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Abstract: Weed management impacts crop yield and quality. Machine vision technology is crucial
to the realization of site-specific precision weeding for sustainable crop production. Progress has
been made in developing computer vision algorithms, machine learning models, and datasets for
weed recognition, but there has been a lack of open-source, publicly available software tools that
link imaging hardware and offline trained models for system prototyping and evaluation, hindering
community-wise development efforts. Graphical user interfaces (GUIs) are among such tools that
can integrate hardware, data, and models to accelerate the deployment and adoption of machine
vision-based weeding technology. This study introduces a novel GUI called OpenWeedGUI, designed
for the ease of acquiring images and deploying YOLO (You Only Look Once) models for real-time
weed detection, bridging the gap between machine vision and artificial intelligence (AI) technologies
and users. The GUI was created in the framework of PyQt with the aid of open-source libraries for
image collection, transformation, weed detection, and visualization. It consists of various functional
modules for flexible user controls and a live display window for visualizing weed imagery and
detection. Notably, it supports the deployment of a large suite of 31 different YOLO weed detection
models, providing flexibility in model selection. Extensive indoor and field tests demonstrated the
competencies of the developed software program. The OpenWeedGUI is expected to be a useful tool
for promoting community efforts to advance precision weeding technology.
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1. Introduction

Weeds are a constant threat to crop production. Improper management of weeds
can potentially lead to reductions of more than 50% in crop yield [1,2]; if weeds are left
uncontrolled, the yield loss can escalate to 90% [3]. In the United States, weed control
costs more than insect and disease control combined, with an average annual cost of
$33 billion [4]. Traditional approaches to weed control include, among others, mechanical
cultivation, hand weeding, and herbicide application [5]. While these methods have proven
effective to varying degrees, they have many drawbacks. Mechanical weeding entails
high costs and or low efficacy, and hand weeding is not economically feasible because
of labor shortages and rising labor costs. Herbicides are the most widely used for weed
management, but currently, intensive, repeated applications of herbicides have resulted
in the evolution of herbicide-resistant weeds, substantially reducing control efficacy and
increasing management costs. Herbicide application also poses risks to the environment
and human health [6,7]. There is a critical need to develop effective and sustainable weed
control methods.

Machine vision technology plays a crucial role in the realization of future site-specific
weed management and sustainable cropping systems [8]. Integrating imaging sensors,
actuators, and computer algorithms, machine vision has enabled the automation of a wide
range of tasks in agriculture, which otherwise would be laborious and costly. In weed
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management, it provides the ability to distinguish between weeds and crops and identify
weed species, especially with the aid of high-performance deep learning methods [9]. Once
weeds are detected and localized, appropriate controls can be activated and applied site-
specifically to remove weeds, such as targeted herbicide spot spraying [10], the activation
of mechanical cultivators or fingers [11], or the implementation of thermal methods [12].
These machine vision-based weeding approaches offer promising solutions for combating
today’s herbicide resistance in weed populations.

However, reliable discrimination between crops and weeds and among weed species
remains a substantial challenge for current state-of-the-art machine vision technology. To
address this challenge, efforts are called for to develop large-scale publicly accessible image
datasets and benchmarking models. In recent years, a number of labeled weed datasets,
alongside AI models trained on the datasets for performance benchmarking, have been
created and released [13], such as DeepWeeds [14], Weed25 [15], CottonWeedID15 [16],
and CottonWeedDet12 [17], just to name a few. The availability of these datasets inspires
research into deep learning-based weed recognition [18]. Among various deep learning
architectures, You Only Look Once (YOLO) detectors have drawn prominent attention for
real-time object detection, achieving good tradeoffs between accuracy and speed [19,20].
As a one-stage detector, YOLOs operate by dividing an image into a grid of cells, each
responsible for predicting bounding boxes and class probabilities for objects within that cell.
A single convolutional neural network processes the entire image and generates predictions
for all cells simultaneously, making the detectors exceptionally efficient. This advantage is
particularly attractive for weed control by mobile systems for which timely responses are
essential for efficiently targeting localized weeds. Wang, et al. [21] enhanced YOLOv5 with
an attention mechanism, achieving a precision of 94.65% and recall of 90.17% in real-time
detection of invasive Solanum rostratum Dunal seedlings. Dang, et al. [13] evaluated a
large suite of 25 YOLO architectural variants for weed detection and reported detection
accuracy ranging from 88% to 95% on the CottonWeedDet12 dataset [17]. Despite recent
developments, significant efforts are still needed to develop large-scale weed datasets and
robust machine vision-based weeding systems for practical applications.

Graphical user interfaces (GUIs) are software tools or applications that enable users
to interact with hardware, data, and models, which are important for prototyping and
the evaluation of machine vision systems in precision agriculture [22]. GUIs can provide
a user-friendly interface that allows individuals, such as researchers, developers, and
end-users, to easily access and utilize machine vision tools [23]. Particularly, in weed
recognition, GUIs bridge the gaps between curated image datasets and machine learning
models and offer the ease of deploying and evaluating models (trained offline) for real-
time application. Making GUIs publicly accessible, in addition to datasets and models,
would be significantly beneficial for stimulating collective and community efforts for
repaid development iterations and progress, allowing developers to focus on solving other
challenging tasks [24]. Although dedicated efforts have been made as described above
to develop dedicated datasets and models to power machine vision systems for weed
management, there have been comparatively scarce efforts directed at the development
of open-source GUI tools for weed imaging and recognition. The lack of such tools hurts
further progress in advancing the development of machine vision-based and AI-powered
weeding technology.

There are different software frameworks available for developing GUIs for agricultural
applications. The GUIDE and App Designer tools in Matlab (Mathworks, Natick, MA,
USA) are commonly used for GUI design for image data analytics. Mobaraki, et al. [25]
developed a Matlab-based GUI for the analysis of hyperspectral images. Khandarkar,
et al. [26] performed an image-processing technique to detect artificially ripened bananas
using a Matlab-based GUI. Furthermore, Lu, et al. [27] presented a Matlab-based GUI for
fruit defect detection using structured illumination imaging. As a graphical programming
language, LabVIEW is well suited for GUI design for instrumentation and measurement
systems. Deshmukh, et al. [28] designed LabVIEW GUI to classify the ripening stages



Electronics 2024, 13, 1699 3 of 14

of the various fruits. However, both Matlab and LabVIEW, which require expensive
licenses, are not preferred for developing open-source, free software. Instead, packages in
Python such as Tkinter, PySide, and PyQt offer alternatives for creating such GUIs. Bauer,
et al. [29] developed a Tkinter-based GUI for automated phenotypic analysis of lettuce
using aerial images. ElManawy et al. (2022) designed a Tkinter-based software platform to
process hyperspectral images for high-throughput plant phenotyping. Among various GUI
designing tools, Qt (https://www.qt.io/, assessed on 23 April 2024) is well known as a
free, open-source toolkit for developing user-friendly, scalable, cross-platform applications.
In addition to supporting GUI development in C++, Qt has pythonic wrappers, such as
PyQt and PySide for Python developers, which can be readily integrated with mainstream
computer vision and deep learning libraries to develop machine vision and data analytics
systems. Lu, et al. [30] used Qt in C++ with OpenCV for the system operation and online
computer vision tasks of an apple harvest-assistive and in-field sorting machine. Gao,
et al. [31] developed a software platform with PyQt5 for the processing and modeling of
photosynthetic data in protected agriculture production. However, currently, there has
been a dearth of research efforts on developing GUIs dedicated to weed imaging and the
deployment of deep learning models for weed detection towards machine vision-based
robotic weeding.

With the goal of advancing machine vision technology for weed recognition and control,
the overall objective of this research was therefore to develop a user-friendly, open-source
GUI, called OpenWeedGUI, for weed imagery collection and deployment and the evaluation
of deep learning models for weed detection. Specifical objectives were to (1) design a Qt-
based GUI that interfaces with a camera for weed imaging and a suite of off-line trained
YOLO models for real-time weed detection, and (2) develop and field test a mobile machine
vision platform integrated with the GUI for weed imaging and detection. Source codes of the
OpenWeedGUI software program have been made publicly available (https://github.com/
XU-JIA-JUN/OpenWeed-GUI-PyQt5-YOLO, assessed on 23 April 2024).

2. Materials and Methods
2.1. GUI Design Features

Figure 1 illustrates the design pipeline of OpenWeedGUI. Bridging the gap between
users and imaging hardware and computer vision algorithms, the software has two primary
functionalities, i.e., image collection and weed detection, which are realized through
camera interfacing and the deployment of deep learning models, respectively. For camera
interfacing, users are allowed to control camera parameter settings, which affect image
acquisition, display, and weed detection. Model deployment provides the flexibility of
choosing from a range of pre-trained YOLO models to detect weeds in image streams.
Moreover, the GUI displays weed detection statistics and saves raw and detected images
in real-time, facilitating the subsequent offline assessment of weed detection performance.
Figure 2 shows the main window of OpenWeedGUI. The interface features a menu bar on
the top comprising dropdown options supporting different functionalities as described
below. Multiple functional modules are laid out vertically on the left of the interface
to enable various user settings and results logging, and their specific functionalities are
described below. A display window is placed on the right for live visualization of image
streams and weed detection results, and below the window is a playback control module
to visualize the weed detection of videos uploaded from external sources.

https://www.qt.io/
https://github.com/XU-JIA-JUN/OpenWeed-GUI-PyQt5-YOLO
https://github.com/XU-JIA-JUN/OpenWeed-GUI-PyQt5-YOLO
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2.1.1. GUI Framework

Figure 3 shows the framework of OpenWeedGUI, delineating the methodical inter-
relation between different functional modules. There are three distinct working threads,
each of which is responsible for one of three input sources: images, videos, and camera
livestreams. When an input option is checked (Figure 2), the corresponding thread is
activated, enabling various downstream operational adjustments. For instance, with the
camera option selected, upon a change in camera parameters made by the user, the GUI,
driven by the active thread, instantaneously adjusts the imaging module’s operations,
ensuring that the detection output immediately reflects the parameter modifications. The
input module interfaces with the model selection module and allows the user to choose
one among a variety of YOLO models, which will be subsequently fed into the imaging
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module, coordinating pivotal operations such as image acquisition and weed detection.
The imaging operations are responsive to camera parameters, and the feedback from these
processes subsequently prompts adjustments to the camera settings. The results statistics
module prints a summary of weed detection results in real-time. The display module
provides a live display of different types of image data input, which are internally linked
to the playback module in case of playing an external video. The status bar conveys the
real-time camera interfacing status.
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Figure 3. The OpenWeedGUI framework.

2.1.2. GUI Module Description

Presented below is a description of individual functional modules of OpenWeedGUI
designed to deliver an efficient and friendly user experience.

• Menu: It offers streamlined navigation of the interface functionalities including system
settings, help documentation, module shortcuts, and advanced camera control features,
such as setting the region of interest (ROI). The ROI setting allows one to work with
a specific rectangular area of input images or live image streams for improved weed
detection. With the menu bar, users can effortlessly switch among different operation
tasks, enhancing the overall user experience.

• Input Module: This module allows users to select their preferred type of input data,
i.e., image, video, and real-time camera image streams (primary target). This flexibility
makes the GUI well-suited for real-time, online, and offline weed detection tasks.

• Model Selection Module: As an important technical feature in the GUI, this module
enables users to choose from and deploy a collection of pre-trained YOLO models
(Section 2.3) for weed detection. Additionally, users can adjust the confidence
threshold for enhanced weed detection. This module offers ease of model switching
during the weed detection process, enabling users to decide on a model that best
suits detection needs.

• Imaging Module: This module offers options for capturing and saving detected
images. It has two checkboxes for saving and detection functions, respectively, with
the flexibility to enable or disable image saving during the detection process. Users can
specify a saving interval (in seconds) that determines how frequently images (in .jpg
format), alongside associated detection files (in .json format), are saved locally. Images
can be saved at either the original or customized resolution, and upon clicking the
“Save” checkbox, three separate folders will be created, each timestamped, for saving
raw images, the corresponding images overlaid with detection bounding boxes, and
JSON files, respectively. The “detection” will perform weed detection by a specified
model for camera video streams in real-time.

• Camera Setting Module: This module allows users to interact with imaging hard-
ware and adjust camera parameters, including exposure times, gain, gamma, and
intensity. A handy “More” button is added, upon clicking, to enable additional color
space settings including Saturation, Hue, and Value. The permissible adjustment
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ranges (specific to the imaging hardware described in Section 2.2.1) for these camera
parameters are given in Table 1.

• Display Module: This module displays the source image data, with weed detection
bounding boxes overlaid if the detection option is checked. It supports the presentation
of static images, external videos, and real-time camera video frames. The display
dimensions are configured to a square shape of 640 × 640 pixels, dictated by the input
size of YOLO models. However, the size of the display module can be readily modified
to cater to specific input requirements.

• Playback Control Module: This module incorporates three essential components
including a start button, a progress bar, and a stop button, for weed detection of
external videos. With a video loaded, users can initiate playback by selecting the start
button. Throughout the playback, the checkbox option for image detection and saving
remains accessible, and the progress bar allows users to define the specific range for
weed detection by adjusting its position.

• Status Output Module: This module communicates real-time operational updates,
whether it is tracking the processing status, alerting the user about potential issues,
or updating on successful tasks. For instance, it displays connection statuses, such as
verifying if the camera is successfully connected or indicating any disconnections. It
also specifies the source of the current video stream, whether it is from a local file or a
real-time camera. This design keeps the users informed every step of the way.

Table 1. Description of camera parameter settings.

Camera Parameter Description Range

Gain Control the sensitivity of the camera’s sensor to light [0, 24]
Gamma Perform gamma correction [0, 2.4]
Intensity Set a specific target intensity level for the camera to maintain. [0, 100]
Saturation Adjust the intensity of colors, making them more or vivid [0, 2]
Hue Modify the overall tint and tone of the image [0, 300]
Value Adjust the brightness of the image [0, 1]

2.2. Hardware and Software
2.2.1. Hardware

A lightweight mobile machine vision platform was designed and prototyped for the
implementation and testing of OpenWeedGUI. As schematically shown in Figure 4, the
platform mainly consists of a color camera (Allied Vision, Stadtroda, Germany) with a
resolution of 2465 × 2056 pixels, attached with an 8.5-mm focus lens, and a Jetson AGX
Orin developer kit (NVIDIA, Santa Clara, CA, USA) connected with supporting peripherals
(monitor and keyboard), which are mounted with a wheeled, motorized frame. The
platform was powered by a 12 V battery, which was connected to an inverter to power the
computer and monitor. The Jetson kit, with 2048-core Ampere architecture and 64 Tensor
Cores, is an advanced, energy-efficient system-on-a-chip edge computer designed for AI
applications. The mobile platform was deployed for weed imagery in field conditions and
the evaluation of onboard weed detection with the aid of OpenWeedGUI.
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2.2.2. Software

The OpenWeedGUI was developed using Python 3.8 in the Ubuntu 22.04.2 operating
system, employing the PyQt5 toolkit for its user interface design. As a pythonic wrapper of
Qt (C++), PyQt5 takes advantage of the former for GUI design while enabling extensive
Python libraries for computer vision and deep learning tasks. In the framework of Qt,
camera interfacing was achieved by the Vimba Python API (version 1.2.1) (https://github.
com/alliedvision/VimbaPython, assessed on 20 June 2023) (Allied Version, Stadtroda,
Germany) and downstream image and video processing tasks were undertaken by OpenCV
(version 4.7.0). In conjunction with OpenCV, PyTorch (version 1.14) was used for deploying
already trained YOLO object detection models for weed detection. Particularly for YOLOv5
models, TensorRT (version 7.x) (https://github.com/wang-xinyu/tensorrtx, assessed on
5 September 2023) and PyCUDA (https://github.com/inducer/pycuda, assessed on 5
September 2023) were used for accelerating real-time inference of YOLOv5 models, which is
desirable for weeding systems with resource-constrained computing devices. The software
programs for OpenWeedGUI will be made publicly available.

2.3. YOLO Models

OpenWeedGUI supports the deployment of a variety of YOLO object detectors as
summarized in Table 2. These models were trained on the CottonWeedDet12 dataset [17]
through transfer learning in PyTorch. The dataset consists of 5648 color images collected in
diverse cotton field conditions, and a total of 9370 bounding box annotations for 12 weed
classes, which is publicly accessible in the Zenodo repository (https://zenodo.org/records/
7535814, assessed on 15 January 2023). Details about the training and benchmarking
performance metrics of YOLO models, as well as the statistics of CottonWeedDet12, are
given elsewhere [13]. It is noted that YOLOX and YOLOv8 models were not trained
for weed detection in [13], but were trained in a separate study [32] and included in the
OpenWeedGUI for completeness. The functionality of supporting a large suite of YOLO
models makes the OpenWeedGUI a versatile tool. It can be used in offline scenarios for
facilitating comparative analysis and performance evaluation of weed detection models,
assisting in model selection. Users also have the convenience of deploying models that
best align with their specific needs regarding accuracy and efficiency for real-time onboard
weed detection.

https://github.com/alliedvision/VimbaPython
https://github.com/alliedvision/VimbaPython
https://github.com/wang-xinyu/tensorrtx
https://github.com/inducer/pycuda
https://zenodo.org/records/7535814
https://zenodo.org/records/7535814
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Table 2. YOLO models supplied by OpenWeedGUI for weed detection.

YOLO Variant Model in GUI Input Size
Number of
Parameters
(Million)

URL

YOLOv3

YOLOv3-tiny best-tiny.pt 640 × 640 8.6
https://github.com/ultralytics/
YOLOv3, assessed on 9 July 2023YOLOv3 best3.pt 640 × 640 61.5

YOLOv3-SPP bestSPP.pt 640 × 640 62.6

YOLOv4

YOLOv4pacsp-s bestv4_pacsp-s.pt 640 × 640 8.1

https://github.com/
WongKinYiu/PyTorch_YOLOv4,
assessed on 9 July 2023

YOLOv4pacsp bestv4_pacsp.pt 640 × 640 45.4

YOLOv4 bestv4.pt 640 × 640 63.2

YOLOv4pacsp-x bestv4_pacsp-x.pt 640 × 640 97.8

Scaled-YOLOv4

YOLOv4-P5 bestsv4-p5.pt 640 × 640 72.6 https://github.com/
WongKinYiu/ScaledYOLOv4,
assessed on 9 July 2023

YOLOv4-P6 bestsv4-p6.pt 640 × 640 128.6

YOLOv4-P7 bestsv4-p7.pt 640 × 640 287.9

YOLOR

YOLOR-P6 bestR-P6.pt 640 × 640 37.5 https://github.com/
WongKinYiu/yolor, assessed on
9 July 2023

YOLOR-CSP bestR-CSP.pt 640 × 640 53.3

YOLOR-CSP-X bestR-CSP-X.pt 640 × 640 102.4

YOLOv5

YOLOv5n bestN.pt 640 × 640 1.9

https://github.com/ultralytics/
YOLOv5, assessed on 9 July 2023

YOLOv5s bestS.pt 640 × 640 7.2

YOLOv5m bestM.pt 640 × 640 21.2

YOLOv5l bestL.pt 640 × 640 46.5

YOLOv5x bestX.pt 640 × 640 86.7

YOLOv5 + TensorRT

YOLOv5n bestN.engine 640 × 640 1.9

https:
//github.com/wang-xinyu/
tensorrtx/tree/master/yolov5,
assessed on 9 July 2023

YOLOv5s bestS.engine 640 × 640 7.2

YOLOv5m bestM.engine 640 × 640 21.2

YOLOv5l bestL.engine 640 × 640 46.5

YOLOv5x bestX.engine 640 × 640 86.7

YOLOX

YOLOX-s bests_ckpt.pth 640 × 640 9.0

https://github.com/Megvii-
BaseDetection/YOLOX, assessed
on 9 July 2023

YOLOX-m bestm_ckpt.pth 640 × 640 25.3

YOLOX-l best_ckpt.pth 800 × 800 54.2

YOLOX-x bestx_ckpt.pth 800 × 800 99.1

YOLOv8

YOLOv8s yolov8bestS.pt 640 × 1200 28.6

https://github.com/ultralytics/
ultralytics, assessed on 9 July
2023

YOLOv8m yolov8bestM.pt 640 × 640 78.9

YOLOv8l yolov8bestL.pt 800 × 800 165.2

YOLOv8x yolov8bestX.pt 640 × 640 257.8

3. Experimentation and Discussion
3.1. Indoor Experimentation

Initial indoor experiments were conducted to assess the operational validity of
functional modules of OpenWeedGUI deployed on the mobile platform (Figure 4). These
examinations included camera activation, image setting adjustment, the responsiveness
of model switching, image and video detection, the efficiency of real-time weed detection,
and the reliability of results saving, under indoor lighting conditions. For weed detection,
representative weed images were printed on paper sheets in color and placed on the
ground beneath the camera. Additionally, an external video, captured for weed plants in
natural field conditions in August of 2022, was imported to the GUI to test video-based
weed detection.

Figure 5 showcases the real-time weed detection, model switching, and image acquisi-
tion outcomes of OpenWeedGUI. Upon clicking the “Open Camera” button, the button
label is updated to “Close Camera”, signaling that the camera has become active. Con-
currently, the GUI starts to detect weeds in the camera image stream when the “Detect”
checkbox is enabled as shown in Figure 5a. The process involves deploying a specific
YOLO model (YOLOv5s by default) for weed detection, which immediately engages the

https://github.com/ultralytics/YOLOv3
https://github.com/ultralytics/YOLOv3
https://github.com/WongKinYiu/PyTorch_YOLOv4
https://github.com/WongKinYiu/PyTorch_YOLOv4
https://github.com/WongKinYiu/ScaledYOLOv4
https://github.com/WongKinYiu/ScaledYOLOv4
https://github.com/WongKinYiu/yolor
https://github.com/WongKinYiu/yolor
https://github.com/ultralytics/YOLOv5
https://github.com/ultralytics/YOLOv5
https://github.com/wang-xinyu/tensorrtx/tree/master/yolov5
https://github.com/wang-xinyu/tensorrtx/tree/master/yolov5
https://github.com/wang-xinyu/tensorrtx/tree/master/yolov5
https://github.com/Megvii-BaseDetection/YOLOX
https://github.com/Megvii-BaseDetection/YOLOX
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
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display module to present detection results enclosed by bounding boxes. Instantly, the
result statistics module presents a summary of the quantities of detected weed instances
within the current frame. The GUI supports switching among different models, as shown
in Figure 5b where users can select one among YOLO variants available in a dropdown
list. Upon selection, the interface intuitively updates a second list of architecture options
specific to the chosen YOLO variant. This allows users to efficiently navigate through and
experiment with different types of YOLO models.
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Figure 5. Illustration of OpenWeedGUI for weed detection: (a) run detection; (b) model selection;
(c) change model; (d) save results.

The GUI allows for changing the detection model dynamically at run time, as shown
in Figure 5c where YOLOv5s is switched to YOLOX, accompanied by updates in detection
results. At the same time, the status bar at the bottom of the interface responds to this
adjustment, indicating that a new model has been deployed. The “Save” checkbox of the
GUI allows users to save images in their original and detected forms to a user-defined
directory. As shown in Figure 5d, the status of each saving event is promptly communicated
in the status bar. In addition to saving images (raw and detected with bounding boxes), the
GUI also saves the detection results in .json files at a fixed user-defined time interval, as
shown in Figure 6.
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Figure 6. Illustration of saving operations by OpenWeedGUI in three separate folders. (a) Original
images; (b) detected images with bounding boxes; (c) corresponding detection files (in .json format).

Figure 7 shows the outcomes of video detection, wherein users can play the video to
dynamically observe detection results. Furthermore, Figure 8 demonstrates weed detection
given a single image input. Here, users can import an image and initiate the detection
process by enabling the detection checkbox. The GUI accommodates real-time adjustments
of the hue, saturation, and value of a color image, as shown in Figure 8b,c, where image
manipulation in a color space yields different detection results. It is noted that the GUI sup-
ports enabling saving operations on demand during video and image detection processes,
allowing for the flexibility to capture images as needed.
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Figure 8. Illustration of weed detection for a single input image: (a) import an image, (b,c) detect
weeds on the image modified differently in color space.

3.2. In-Field Testing

To further verify its operational functionalities, OpenWeedGUI was deployed on the
mobile vision platform for in-field weed imaging and detection. Field tests were conducted
throughout June and September of 2023 on the farmland of Michigan State University
Horticulture Teaching and Research Center (Hort, MI). The field site was infested with
naturally germinated weeds, among which Common Lambsquarters (Chenopodium album
L.) was the dominant species. Since the weed was not included in the CottonWeedDet12
dataset for YOLO modeling [13], separate weed imagery was curated to update YOLO
models to detect the weed, which was trained using default hyperparameter settings on
a dataset consisting of 1439 images with 12,107 bounding box annotations for Common
Lambsquarters. Before running the mobile platform in field test events, the camera param-
eters were adjusted to accommodate field light conditions and kept unchanged during the
test. The mobile platform was operated at a traveling speed of approximately 0.35 m/s.
Figure 9 (left) shows a typical field test scenario, and Figure 9 (right) shows weed de-
tection with YOLOv8s enabled in OpenWeedGUI. Readers are referred to a video clip
(https://youtu.be/KK36A4SWhH0, assessed on 15 December 2023) on the dynamic pro-
cess of weed detection by OpenWeedGUI on a field test occasion. The field tests confirmed
the capabilities of OpenWeedGUI for weed imaging and detection.

https://youtu.be/KK36A4SWhH0
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Figure 9. Photograph of field testing of a mobile weed imaging platform (left) and weed detection
visualization of OpenWeedGUI (right).

3.3. Discussion

This study represents a novel attempt, in the spirit of developing and sharing open-
source tools beneficial to the research community, to develop a GUI to facilitate greater
efforts to advance machine vision-based weeding technology. The OpenWeedGUI intro-
duced in this work is expected to be a useful tool for acquiring images and deploying
YOLO models for weed detection. Both indoor and field tests validated the functionalities
of various modules of the graphical tool, although these tests were not oriented toward
assessing actual weed detection performance. Overall, the OpenWeedGUI met the design
requirements in terms of achieving its two major functionalities (i.e., image acquisition and
deployment of YOLO models for weed detection). However, it is important to point out
some limitations and areas for further improvement.

The present OpenWeedGUI integrates pre-trained YOLO models into the software,
which is however not memory efficient for rapid deployment. It would be more desirable
to allow users to import external weed detection models separately from the interface,
reducing the software file size and affording flexibility in model deployment. YOLOs are
evolving rapidly. At the time of writing, YOLOv9 has been recently published [33], pushing
the boundaries of real-time object detection. It is worthwhile to evaluate its performance in
weed detection. While YOLOs are among the most successful real-time object detectors,
there are other high-performant single-stage objectors, and very recently, transformer-based
object detectors have also shown real-time efficiency while achieving high accuracy [34].
Supporting the deployment of all of these models for weed detection would conceivably
enhance the utility of the OpenWeedGUI. This will demand dedicated efforts to benchmark
these models for weed detection. It is noted that the OpenWeedGUI builds on an imaging
hardware-specific package, i.e., Vimba API in Python, for camera communication, which
restricts its applicability to compatible cameras. To support a wider range of camera options,
it is necessary to overcome the dependence and employ more generally useful camera
interfacing packages, which remain to be determined. Research is underway to make the
OpenWeedGUI more user-friendly for practitioners with limited programming skills by
providing complied, executable (.exe) versions across different operating systems (e.g.,
Windows, Linux, and Raspberry Pi) alongside improved technical features.
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4. Conclusions

This study presents the OpenWeedGUI, an innovative, open-source graphical user
interface designed for the ease of collecting images and deploying YOLO models for on-
board weed detection. Created in the PyQt framework with the aid of various open-source
enabling libraries, the OpenWeedGUI is featured with user-friendly functional modules for
input selection, camera control, model selection, image saving, weed detection, and result
visualization and logging. Indoor and field tests demonstrated the technical competencies
and reliability of the graphical software. The open-source nature of the OpenWeedGUI
makes it highly extensible and amenable to modifications for customized needs and will
inspire community efforts to develop and share software products supporting precision
weed control research. The OpenWeedGUI software is expected to be a useful tool for
advancing the development and application of machine vision systems for weed detection
and control. Improvements will be made to enhance its utility and user-friendliness in
further revisions.
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