πx is the input
features, Ω is a complexity measure, and f is the function to approximate.

When proposing LIME, Ribiero et. al [19] explored using an approximation model as g,
where g is trained to predict the target model’s output (f ), based on which input features are
removed or masked, thereby approximating how features contribute to the target model’s
output as per the above equation. In the experiments for this work, Captum [26] and its
implementation of LIME are used.

3.3. SHAP

SHAP [21] is another explainability approach based on the game theory concept of
Shapley values, which measure each player’s contribution in a cooperative game. In a
machine learning context, this translates to each feature’s contribution to the model’s output.
The paper that proposed SHAP also proposed using a fixed-length kernel to approximate
Shapley values [21]. The experiments use these approximate Shapley values.

3.4. Setup and Hyperparameters

For the experiments, 150 random samples were selected from the LIAR dataset. They
were converted to prompts as described above. Next, the above explainability methods
were run on each prompt, using their implementations in Captum library.



Electronics 2024, 13, 1673 11 of 30

The Integrated Gradients method was performed in the embedding space using
n_steps = 512, the number of rectangles to use in the Reimann sum approximation of the
Integrated Gradients, since smaller numbers of steps lead to greater discrepancies between
the Integrated Gradients and the actual model outputs. Using n_steps = 512 was sufficient
to consistently reduce the convergence delta, or the difference between the sum of the
attributions and the actual model outputs, to less than 10 percentage points. Increasing the
number of steps to 1024 and above led to only slightly more accurate approximations at
the cost of much more computing power. Therefore, for better efficiencies, all experiments
used 512 steps.

LIME and SHAP were each performed with 512 perturbation samples. The approxi-
mation model used for LIME was an SKLearnLasso model with α = 0.0003. Our similarity
function for token sequences was the cosine similarity of said sequences in the embed-
ding space. Our perturbation function for LIME masked tokens whose indexes i were
sampled from a discrete uniform distribution U(1, n), where n is the number of tokens in
the tokenized prompt. When the first token was allowed to be masked using the distribu-
tion U(0, n), model outputs were sometimes NaN. This may be due to the nature of LLM
tokenization creating a start token, which was determined to be crucial to maintaining
meaningful outputs. The similarity function used for LIME was the cosine distance in the
embedding space.

3.5. Interpretation of the Model Performance

Figures 4–7 show the output from the explainability algorithms generated for a random
sample from the LIAR dataset. The figures compare the results of the different explainability
techniques across different models. The figures show the classification that the model
produced along with the probability attached to it. For example, Mostly True (0.07) indicates
that the probability of outputting “B”, which corresponds to Mostly True, was 0.07, and
the highlighted text that goes with it indicates what tokens increased or decreased that
probability. The highlighted token’s impact on the overall model output is reflected in the
highlight’s intensity.

The importance an LLM attaches to the words in the prompt to arrive at the classi-
fication is determined by the highlighting and the color legend. Most of the attributions
in the figures seem similar to what humans would highlight if they were to classify the
same claims. For instance, in Figure 4, the highlighting using SHAP shows that the LLM’s
decision to classify the statement as “B) Mostly True” was positively influenced by the
words highlighted in green such as “that most closely describes, Hillary, such lies, ...” and
negatively influenced by “claim by, Trump, about, foreign policy, ...” in red. More of
such attributions and classifications for other snippets from the dataset can be viewed in
Figure A1 in Appendix A.

Figure 4. Explainability results from Integrated Gradients, LIME, and SHAP for Falcon LLM on a
sample from the LIAR dataset.
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Figure 5. Explainability results from Integrated Gradients, LIME, and SHAP for Orca LLM on a
sample from the LIAR dataset.

Figure 6. Explainability results from Integrated Gradients, LIME, and SHAP for the Mistral LLM on
a sample from the LIAR dataset.

Figure 7. Explainability results from Integrated Gradients, LIME, and SHAP for the Llama LLM on a
sample from the LIAR dataset.

To aid in the visualization of the contributions of each token, attributions were scaled
by a factor of 2

max(abs(attributions)) . These attributions were then used solely for visualization,
and the original attributions were used in the rest of the experiments. Brightnesses of
colors, ranging from 0 to 100, were calculated using the Captum package, which calculates
intensity as

f (a, b) =

{
50× attr if attr ≥ 0
40× attr if attr < 0

Consistently, the words Please at the beginning of each prompt and the word Choice
at the end of each prompt were found to be important contributors to the model’s output.
LIME and Integrated Gradients produced sparser attributions on average, although LIME
curiously did not highlight the word Please nearly as often as Integrated Gradients. As can
be seen from Table 8, out of the three explainability methods used, SHAP by far produced
the most varied attributions. This is confirmed by the fact that words besides Choice
appeared highlighted far more often than for the other two methods.
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Table 8. The average minimum percentage of tokens whose attributions’ magnitudes sum to 85% of
the total attribution’s magnitude. IG and LIME on average require fewer tokens to reach 85% of the
total attribution’s sum, meaning that they highlight more sparingly than SHAP.

Experiment
Type

Llama-2-7b-
chat-hf Orca-2-7b Falcon-7b-

Instruct
Mistral-7B-

Instruct-v0.2 Average

IG 45.5% 46.6% 47.0% 51.2% 47.6%
LIME 43.8% 46.2% 29.0% 42.4% 40.3%
SHAP 55.4% 55.1% 55.9% 57.5% 56.0%

Average 47.5% 48.0% 44.7% 50.5%

Despite these non-intuitive observations, LIME, SHAP, and Integrated Gradients do
highlight features, which in this case are words or parts of words, in the prompt that
humans would categorize as important. Hot topics, such as “third-trimester abortion” and
“illegal aliens”, as well as large quantities, such as “billions” or “millions”, are often labeled
as important features by at least one of the explainability methods, as seen in Figures 8–11.
The speaker and any named entities in the claim are also frequent contributors to model
outputs. Similarly, strong actions or verbs within the claims, such as “murder”, are also
labeled as important features (Figure 12). More of such information from the dataset is
analyzed in Figures A2–A4 in Appendix A.

Figure 8. Explainability results from Integrated Gradients, LIME, and SHAP for the Mistral LLM on
a sample from the LIAR dataset showing how important the hot topic of “federal military spending”
is for the LLM’s prediction.

Figure 9. Explainability results from Integrated Gradients, LIME, and SHAP for the Mistral LLM on
a sample from the LIAR dataset showing how important the hot topic of “illegal aliens” is for the
LLM’s prediction.
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Figure 10. Explainability results from Integrated Gradients, LIME, and SHAP for the Llama LLM on
a sample from the LIAR dataset showing the importance of large quantities, like “millions” on the
LLM’s prediction.

Figure 11. Explainability results for Mistral LLM showing the importance of controversial issues
such as “third-trimester abortion”.

Figure 12. Explainability results for Mistral LLM showing the importance of words that hint at
controversial associations, such as “percent”, “murders”, and “illegal aliens”.

The results from the explainability methods do not entirely align with the quantitative
results since they suggest that most of the models do focus on the correct aspects of prompts.
In other words, these results suggest that LLMs understand the prompts and know what to
focus on, but lack the correct knowledge, possibly because the LLMs were not trained on
the corresponding facts.

The problem is further examined by analyzing differences in results between models.
First, a comparison is made between numerical attribution values, which varied signifi-
cantly amongst models. Figure 13 shows a summary of the comparison. Falcon showed the
least average token-wise importance. This is likely because Falcon showed the lowest level
of confidence in its predictions out of the four models that were compared. Confidence is
indicated by the probabilities output from the softmax function when the model predicted
the next token. It exhibited an average confidence of less than fifty percent for predicting
the next token. This clarifies why Falcon has low token-wise importance when using
explainability methods like SHAP and Integrated Gradients, whose attributions add up to
the model’s prediction. Interestingly, the same trend holds for LIME attributions as well,
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as visible in Figure 13, even though the attributions are not additive. The opposite holds
true as well. Models that were more confident in their results, such as Orca and Mistral, as
seen in Figure 13, exhibited higher token-wise importance. Strangely, while Orca’s mean
confidence is at least 20 percentage points less than Mistral’s, Orca’s mean LIME token-wise
attribution is slightly greater than Mistral’s.

Figure 13. Mean confidence and LIME mean attributions. Mistral’s mean confidence was the highest,
which explains why its token-wise Integrated Gradients and SHAP attribution scores were the
greatest. The converse applies to Falcon. Notably, the relative distribution of LIME token-wise
attribution scores roughly matches that of the model confidences.

The distribution of the attributions plotted in Figure 14 shows that Falcon’s token-wise
importance distribution is highly centered around 0 with a smaller standard deviation
when compared to other models. In contrast, Mistral, which performed the best out of the
models evaluated, has a different kind of plot. The curve in the plot reveals a token-wise
significance distribution with more fluctuations, volatility, and a higher standard deviation.
This may be a key factor, from an explainability perspective, why Mistral outperforms
its competitors. The distributions in the plot suggest that Mistral prominently uses more
tokens in the prompt than its competitors do, thereby allowing it to better respond to
the prompt.

Figure 14. Integrated Gradients distributions pre-scaling on a random sample from the LIAR dataset.
Falcon’s distribution is highly centered around 0, while other models exhibit wider distributions.

The initial plots used for comparisons were based on LIME, SHAP, and Integrated
Gradients’ token-wise attributions. However, SHAP and Integrated Gradients attributions
are additive and sum to the predicted probability. Therefore, the raw token-wise attributions
may not be a fair comparison given the varying levels of confidence exhibited by different
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models. To account for this, each attribution is scaled by a factor of 1
sum(attribution) . The

scaled graphs showed similar trends, as seen in Figure 15.

Figure 15. Distributions from the Integrated Gradients after scaling on the same random sample
from the LIAR dataset. Even after accounting for scaling differences, Falcon’s distribution still
has the tallest peak out of the models we compared, suggesting that most tokens do not impact
Falcon’s output.

The plots reflect token-wise importance for specific entries within the LIAR dataset.
The attributions produced by Integrated Gradients, LIME, and SHAP are all highly local.
An aggregation of the attributions, despite losing information about local fluctuations,
maintains most of the characteristics of the overall distributions. Accordingly, the aggre-
gated scaled attributions are plotted in Figure 16. Notably, Falcon’s distribution curve still
has the smallest standard deviation and the highest peak of all the models, confirming
suspicions that Falcon does not pay enough attention to most of the tokens to answer
prompts with the same accuracy as its peers. In contrast, models that perform better have
wider distribution curves.

Figure 16. Cont.
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Figure 16. Aggregated scaled Integrated Gradients attributions, aggregated LIME attributions, and
aggregated scaled SHAP attributions. On the given subset of the dataset examined, the explainability
methods revealed that Falcon consistently ignores many tokens compared to its competitors, poten-
tially leading to its poor performance. All the explainability methods reveal that Falcon’s distribution
curve is the least wide, although it is much clearer from LIME and Integrated Gradients than it is
from SHAP.

To determine how well models could explain their predictions, the next step was to
compare the results from the explainability methods with explanations from the models
themselves. When asked to explain their answers, models frequently pointed to background
information regarding the topic and any named entities important to and appearing in the
claim. Notably, while the speaker may be highlighted by explainability methods, models
rarely cite information specific to the speaker. Perhaps more interestingly, models cited
different evidence and provided different levels of detail when supporting their claims.
Mistral and Orca’s explanations were on average longer and more detailed than their
competitors. Moreover, Mistral and Orca often produced explanations without explicitly
being prompted for them. Llama sometimes produced explanations without explicit
prompting, and Falcon often required explicit prompting, at which point it would provide
the shortest explanations, if any.

Nevertheless, side-by-side comparisons of model explanations (Figure 17) and current
explainability algorithms appear to complement each other, as the latter reveals keywords
in the text that appear to trigger the models’ world knowledge, which is revealed explicitly
in the former. Once again, this suggests that models are capable of focusing on the right
words and are only failing to answer correctly because they were trained on insufficient,
outdated, or inaccurate information.

Figure 17. LIME outputs and LLaMa explanations. LLaMa cites background evidence related to the
topics and words that LIME highlighted, suggesting that the models understand the prompts but
may fail to respond correctly due to incorrect or outdated background knowledge.

4. Discussion

The poor performance of several language models on the LIAR dataset was unexpected.
The following paragraphs attempt to suggest conjectures to explain the reason for the
models’ poor performance on the LIAR dataset.

One potential reason for the models’ poor performance is the data cutoff date. For
LLMs, the data cutoff date is the date after which newer data are not incorporated into the
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training set. An older data cutoff date leads to outdated knowledge, which could negatively
impact the models’ ability to detect misinformation. However, this conjecture is not the
only reason. When the experiments were repeated with Google’s recently released Gemma
7b [27], Gemma’s accuracy on the LIAR dataset when evaluated on zero-shot prompts in
bfloat16 precision was only 20%, which is roughly equivalent to the accuracies of the
other models that were trained with older data cutoff dates.

Another possible conjecture is the difference in the datasets. This conjecture seems
more likely than the previous one. When comparing LLM performance on LIAR with LLM
performance on the datasets examined by Hu et al. [12] and also the COVID-19 dataset
examined in this paper, the models severely underperform on LIAR than on other datasets.
However, the datasets examined by Hu et. al [12], which are the Weibo 21 dataset [28] and
the Gossip Cop dataset from FakeNewsNet [29], contain samples that are easily identified
as information or misinformation by giveaways within the samples themselves, including
emotionally charged words and differences in writing styles [12]. Most notably, Nan
et al. [28] benchmarked their Weibo 21 dataset with Text CNNs, which achieved an average
of over 80% accuracy, and Patwa et al. [6] benchmarked their COVID-19 dataset with SVMs,
which outperformed other methods and achieved an average of over 90% accuracy. In
contrast, CNNs, which outperformed SVMs on the LIAR dataset, achieved only an average
of 27% accuracy on the LIAR dataset. This suggests that the LIAR dataset and the Weibo
21 dataset differ fundamentally in terms of the content of their samples. It also explains
the differences in LLM accuracies on the different datasets; in both cases, zero to few-shot
LLMs achieved accuracies in the same range as—although slightly less than—those of SLMs
trained on the corresponding datasets. Similarly, the work conducted by Caramancion
et al. [11] uses self-contained samples taken from social media posts that, like those from
FakeNewsNet and Weibo 21, have giveaways within their structure that help LLMs achieve
the high accuracy recorded in the paper.

This difference in datasets is interesting theoretically, as it suggests that something
is missing in the LIAR dataset, preventing AI models, even LLMs trained on trillions of
tokens, from accurately classifying samples based on the given labels. The missing aspect
may be the context-specific background knowledge. The finer granularity of six labels
versus two used for the classification may also be contributing to the poor performance.
LLMs perform well at detecting COVID-19 misinformation, and COVID-19 information is
something that LLMs have most likely seen a lot of. Future work may attempt to provide
LLMs with the required context, perhaps by using Retrieval Augmented Generation (RAG)
or fine-tuning, and assess their performance afterward.

Recent pushes for open-sourcing have led to many LLM companies open-sourcing
their weights, and sometimes even open-sourcing the instruction datasets that they were
fine-tuned on. Containing trillions of tokens and many terabytes of information, as op-
posed to the megabytes of tokens found in open-sourced assistant datasets, like OpenAs-
sistant [30], these datasets comprise the majority of the data that models learn from and
ultimately recite. Yet, despite trends toward open-sourcing, the datasets used to train these
foundation models have not been open-sourced. For example, Touvron et al. [13] describe
steps taken to clean, filter, and otherwise preprocess their training corpus. The authors do
not reveal what their training corpus comprised. In another instance, Jiang et al. [15] only
describe their model architecture but do not disclose the training corpus used for their
model. There may be differences within the respective datasets used to train the models
compared in this paper, leading to the differences in accuracies between models. There is
also a chance that Reinforcement learning from Human Feedback (RLHF) to make models
production-ready [31] may result in models being more adept at classifying certain types of
misinformation, as the trainers working on RLHF may be more sensitive to certain types
of misinformation. This may be another contributing factor to the immense differences in
model accuracy on the COVID-19 dataset, especially given Mistral’s extensive guardrails.
In future work, it may be interesting to use Mistral’s RLHF process on Llama models and
evaluate whether they detect misinformation better afterward.
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5. Conclusions

This work presented a quantitative and qualitative comparison of multiple large foun-
dation models’ abilities to detect misinformation. This work also qualitatively inspected
the relationship between LLM inputs and outputs to explain the differences in the models’
performance. In doing so, the limits of misinformation detection owing to the composi-
tion of datasets were compared. While LLMs alone are not currently capable of effective
misinformation containment, augmented LLMs may eventually be part of an ecosystem
of checks and cross-checks for misinformation containment. Future work may attempt to
similarly benchmark larger models and verify that these trends hold even for larger models.

Author Contributions: Conceptualization, V.S.P.; methodology, V.S.P.; software, C.E.H.; valida-
tion, C.E.H. and V.S.P.; formal analysis, V.S.P.; investigation, V.S.P. and C.E.H.; resources, C.E.H.;
writing—original draft preparation, V.S.P. and C.E.H.; writing—review and editing, V.S.P.; visualiza-
tion, C.E.H.; supervision, V.S.P.; project administration, V.S.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Undergraduate Research Opportunity Program (UROP)
at San Jose State University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Explainability Figures

Below are several explainability figures produced by the experiments.

Figure A1. Cont.
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Figure A1. Explainability results from Integrated Gradients, LIME, and SHAP for Falcon LLM on a
few samples from the LIAR dataset.

Figure A2. Cont.
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Figure A2. Explainability results from Integrated Gradients, LIME, and SHAP for the Llama LLM on
a few samples from the LIAR dataset showing the importance of tokens on the LLM’s prediction.

Figure A3. Cont.
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Figure A3. Explainability results from Integrated Gradients, LIME, and SHAP for the Mistral LLM
on a few samples from the LIAR dataset.

Figure A4. Cont.
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Figure A4. Explainability results from Integrated Gradients, LIME, and SHAP for Orca LLM on a few
samples from the LIAR dataset.

Appendix B. Multi-Class Classification Metrics

Below is the remainder of the full multi-class classification metrics for the experiments
performed in the article. Tables 2, 4 and A1–A3, show macro-averages for precision, recall,
and F1-score, as well as Matthew’s correlation coefficients (MCCs) and Cohen Kappa scores
(Kappa). Tables A4–A8 show classwise precision, recall, and F1-score. When precision is
undefined, N/A is put in its place and it is assumed to be 0 when calculating averages.

Table A1. Multi-class classification metrics for models run with nondeterministic outputs on the
LIAR dataset.

Precision Recall F1 MCC Kappa

0-Shot
Orca 0.178 0.172 0.142 0.010 0.009

Falcon 0.167 0.133 0.145 0.001 0.001
Llama 0.178 0.178 0.117 0.017 0.015
Mistral 0.217 0.226 0.204 0.059 0.056

1-Shot
Orca 0.183 0.184 0.171 0.022 0.021

Falcon 0.173 0.169 0.163 0.007 0.007
Llama 0.191 0.187 0.146 0.023 0.021
Mistral 0.239 0.216 0.199 0.054 0.051

5-Shot
Orca 0.188 0.195 0.115 0.027 0.021

Falcon 0.183 0.175 0.166 0.012 0.012
Llama 0.161 0.204 0.100 0.024 0.018
Mistral 0.227 0.205 0.202 0.045 0.044
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Table A2. Multi-class classification metrics for float16-precision models on the LIAR dataset.

Precision Recall F1 MCC Kappa

0-Shot
Orca 0.195 0.180 0.079 0.034 0.016

Falcon 0.121 0.167 0.109 0.002 0.001
Llama 0.174 0.190 0.126 0.037 0.031
Mistral 0.223 0.226 0.195 0.062 0.057

1-Shot
Orca 0.202 0.239 0.148 0.076 0.063

Falcon 0.265 0.211 0.113 0.050 0.039
Llama 0.165 0.207 0.114 0.036 0.028
Mistral 0.293 0.234 0.219 0.082 0.078

5-Shot
Orca 0.192 0.209 0.107 0.049 0.033

Falcon 0.032 0.167 0.054 0.000 0.000
Llama 0.315 0.196 0.082 0.022 0.014
Mistral 0.257 0.234 0.232 0.072 0.071

Table A3. Multi-class classification metrics for models evaluated on the LIAR dataset in a binary
classification setting.

Precision Recall F1 MCC Kappa

0-Shot bool
Orca 0.618 0.556 0.511 0.163 0.121

Falcon 0.475 0.475 0.436 −0.045 −0.038
Llama 0.525 0.510 0.403 0.032 0.019
Mistral 0.584 0.581 0.567 0.165 0.157

1-Shot bool
Orca 0.620 0.509 0.388 0.067 0.021

Falcon 0.387 0.500 0.307 −0.010 −0.000
Llama 0.596 0.502 0.312 0.025 0.003
Mistral 0.593 0.592 0.582 0.185 0.179

5-Shot bool
Orca 0.589 0.590 0.587 0.179 0.178

Falcon 0.600 0.527 0.393 0.104 0.048
Llama 0.589 0.547 0.461 0.129 0.085
Mistral 0.587 0.587 0.587 0.175 0.175

Table A4. Multi-class classification metrics for models run with deterministic outputs on the LIAR
dataset. Label A corresponds to “True”, label B corresponds to “Mostly True”, label C corresponds to
“Somewhat True”, label D corresponds to “Barely True”, label E corresponds to “False”, and label F
corresponds to “Pants on Fire”. For each class, precision, recall, and F1-score are displayed in first,
second, and third rows, respectively.

A B C D E F

0-Shot

0.165 0.145 0.128 0.114 0.341 0.875
Orca 0.975 0.021 0.004 0.002 0.019 0.007

0.282 0.037 0.007 0.004 0.035 0.013

N/A 0.194 0.533 N/A 0.194 N/A
Falcon 0.000 0.917 0.003 0.000 0.086 0.000

0.000 0.320 0.006 0.000 0.120 0.000
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Table A4. Cont.

A B C D E F

0.164 0.221 0.250 0.182 N/A 0.000
Llama 0.057 0.611 0.002 0.455 0.000 0.000

0.084 0.324 0.003 0.260 0.000 0.000

0.237 0.203 0.243 0.168 0.237 0.263
Mistral 0.415 0.395 0.011 0.056 0.241 0.264

0.301 0.268 0.020 0.083 0.239 0.264

1-Shot

0.234 0.196 0.222 0.000 0.257 0.327
Orca 0.165 0.849 0.001 0.000 0.041 0.085

0.193 0.318 0.002 0.000 0.071 0.135

N/A 0.192 N/A N/A 0.333 0.233
Falcon 0.000 0.998 0.000 0.000 0.000 0.007

0.000 0.323 0.000 0.000 0.001 0.013

0.000 0.230 N/A 0.120 0.206 0.388
Llama 0.000 0.246 0.000 0.001 0.821 0.054

0.000 0.237 0.000 0.003 0.329 0.095

0.298 0.236 0.260 0.190 0.268 0.352
Mistral 0.105 0.491 0.050 0.334 0.240 0.171

0.155 0.319 0.084 0.242 0.253 0.230

5-Shot

0.254 0.326 0.158 0.076 0.217 0.093
Orca 0.022 0.051 0.003 0.003 0.144 0.926

0.040 0.088 0.007 0.006 0.173 0.169

0.400 0.192 N/A N/A N/A N/A
Falcon 0.001 0.999 0.000 0.000 0.000 0.000

0.002 0.322 0.000 0.000 0.000 0.000

0.249 0.288 0.184 0.160 0.185 0.152
Llama 0.126 0.093 0.003 0.291 0.143 0.750

0.167 0.140 0.005 0.207 0.161 0.253

0.214 0.196 0.202 0.187 0.285 0.387
Mistral 0.455 0.371 0.019 0.088 0.249 0.127

0.291 0.256 0.035 0.120 0.266 0.191

Table A5. Multi-class classification metrics for models run with nondeterministic outputs on the LIAR
dataset. Label A corresponds to “True”, label B corresponds to “Mostly True”, label C corresponds to
“Somewhat True”, label D corresponds to “Barely True”, label E corresponds to “False”, and label F
corresponds to “Pants on Fire”. For each class, precision, recall, and F1-score are displayed in first,
second, and third rows, respectively.

A B C D E F

0-Shot

0.171 0.192 0.186 0.164 0.225 0.129
Orca 0.567 0.178 0.075 0.079 0.061 0.073

0.263 0.185 0.107 0.107 0.096 0.094

0.162 0.201 0.199 0.170 0.193 0.078
Falcon 0.097 0.253 0.141 0.094 0.170 0.043

0.122 0.224 0.165 0.121 0.181 0.055

0.163 0.206 0.292 0.177 0.233 0.000
Llama 0.135 0.502 0.003 0.425 0.004 0.000

0.148 0.292 0.005 0.250 0.008 0.000

0.229 0.202 0.240 0.170 0.245 0.214
Mistral 0.404 0.321 0.074 0.083 0.201 0.275

0.292 0.248 0.113 0.112 0.221 0.241
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Table A5. Cont.

A B C D E F

1-Shot

0.192 0.205 0.194 0.170 0.208 0.126
Orca 0.303 0.306 0.067 0.078 0.222 0.126

0.235 0.245 0.099 0.107 0.215 0.126

0.174 0.195 0.215 0.170 0.197 0.088
Falcon 0.129 0.371 0.176 0.084 0.174 0.079

0.148 0.256 0.194 0.113 0.185 0.083

0.293 0.230 N/A 0.172 0.198 0.254
Llama 0.006 0.290 0.000 0.389 0.364 0.072

0.011 0.257 0.000 0.239 0.257 0.113

0.295 0.229 0.224 0.180 0.236 0.269
Mistral 0.067 0.401 0.061 0.320 0.264 0.183

0.110 0.292 0.095 0.230 0.249 0.218

5-Shot

0.215 0.250 0.251 0.118 0.191 0.101
Orca 0.081 0.078 0.040 0.009 0.191 0.771

0.118 0.119 0.069 0.016 0.191 0.178

0.176 0.192 0.222 0.167 0.231 0.111
Falcon 0.148 0.418 0.119 0.172 0.123 0.069

0.161 0.263 0.155 0.170 0.161 0.085

0.232 0.245 0.050 0.152 0.174 0.113
Llama 0.055 0.035 0.000 0.019 0.275 0.838

0.089 0.062 0.001 0.033 0.213 0.200

0.229 0.205 0.225 0.179 0.252 0.269
Mistral 0.272 0.364 0.146 0.165 0.197 0.084

0.249 0.262 0.177 0.172 0.221 0.128

Table A6. Multi-class classification metrics for float16-precision models on the LIAR dataset. Label
A corresponds to “True”, label B corresponds to “Mostly True”, label C corresponds to “Somewhat
True”, label D corresponds to “Barely True”, label E corresponds to “False”, and label F corresponds
to “Pants on Fire”. For each class, precision, recall, and F1-score are displayed in first, second, and
third rows, respectively.

A B C D E F

0-Shot

0.171 0.158 0.200 0.070 0.249 0.321
Orca 0.954 0.006 0.001 0.002 0.110 0.009

0.290 0.012 0.002 0.004 0.152 0.017

0.135 0.193 0.200 N/A 0.200 0.000
Falcon 0.005 0.675 0.097 0.000 0.223 0.000

0.009 0.301 0.131 0.000 0.211 0.000

0.180 0.227 0.207 0.179 0.250 0.000
Llama 0.158 0.613 0.007 0.363 0.001 0.000

0.168 0.331 0.014 0.240 0.002 0.000

0.240 0.208 0.196 0.160 0.238 0.299
Mistral 0.332 0.476 0.011 0.048 0.259 0.232

0.278 0.289 0.021 0.074 0.248 0.262

1-Shot

0.318 0.226 0.143 0.111 0.255 0.163
Orca 0.062 0.676 0.005 0.002 0.139 0.551

0.103 0.339 0.009 0.005 0.180 0.251

N/A 0.258 1.000 N/A 0.228 0.103
Falcon 0.000 0.313 0.000 0.000 0.195 0.760

0.000 0.283 0.001 0.000 0.210 0.182
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Table A6. Cont.

A B C D E F

0.306 0.259 N/A 0.115 0.204 0.108
Llama 0.013 0.207 0.000 0.065 0.122 0.835

0.024 0.230 0.000 0.083 0.153 0.192

0.324 0.250 0.250 0.205 0.250 0.479
Mistral 0.087 0.488 0.089 0.271 0.349 0.119

0.137 0.331 0.131 0.233 0.291 0.191

5-Shot

0.269 0.280 0.286 0.000 0.219 0.099
Orca 0.159 0.045 0.001 0.000 0.161 0.887

0.200 0.078 0.002 0.000 0.186 0.179

N/A 0.192 N/A N/A N/A N/A
Falcon 0.000 1.000 0.000 0.000 0.000 0.000

0.000 0.322 0.000 0.000 0.000 0.000

0.232 0.283 1.000 0.127 0.145 0.102
Llama 0.101 0.011 0.001 0.007 0.119 0.939

0.141 0.022 0.002 0.013 0.131 0.184

0.273 0.227 0.220 0.181 0.284 0.355
Mistral 0.276 0.401 0.120 0.244 0.178 0.187

0.275 0.290 0.155 0.208 0.219 0.245

Table A7. Multi-class classification metrics for models evaluated on the LIAR dataset in a binary
classification setting. Label A corresponds to “True” and label B corresponds to “False”. For each
class, precision, recall, and F1-score are displayed in first, second, and third rows, respectively.

A B

0-Shot

0.591 0.645
Orca 0.913 0.200

0.717 0.305

0.523 0.427
Falcon 0.256 0.694

0.344 0.529

0.602 0.447
Llama 0.127 0.893

0.210 0.596

0.660 0.508
Mistral 0.467 0.696

0.547 0.587

1-Shot

0.563 0.677
Orca 0.989 0.030

0.717 0.058

0.333 0.442
Falcon 0.000 0.999

0.001 0.612

0.750 0.442
Llama 0.005 0.998

0.011 0.613

0.666 0.520
Mistral 0.504 0.680

0.574 0.590
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Table A7. Cont.

A B

5-Shot

0.649 0.529
Orca 0.571 0.609

0.608 0.567

0.745 0.456
Falcon 0.095 0.959

0.168 0.618

0.709 0.469
Llama 0.195 0.899

0.305 0.616

0.641 0.534
Mistral 0.607 0.568

0.623 0.550

Table A8. Multi-class classification metrics for models evaluated on the COVID-19 dataset in a binary
classification setting. Label A corresponds to “True” and label B corresponds to “False”. For each
class, precision, recall, and F1-score are displayed in first, second, and third rows, respectively.

A B

0-Shot

0.569 0.753
Orca 0.933 0.224

0.707 0.345

0.523 0.406
Falcon 0.997 0.003

0.686 0.005

0.635 0.565
Llama 0.538 0.661

0.582 0.609

0.627 0.740
Mistral 0.860 0.438

0.725 0.550

1-Shot

0.540 0.772
Orca 0.977 0.086

0.695 0.155

0.425 0.431
Falcon 0.258 0.616

0.321 0.507

0.742 0.494
Llama 0.103 0.961

0.182 0.652

0.693 0.682
Mistral 0.724 0.648

0.708 0.665

5-Shot

0.650 0.734
Orca 0.832 0.507

0.730 0.600

0.523 0.000
Falcon 1.000 0.000

0.687 0.000
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Table A8. Cont.

A B

0.734 0.507
Llama 0.178 0.929

0.287 0.656

0.669 0.755
Mistral 0.839 0.544

0.745 0.633
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