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Abstract: In recent years, the detection and localization of tiny persons have garnered significant
attention due to their critical applications in various surveillance and security scenarios. Traditional
multi-modal methods predominantly rely on well-registered image pairs, necessitating the use of
sophisticated sensors and extensive manual effort for registration, which restricts their practical
utility in dynamic, real-world environments. Addressing this gap, this paper introduces a novel
non-registered multi-modal benchmark named NRPerson, specifically designed to advance the field
of tiny person detection and localization by accommodating the complexities of real-world scenarios.
The NRPerson dataset comprises 8548 RGB-IR image pairs, meticulously collected and filtered
from 22 video sequences, enriched with 889,207 high-quality annotations that have been manually
verified for accuracy. Utilizing NRPerson, we evaluate several leading detection and localization
models across both mono-modal and non-registered multi-modal frameworks. Furthermore, we
develop a comprehensive set of natural multi-modal baselines for the innovative non-registered
track, aiming to enhance the detection and localization of unregistered multi-modal data using a
cohesive and generalized approach. This benchmark is poised to facilitate significant strides in the
practical deployment of detection and localization technologies by mitigating the reliance on stringent
registration requirements.

Keywords: non-registered; multi-modal; tiny person detection/localization

1. Introduction

Person detection and localization is a critical research topic in computer vision, fun-
damental to numerous higher-level applications such as surveillance [1–4], tracking [5–8],
and rapid rescue operations [9,10]. Despite longitudinal studies and significant progress,
person detection continues to face challenges such as small object scale, variable lighting,
and complex backgrounds, which severely hinder the accuracy and reliability of detec-
tion systems.

Detecting and localizing tiny-sized objects within an image has become a focus for
many computer vision researchers due to the substantial technical challenges and significant
application value it presents [9–15]. The detection of tiny persons is especially crucial in
wide-area and long-range scenarios, where precise identification can aid in critical tasks such
as monitoring crowded events or coordinating rescue missions in expansive environments.

Current studies predominantly utilize mono-modal RGB images for detection
tasks [9–20]. However, this approach often fails to address all environmental challenges,
as RGB data alone may not provide sufficient information under poor lighting or when
objects blend into complex backgrounds.
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Multi-modal data, integrating inputs from various sensor types such as RGB and
infrared, have proven effective in enhancing mono-modal detection tasks [3,21–29]. A com-
mon practice in multi-modal person detection tasks assumes that the image pairs are
well registered [21,30–35]. However, this requirement for precise sensor alignment is of-
ten impractical in dynamic real-world conditions and leads to significant challenges in
deployment due to the complex registration processes required.

Recognizing these limitations, we introduce NRPerson, a novel benchmark for non-
registered multi-modal tiny person detection and localization. This benchmark aims to
explore the utility of multi-modal image pairs without the stringent necessity for exact
registration, thus more closely mimicking real-world scenarios, where perfect alignment
of sensors cannot be guaranteed. NRPerson comprises 8548 RGB-IR image pairs collected
from 22 video sequences, supported by 889,207 high-quality annotations that are manually
verified to ensure their accuracy and reliability (see Figure 1).

This approach not only simplifies the data collection process by reducing dependency
on sophisticated registration techniques but also enhances the practical application of
detection systems in diverse operational environments. We evaluate several leading detec-
tion models on both mono-modal and non-registered multi-modal tracks to assess their
effectiveness in leveraging non-registered data for improved performance.

The contributions of this paper are significant in advancing the field of multi-modal
person detection:

1. We establish a large-scale NRPerson benchmark, introducing the concept of non-
registration in multi-modal data handling for tiny person detection and localization,
thereby promoting tasks that align closer to real-world scenarios.

2. We perform a comprehensive evaluation of state-of-the-art detection and localization
models on this new benchmark, demonstrating the potential and limitations of existing
technologies when applied to non-registered multi-modal data.

3. We develop a set of diverse natural multi-modal baselines that effectively utilize
non-registered data, laying a robust foundation for future research in multi-modal
detection and localization.

In the subsequent sections, we detail the methodology for constructing the NRPer-
son dataset, describe our evaluation framework for detection models, and discuss the
broader implications of our findings for the field.

Figure 1. Examples of NRPerson. They are maritime aerial scenes containing a large number of
tiny persons. Each column represents a time-aligned RGB-IR image pair. The dashed box on each
image pair represents a consistent field of view, showing that the image pairs are spatial-overlapped
and non-registered.

2. Related Work
2.1. Multi-Modal Person Detection

Multi-modal person detection has become a popular topic in the research community,
and many state-of-the-art multi-modal person detectors [21,30–36] have been proposed.
ProbEn [37] fuses outputs from multimodal detectors such as RGB and thermal cameras.
This approach leverages Bayes’ rule to calculate a combined score that more accurately
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reflects the likelihood of object presence, thereby improving detection performance even in
poor illumination—a common challenge in person detection scenarios.

A common assumption for these multi-modal detectors is that the image pairs are well
registered. However, in real-world scenarios, the multi-modal registration assumption is
hard to come into existence, and research [36] has revealed that even manually calibrated
multi-modal data still suffer from weak alignment. Weak alignment is also a relatively ideal
situation that still requires complex operation, while the actual data collection situation is
more complicated and changeable. Therefore, we establish a non-registered multi-modal
benchmark to change the prerequisites for good alignment, thus getting rid of the reliance
on manual calibration to some extent.

2.2. Tiny Object Detection

Recently, many researchers have devoted themselves to the study of tiny object de-
tection [9,13,16–20], but research in the field remains limited. The low resolution of tiny
objects makes feature representation insufficient, leading to poor performance compared to
large objects. CEFP2N [38] introduce a feature pyramid network enhanced by a Context
Enhancement Module (CEM) and a Feature Purification Module (FPM) for tiny object
detection. Their approach augments context information and purifies features, signifi-
cantly improving detection accuracy with a novel “copy-reduce-paste” data augmentation
method. Accordingly, we are motivated to propose NRPerson, aiming at detection task
in multi-modal and long-distance scenarios for tiny persons. Based on NRPerson, multi-
modal data can be used to complement instance feature information to alleviate the lack of
feature representation capability.

2.3. Point-Based Object Localization

Point-based object localization aims to train with point-level annotations, thereby
learning the capability to predict the location coordinates of objects [10,12,39]. Unlike
object detection, object localization is not interested in the object’s scale. Therefore, costly
and time-consuming box-level annotations are unnecessary, and simple and time-saving
point-level annotations are more promising and valuable. CPR [10] introduces a general
object localization method based on coarse point supervision and provides pseudo boxes
generated by refined point annotations. As a result, the point-to-point learning process
can be converted to a box-to-box one. CPR++ [40] advances the field of point-based object
localization by refining coarse point annotations through a dynamic, multi-stage process
that progressively reduces semantic variance, improving localization accuracy. Point-based
object localization is in the ascendant, and the proposed NRPerson provides a large-scale
benchmark and extends to multi-modal data.

2.4. Other Public Datasets

Representative public datasets that are relevant to NRPerson are summarized in
Table 1. They can be divided into three categories: (1) multi-modal datasets [6,22–25,41,42],
(2) person detection/localization datasets [1,2,5,9,10,43–45] and (3) multi-modal person de-
tection/localization datasets [3,8,21,46]. OSU [41] is a thermal-visible video fusion dataset
for moving target tracking and pedestrian motion analysis and classification. LITIV [6]
consists of videos for tracking scenarios captured through thermal and visual cameras with
different zoom settings and positions. CityPersons [2] is a rich and diverse pedestrian detec-
tion dataset. It is recorded by a car traversing various cities and contains dense pedestrians.
TinyPerson [9] is the first benchmark for long-distance tiny person detection. KAIST [21]
provides well-aligned color-thermal image pairs collected in various traffic scenes day and
night. LLVIP [3] is a visible-infrared paired dataset containing a large number of pedes-
trians with low brightness. NRPerson is a large-scale multi-modal tiny person detection
and localization dataset. Unlike other datasets based on manual registration and provide
modality-shared annotations, NRPerson first introduces the concept of non-registration,
which is closer to real-world scenarios.
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Table 1. Comparisons of the scale and properties of NRPerson with several related datasets. The
description of the properties is presented in Section 3.2 in which non-registration refers to the data
property and annotations based on non-registration image pairs rather than shared across modalities.
TA denotes time-aligned, SO denotes spatial-overlapped, and NR denotes non-registered. PD is
person detection, PL is person localization, OD is object detection, and OT is object tracking. – : the
property is not applicable to this dataset. †: the visible images of CVC-14 are in grayscale. ∗: some
image pairs are not strictly time-aligned.

Dataset Images Annotations RGB IR TA SO NR Task Year

Multi-modal dataset

OSU-CT [41] 17,088 – ✓ ✓ ✓ ✓ × Fusion 2007

LITIV [6] 12,650 – ✓ ✓ ✓ ✓ × Fusion 2012

TNO [42] 480 – ✓ ✓ ✓ ✓ × Fusion 2014

RGB-T210 [22] 210,000 210,000 ✓ ✓ ✓ ✓ × OT 2017

RGB-T234 [23] 233,800 233,800 ✓ ✓ ✓ ✓ × OT 2019

RegDB [24] 8240 8240 ✓ ✓ – – – Re-ID 2017

SYSU-MM01 [25] 45,863 45,863 ✓ ✓ – – – Re-ID 2020

Person detection/localization dataset

Caltech [1] 249,884 346,621 ✓ × – – – PD 2009

KITTI [5] 14,999 80,256 ✓ × – – – OD 2012

COCOPersons [45] 64,115 273,469 ✓ × – – – PD 2014

CityPersons [2] 5000 35,016 ✓ × – – – PD 2017

CrowdHuman [43] 24,370 456,098 ✓ × – – – PD 2018

SCUT-FIR [44] 211,011 477,907 × ✓ – – – PD 2019

TinyPerson [9] 1610 72,651 ✓ × – – – PD 2019

SeaPerson [10] 12,032 619,627 ✓ × – – – PL 2022

Multi-modal person detection/localization dataset

KAIST [21] 190,656 103,128 ✓ ✓ ✓ ✓ × PD 2015

CVC-14 [46] 17,002 17,929 ✓ † ✓ ✓ ∗ ✓ × PD 2016

FLIR [8] 28,267 119,491 ✓ ✓ ✓ ∗ ✓ × OD 2018

LLVIP [3] 30,976 41,579 ✓ ✓ ✓ ✓ × PD 2021

NRPerson 17,096 889,207 ✓ ✓ ✓ ✓ ✓ PD & PL 2022

3. The NRPerson Dataset
3.1. Data Collection and Annotation

Data Collection. The equipment is a binocular camera platform consisting of an RGB
camera and an IR camera. As we are committed to exploring the detection challenges in
wild maritime quick rescue, images containing many person objects are captured from
various seaside scenes. We sample images from 22 video sequences, and discard images
with no objects or high homogeneity. After time alignment and manual filtering, time-
synchronized and high-quality image pairs containing persons are selected. The resolutions
of RGB and IR images are 1920× 1080 and 960× 576 pixels, respectively.

Data Annotation. We use three types of labels to annotate objects person, ignore,
and uncertain. Distinguishable persons are annotated as person by accurate bounding boxes.
Areas with dense crowds, reflections, or ambiguities are annotated as ignore. Some objects
are difficult to recognize as persons, and thus we annotate them as uncertain. Among
the filtered 8548 RGB-IR image pairs, a total of 889,207 persons with bounding boxes
are manually annotated and carefully double-checked, including 471,924 persons in RGB
images and 417,283 persons in IR images as shown in Tables 1 and 2. In addition, we
follow [10] to generate coarse point annotation in each labeled bounding box.
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Table 2. Detailed statistical information for NRPerson.

NRPerson Train Valid Test Total

image pairs 4614 375 3559 8548

annos 346,413 33,385 509,408 889,207

RGB annos 174,312 16,943 280,669 471,924

IR annos 172,101 16,442 228,739 417,282

Training and Test Sets. The training, validation and test sets are constructed by
randomly dividing the images into three subsets, and images from the same video sequence
cannot be divided into different subsets. The results of the dataset division are summarized
in Table 2. Specifically, the training set contains 8 video sequences with 4614 image pairs
and 346,413 annotations, the validation set contains 1 video sequence with 375 image pairs
and 33,385 annotations, and the test set contains 13 video sequences with 3559 image pairs
and 509,409 annotations.

3.2. Dataset Properties

Time Alignment. RGB and IR video sequences are captured simultaneously using
a binocular camera. The two video sequences are temporally aligned through manual
calibration. Then, we sample the frames and ensure that the capturing time for each image
pair is identical to guarantee strict time alignment.

Spatial Overlapping. Although time-aligned image pairs are not geometrically aligned
due to the different physical properties of RGB and IR sensors, the shooting angles of
the binocular sensors are very close. Therefore, the image pairs have spatial overlap.
Manual filtering is adopted to remove anomalies and ensure that each image pair has
spatial overlap.

Non-registration. Non-registration means that RGB-IR image pairs are time-aligned
and spatial-overlapped but are not geometrically aligned. Non-registered image pairs have
the following three manifestations:

(1) Position shift: Sensor differences and external factors lead to position shifts between
corresponding instances in image pairs. This is the most common phenomenon,
and even manually registered data often cannot completely eliminate it.

(2) Size difference: Differences in the field of view and image pixels captured by RGB
and IR sensors lead to the size difference of the corresponding instances. This can
basically be eliminated through manual calibration.

(3) No correspondence: There is no correspondence between the pixel coordinates of
non-registered image pairs. Hence, instances between different modalities cannot be
matched and paired.

Tiny. Absolute size is defined as the number of pixels in the bounding box area,
and relative size is the absolute size divided by the image pixels. As shown in Table 3
and Figure 2, the absolute size and relative size of persons in NRPerson are very small
compared to other representative datasets [2,3,8–10,21]. Objects with small absolute scales
are blurred and contain less semantic information, which increases the difficulty of the
detector to identify the objects and greatly affects the performance [9]. Tiny relative scales
result in the scenes having a large number of complex backgrounds, which exacerbates the
issues of positive–negative imbalance and false positives, hence being more challenging
and exploratory.

Aspect Ratio Diversity. The aspect ratio of persons in NRPerson has a large variance
as shown in Table 3. It suggests that unlike conventional person detection/localization
datasets with relatively single perspectives and poses, our dataset is an effective comple-
ment in terms of aspect ratio diversity, bringing more complexity and making detection
and localization more challenging.
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Table 3. Mean and standard deviation statistics of absolute size, relative size and aspect ratio of
person annotations in NRPerson and several representative datasets.

Dataset Absolute Size Relative Size Aspect Ratio

KAIST [21] 54.2± 24.8 0.10± 0.05 0.45± 0.10

FLIR [8] 26.6± 23.1 0.05± 0.04 0.43± 0.19

LLVIP [3] 146.1± 32.4 0.13± 0.03 0.47± 0.19

CityPersons [2] 79.8± 67.5 0.56± 0.05 0.41± 0.01

TinyPerson [9] 18.0± 17.4 0.01± 0.01 0.68± 0.42

SeaPerson [10] 22.6± 10.8 0.02± 0.01 0.72± 0.42

NRPerson 23.7± 9.6 0.02± 0.01 0.81± 0.45

Figure 2. The histogram of the absolute size of person annotations in NRPerson. The statistical results
reflect that the object size is concentrated in areas with small values, showing the tiny property of
our dataset.

Privacy. Personal privacy is a sensitive matter and an important issue in person-
centered research, such as person detection, face detection, and person re-identification.
For the NRPerson benchmark, objects are tiny persons with low resolution at long distances
(about 24 pixels per person on average, as shown in Table 3). Therefore, little personal
information emerges through the data. Additionally, we will enforce dataset terms before
releasing NRPerson:

(1) Sharing dataset images on the Internet in any form without permission is prohibited;
(2) Identifiable images of people cannot be used to make demos or promotions;
(3) Use face obfuscation or shield face regions when applicable and study its impact on

detection and localization [47].

4. Tracks and Metrics
4.1. Mono-Modal Track

The NRPerson dataset contains many tiny-sized objects, as shown in Figure 1, making
it a favorable complement to the existing tiny object detection datasets. In addition, other
datasets are basically based on RGB images but rarely on IR images. NRPerson bridges this
gap and facilitates the development of research on IR tiny object detection and localization
in the community.

We establish a mono-modal track on NRPerson that follows the task settings of generic
object detection [48,49] and localization [10,12]. Object detection has been widely studied
and is well known, so we do not describe it further. Object localization refers to training
the model with point-level annotations to predict the objects’ locations. There are various
settings of point-level annotations in previous studies [10,12,50]. In this paper, we choose
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a more generalized annotation, i.e., a single point annotation with a random position on
each object.

In addition to benchmarking the performance of detectors and localizers under their
respective tasks, we also try to explore the performance of the same model structure under
multiple tasks. However, detectors and localizers have different learning supervision and
inference results, so it is challenging to perform multi-task unification directly. According
to [10], we convert the point-to-point problem into a box-to-box, enabling the detectors
to achieve object localization under point supervision. Specifically, CPR [10] is adopted
to refine the initial coarse point annotations, and then pseudo boxes are generated with
the points as the center that serve as supervision for model training. During the inference,
the center points of the predicted boxes are regarded as the localization results. In this
way, we build a multi-task mono-modal track on NRPerson to report the detection and
localization performance of representative models.

Detection metrics. We adopt average precision (AP) as the evaluation metric for object
detection. Since many applications of tiny person detection (e.g., shipwreck search and
rescue) focus more on finding the approximate location of a person rather than the exact
bounding box coordinates, we adopt AP50 as the evaluation metric, i.e., the Intersection
over Union (IoU) threshold is set to 0.5. For more detailed experimental comparisons,
bounding box sizes are divided into three intervals: t(tiny) ∈ [2, 20], s(small) ∈ (20, 32],
and r(reasonable) ∈ (32, ∞).

Localization metrics. We follow the evaluation metric of object localization adopted
in [10]. Specifically, the distance d between point p = (x, y) and bounding box
b = (xc, yc, w, h) is calculated as:

d(p, b) =

√(
x − xc

w

)2
+

(
y − yc

h

)2
, (1)

where (xc, yc), w, h are the center point coordinates, width, and height of the bounding box.
A point matches a ground-truth bounding box if the distance d is smaller than the threshold
τ. If there are multiple matching points through a ground-truth, the point with the highest
score is selected; if a point has multiple matching ground-truths, the ground-truth with the
smallest distance d is selected. A point is counted as a true positive (TP) when it matches
the ground-truth, and a false positive (FP) when it does not. If a point matches an object
annotated as ignore, neither TP nor FP are counted, following [2,9]. Likewise, we adopt
APτ as the evaluation metric and set τ = 1.0 as the default.

4.2. Non-Registered Multi-Modal Track

We introduce the concept of non-registration on the basis of multi-modal tiny person
detection and localization, thereby establishing a non-registered multi-modal track. The
goal is to directly learn from non-registered data such that the model achieves robust
detection and localization capabilities in each modality. A flowchart of non-registered
multi-modal model is shown in Figure 3.

Figure 3. A flowchart of multi-modal model on the non-registered multi-modal track. Multi-modal
image pairs are simultaneously input into the model to obtain detection or localization results for
each modality. Orange represents RGB features and Blue represents the IR features.
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Task Definition. The RGB image set is denoted as Xrgb = {x1
r , x2

r , . . . , xn
r } and the IR

image set is denoted as Xir = {x1
i , x2

i , . . . , xn
i }, where xk

r and xk
i represent a non-registered

RGB-IR image pair satisfying both time-alignment and spatial-overlapping. We require the
model M to input non-registered images in pairs and output the results for each modality,
i.e., (yk

r , yk
i ) = M(xk

r , xk
i ), where yk

r and yk
i denote the detection/localization results of RGB

and IR images, respectively. During the evaluation, the multi-modal test set is used to
comprehensively evaluate the performance across all modalities.

Dual-Stream Input. The conventional detectors and localizers are based on a single
image input. To meet the requirements of the non-registered multi-modal track, we adopt a
dual-stream input and a paired sampling strategy in multi-modal baselines. Dependent on
the time-alignment, the RGB set Xrgb and the IR set Xir are pair-sampled to form an image
pair set, i.e., Xpair = {(x1

r , x1
i ), (x2

r , x2
i ), . . . , (xn

r , xn
i )}. To guarantee training robustness

and accelerate parameter convergence, random shuffling is adopted to disrupt the order
of image pairs. The shuffled image pairs are fed into the multi-modal model as dual-
stream input.

Evaluation Metrics. The evaluation of detectors and localizers on the non-registered
multi-modal track is still based on the metrics described in Section 4.1. Unlike the mono-
modal track, the model in this track takes multi-modal data as dual-stream input and
outputs paired results. Therefore, three models are designed for evaluation: RGB-test,
IR-test, and multi-test. RGB-test and IR-test represent the evaluation of the RGB
and IR test sets, respectively. Multi-test is simply combining the results of the RGB
and IR test sets and evaluating them together without using additional data. We report
the multi-test in order to consider both modalities’ performance simultaneously and to
facilitate comparisons between models.

4.3. Advantages and Challenges of Non-Registration

A common assumption of conventional multi-modal tasks is that the image pairs are
well registered. However, performing the registration is a cumbersome operation that
requires sophisticated sensors and heavy human efforts. Specifically, multi-modal image
registration suffers from the following major problems:

(1) Multi-modal images often have different resolutions and fields of view due to the
different sensors in the cameras. Therefore, it is almost impossible to achieve image
registration simply by calibrating the inner parameters. It is also difficult to ensure
that the image acquisition process is free from external disturbances even after the
parameter calibration.

(2) (Automatic feature matching methods may not work well on data with complicated
scenes and across modalities. A typical example is shown in Figure 4, where we use
SURF [51] to achieve feature point extraction and matching. Our dataset cannot rely
on such unsatisfactory matching results for automatic registration. Further, for tiny
object analysis, matching key points for registration will be more difficult due to the
low signal-to-noise ratio.

(3) The above two problems illustrate the difficulty of achieving the automatic alignment
of multi-modal images. Therefore, the existing multi-modal dataset [3,21,46] almost
relies on manual registration that requires processing each image pair and relies on a
large amount of manpower. In addition, research shows that in practice, even well-
processed data still suffer from weak alignment problems [36] (i.e., position shifts),
which degrades model performance.

(4) Our dataset focuses on tiny objects at a distance. In this case, registration becomes
more complicated since long-distance shots amplify small deviations. In scenes with
dense and minute-scale objects, slight positional offsets may confuse the correspon-
dence between objects in different modes.

In summary, multi-modal image registration is complex and not guaranteed to be
completely accurate, and non-registration is an unavoidable problem.
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Figure 4. The poor feature-matching results suggest that, using our NRPerson dataset, it is difficult
to achieve automatic registration.The red color represents the target in the visible image, the green
color represents the target in the infrared image, and the yellow line indicates the matching between
the two.

The above problems undoubtedly limit the development and application of multi-
modal technology. Meanwhile, they confirm the necessity of introducing non-registration
issues. The non-registered multi-modal track attempts to address these shortcomings
by omitting the registration operation and only requiring the multi-modal image pairs
to be time-aligned and spatial-overlapped. This not only saves time and manpower
for registration but also performs data post-processing and object detection/localization
in an end-to-end manner, greatly facilitating the generalization of multi-modal tasks to
practical applications. However, the omission of registration results in the lack of instance-
level correspondence established between image pairs. Therefore, using the multi-modal
information effectively is challenging to improve detection performance.

5. Experiments
5.1. Experimental Settings

Our codes are based on MMDetection [52], and we use 8 RTX 3090 GPUs for training
and evaluation.

Image cutting and pairing. Due to the limited memory of GPUs, we crop the original
images into sub-images with overlaps during training and inference. We resize images
of different resolutions to the same size (i.e., 1920 × 1080 pixels) and cut out a series of
640 × 640 patches. For the non-registered multi-modal track, multi-modal images are input
in pairs, and thus the cropped sub-images need to be paired one by one. Sub-images at
the corresponding positions in the original multi-modal image pair are formed into a new
image pair, and the new paired images can be fed into the multi-modal network. According
to previous works [48,49,53,54], pure background images (i.e., images without objects) are
not used for training. For an image pair, there may be a situation where one image has
objects, and the other does not. In our experiment, we filter out the image pairs in this
situation and keep the pairs that both contain objects.

5.1.1. Mono-Modal Tiny Person Detection

In this detection track, Faster R-CNN [48], (Adaptive) RetinaNet [55], (Adaptive)
RepPoints [56], Sparse R-CNN [57], Deformable DETR [58] and Swin-T (Faster R-CNN) [59]
are included as the detectors. Faster R-CNN is based on the feature pyramid network
(FPN) [16] with a ResNet-50 [60] backbone network. The number of training epochs is
set to 12, and the stochastic gradient descent (SGD) optimizer is used with a learning
rate of 0.01, decayed by 0.1 at the 8th and 11th epochs, respectively. Anchor sizes are set
to [8, 16, 32, 64, 128], and aspect ratios are set to [0.5, 1.0, 2.0]. Since some images have
dense objects in NRPerson, the maximum number of detection results per image is set to
1000 for evaluation.

To increase the data diversity and model robustness, we adopt various data augmen-
tation methods, including random flipping, random cropping, and photometric distortion.
There are eight kinds of transformations for photometric distortion: random brightness,
random contrast, convert color from BGR to HSV, random saturation, random hue, convert
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color from HSV to BGR, random contrast, and randomly swap channels. In this paper, this
series of data augmentation methods are identified as standard augmentation.

RetinaNet and RepPoints use the same experimental settings as Faster R-CNN and
also adopt the standard augmentation.

Adaptive RetinaNet and Adaptive RepPoints denote the models with FPN adjustments
for RetinaNet and RepPoints, respectively, which use the (P2, P3, P4, P5, P6) of the FPN
instead of the default (P3, P4, P5, P6, P7). The purpose of this adjustment is to use features at
a lower layer, which is more friendly for detecting tiny objects. The rest of the experimental
settings are kept the same as RetinaNet and RepPoints.

Sparse R-CNN sets the experimental super-parameters somewhat differently from
the above models. The number of training epochs is set to 36; the Adam optimizer is used
with a learning rate of 2.5× 10−5, decayed by 0.1 at the 27th and 33rd epochs, respectively;
and the number of learnable proposal boxes is set to 1000. In addition, data augmentation
includes random scale jittering and random flipping.

Deformable DETR sets the number of training epochs to 50, uses the Adam optimizer
with a learning rate of 1× 10−4, decayed by 0.1 at the 40th epoch and sets the number
of queries to 1000. According to the paper, random scale jittering, random flipping, and
random cropping augmentation are used.

Swin-T is a strong backbone which performs well in a broad range of vision tasks. We
conduct our experiments with it on Faster R-CNN and keep the same settings as Faster
R-CNN above except for the Adam optimizer with a learning rate of 1× 10−4 and the
50 training epochs.

5.1.2. Mono-Modal Tiny Person Localization

In this localization track, P2PNet [12] is included as the localizer, and CPR [10] acts
as the refinement module to optimize coarse point annotations. In addition, we convert
the point-to-point problem in tiny person localization into a box-to-box one as described
in Section 4.1. In this way, the above-mentioned detectors can be benchmarked in the
localization track to explore the performance on multiple tasks.

P2PNet is specifically designed for point-based object localization. We follow the
improvements to P2PNet in [10]: (1) We adopt ResNet-50 as the backbone network with P2
of FPN as the output features. (2) The focal loss [55] is used when optimizing classification
to better deal with the problem of imbalance. (3) The smooth-L1 loss [61] is used for
regression. (4) We assign top-k positive samples for each ground-truth and regard the
remaining samples as background in label assignment, and then perform non-maximum
suppression (NMS) [62] on the points to obtain the final results. The number of training
epochs of P2PNet is set as 12, and the learning rate is set as 1× 10−4, decayed by 0.1 at the
8th and 11th epochs, respectively.

CPR is a refinement module used to reduce the semantic variance during annotation.
Hence, it can be combined with any localizer to provide refined point annotations. For
CPR, the number of training epochs is set as 12, and the learning rate is set as 1× 10−3,
decayed by 0.1 at the 8th and 11th epochs, respectively. The sampling radius R is set as 5.

Other localizers are converted from detectors in the detection track. They are trained
with pseudo boxes refined and generated by CPR and adopt the same experimental settings
as in the detection track.

5.1.3. Result Analysis

The detection and localization results of the mono-modal track are summarized in
Table 4.
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Table 4. The detection and localization results of representative models on the mono-modal track. For
localization, the models adopt the annotations refined by CPR except for the explicit description of
P2PNet. The first, second and third best results are marked in red, blue and black bold respectively.

Detection
RGB-Modal IR-Modal

AP50 APr
50 APs

50 APt
50 AP50 APr

50 APs
50 APt

50

Faster R-CNN [48] 64.7 75.8 74.3 57.1 51.1 66.7 60.6 44.5
RetinaNet [55] 64.4 74.9 74.7 57.5 49.3 66.0 62.3 39.3
Adaptive RetinaNet [55] 65.5 74.1 74.3 61.2 51.4 66.5 62.5 44.6
RepPoints [56] 66.8 74.5 76.7 60.3 51.4 67.9 64.2 40.6
Adaptive RepPoints [56] 67.1 76.1 76.3 63.5 51.9 67.2 64.8 42.9
Sparse R-CNN [57] 66.4 77.3 76.1 53.7 48.1 63.2 59.3 43.9
Deformable DETR [58] 65.9 75.1 77.9 55.2 48.5 63.6 58.8 42.8
Swin-T (Faster R-CNN) [59] 67.2 75.8 77.1 57.7 49.2 67.9 58.8 42.6

Localization
RGB-Modal IR-Modal

AP1.0 APr
1.0 APs

1.0 APt
1.0 AP1.0 APr

1.0 APs
1.0 APt

1.0

Faster R-CNN [48] 71.5 21.1 56.2 77.5 74.8 33.8 66.9 72.3
RetinaNet [55] 76.0 27.1 64.4 80.3 75.5 37.9 69.8 71.8
Adaptive RetinaNet [55] 74.5 25.6 61.5 79.5 74.7 35.3 67.3 71.8
RepPoints [56] 76.2 26.1 64.4 81.2 76.5 35.1 69.8 73.7
Adaptive RepPoints [56] 75.1 25.9 63.2 80.4 74.5 33.0 66.8 71.8
Sparse R-CNN [57] 76.4 27.8 65.3 80.2 74.2 34.0 68.1 70.1
Deformable DETR [58] 78.0 29.7 68.2 83.2 77.7 40.9 73.1 75.8
Swin-T (Faster R-CNN) [59] 72.7 23.2 58.4 76.9 76.3 41.6 71.1 72.6
P2PNet [12] w/o CPR [10] 71.4 25.9 51.9 82.1 66.4 26.3 54.2 72.0
P2PNet [12] w/CPR [10] 80.1 33.6 71.4 77.9 81.5 46.5 77.6 72.6

Detection. According to Figure 2, there are a large number of small-scale objects in
NRPerson, but the detection performance for these tiny objects (in terms of APt

50) is not
satisfactory, indicating that our dataset is a challenging benchmark for the state-of-the-art
person detection algorithms. For objects with small scales, the spatial information of the
network may be more important than the deeper layers. Therefore, Adaptive RetinaNet and
Adaptive RepPoints improve performance (+1.7 and +1.0 AP50, respectively) by adopting
a lower layer of FPN to obtain more spatial information about objects. In particular,
the detection performance for objects whose scales are tiny is significantly improved.

Localization. It can be seen that after the refinement coarse annotations by CPR,
the models achieve highly competitive localization performance on our dataset. Different
from the detection results, better localization performance is achieved on smaller objects,
which indicates that small objects are not sensitive to the semantic variance [10] caused
by coarse point annotations. Moreover, a reasonable object may be predicted with multiple
results due to its large area, whereas a tiny object is an opposite. Consequently, there are
fewer false positives on the small objects. The impressive performance on small objects
demonstrates the significance and the application value of the localization task, especially
in scenarios in which only the location of the object rather than the scale is concerned.

5.2. Non-Registered Multi-Modal Track

Multi-Modal Baseline. Since the non-registered multi-modal track is new, we construct
a diverse set of natural multi-modal baselines. The multi-modal baselines employ the
same models and experimental settings as in the mono-modal track and are simultaneously
trained with RGB-modal and IR-modal data to explore adaptation to multi-modal detection
and localization. Moreover, a comparison of multi-modal baselines with the mono-modal
track can be used to explore the effect of adding additional data from other modalities
on performance.
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Result Analysis. The detection and localization results of the non-registered multi-
modal track are summarized in Table 5. Although the correlation information between
different modalities is not intentionally used in the multi-modal baselines, adding data
from other modalities for training leads to the improved performance of many models
(compared to those in the mono-modal track), especially in the RGB modality. Such
performance improvement is reasonable and shows that if the complementary information
between the multi-modal data is fully exploited, it will have a more positive impact on
detection performance. The results provide sound empirical evidence on the superiority
of multi-modal baselines in terms of their accuracy and applicability. However, there are
also some models that show a degradation in performance, suggesting that simply adding
multi-modal data does not always have a positive effect. It indicates the need to explore
more effective fusion methods to fully utilize multi-modal information in future studies.

Table 5. The detection and localization results of the representative models on the non-registered
multi-modal track. For localization, the models adopt the annotations refined by CPR except for the
explicit description of P2PNet. The first, second and third best results are marked in red, blue and
black bold, respectively.

Detection
Multi-Test RGB-Test IR-Test

AP50 APr
50 APs

50 APt
50 AP50 APr

50 APs
50 APt

50 AP50 APr
50 APs

50 APt
50

Faster R-CNN [48] 60.1 71.8 70.4 52.0 66.5 77.3 77.1 55.1 50.9 66.2 57.6 35.9

RetinaNet [55] 58.9 70.3 72.0 49.6 65.4 74.6 76.9 53.0 49.4 65.0 58.5 32.0

Adaptive RetinaNet [55] 60.6 70.6 71.5 53.8 67.0 74.8 76.6 56.8 51.1 64.8 58.1 36.7

RepPoints [56] 61.6 73.0 73.3 52.7 66.4 72.7 74.2 60.1 52.4 65.1 60.2 36.0

Adaptive RepPoints [56] 62.6 72.3 72.0 50.4 69.6 79.4 79.4 58.8 52.7 67.4 61.1 35.7

Sparse R-CNN [57] 59.8 70.5 71.0 51.4 67.1 78.4 77.4 53.8 48.8 61.3 57.0 37.7

Deformable DETR [58] 60.1 71.3 71.4 51.7 67.9 78.3 78.5 54.4 49.3 63.9 57.8 36.9

Swin-T (Faster R-CNN) [59] 59.1 69.6 70.1 49.7 68.6 77.2 77.9 56.0 47.1 64.2 58.9 38.5

Localization
Multi-Test RGB-Test IR-Test

AP1.0 APr
1.0 APs

1.0 APt
1.0 AP1.0 APr

1.0 APs
1.0 APt

1.0 AP1.0 APr
1.0 APs

1.0 APt
1.0

Faster R-CNN [48] 73.9 30.6 63.3 76.0 73.5 26.3 60.8 79.2 74.4 33.7 66.5 71.8

RetinaNet [55] 76.3 34.6 66.9 77.8 77.0 31.8 66.1 81.3 75.5 37.5 69.4 72.2

Adaptive RetinaNet [55] 75.5 33.2 65.5 77.1 75.9 29.9 64.1 80.7 75.0 36.4 68.6 71.5

RepPoints [56] 75.6 29.8 65.1 77.0 76.2 28.5 64.8 80.8 75.9 33.6 67.5 73.3

Adaptive RepPoints [56] 74.5 30.3 63.8 77.0 74.7 27.0 62.2 80.5 74.5 33.5 67.0 71.5

Sparse R-CNN [57] 78.4 34.4 70.1 78.8 80.1 32.9 70.9 83.2 76.6 35.9 70.1 72.7

Deformable DETR [58] 77.1 34.5 69.5 80.5 77.5 30.0 68.3 83.2 77.7 39.6 73.0 76.1

Swin-T (Faster R-CNN) [59] 72.6 33.3 63.0 75.0 72.0 24.0 58.2 77.2 73.3 42.4 68.3 71.3

P2PNet [12] w/o CPR [10] 66.2 24.0 48.9 75.0 68.9 25.8 49.4 80.4 63.4 22.9 49.2 67.2

P2PNet [12] w/CPR [10] 80.3 39.4 74.4 76.0 80.8 35.3 73.8 79.6 78.6 43.8 74.3 69.8

Visualization. We select some qualitative results for the visualization of Adap-RepPoints
(with the best detection performance) and P2PNet (with the best localization performance)
as shown in Figure 5. Since the size of objects in NRPerson is relatively small, we partially
zoom in on the original images for display. The visualization results reflect that the models
generally exhibit robust detection and localization capabilities. However, the models still
have missing or wrong results for some areas where the objects are dense or blurred. This
shows that our dataset is exceptionally challenging and needs to be continuously improved
by follow-up research.
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Figure 5. Some qualitative results of multi-modal baselines on the non-registered multi-modal track.
The first two rows are the detection results of Adap-RepPoints (orange); the middle two rows are the
localization results of P2PNet with CPR (blue); and the last two rows are the ground-truth (green).
For better visualization results, we zoom in on the original images and capture the sub-images in
which each pair has a roughly consistent field of view.

6. Conclusions

This paper contributes a non-registered multi-modal benchmark for tiny person detec-
tion and localization, called NRPerson. It introduces the concept of non-registration into the
multi-modal task, eliminating the requirement of multi-modal image registration based on
sophisticated sensors and heavy human efforts. We benchmark the representative models
on the mono-modal track and the newly defined non-registered multi-modal track, benefit-
ing from the empirical results to understand the detection/localization ability of different
models and the impact of using multi-modal data. We construct a diverse set of natural
multi-modal baselines, attempt to leverage non-registered multi-modal data for multi-task
with a unified framework, and lay a robust foundation for facilitating future research.

We are committed to continuing our research using the NRPerson benchmark. Our
future work will focus on exploring the detection of weak and small targets and addressing
challenges of non-alignment in pretraining scenarios. Additionally, we plan to tackle the
registration issues in non-aligned multimodal data, aiming to enhance the applicability
and accuracy of detection methods under these complex conditions.

While our dataset is challenging, we believe that the baselines provided in this paper
are far from reaching the upper limit of performance. Therefore, how to better utilize
non-registered multi-modal data to deal with tiny objects is worth exploring. In the future,
we will continue investigating more effective and robust models for the two tracks. We
hope NRPerson can pave the way for follow-up studies in this area.
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