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Abstract: The typical Integrated Circuit (IC) development process commences with formulating
specifications in natural language and subsequently proceeds to Register Transfer Level (RTL) imple-
mentation. RTL code is traditionally generated through manual efforts, using Hardware Description
Languages (HDL) such as VHDL or Verilog. High-Level Synthesis (HLS), on the other hand, converts
programming languages to HDL; these methods aim to streamline the engineering process, mini-
mizing human effort and errors. Currently, Electronic Design Automation (EDA) algorithms have
been improved with the use of AI, with new advancements in commercial (such as ChatGPT, Bard,
among others) Large Language Models (LLM) and open-source tools presenting an opportunity to
automate the chip design process. This paper centers on the creation of AI by AI, a Convolutional
Neural Network (CNN) IC entirely developed by an LLM (ChatGPT-4), and its manufacturing with
the first fabricable open-source Process Design Kit (PDK), SKY130A. The challenges, opportunities,
advantages, disadvantages, conversation flow, and workflow involved in CNN IC development are
presented in this work, culminating in the manufacturing process of AI by AI using a 130 nm technol-
ogy, marking a groundbreaking achievement as possibly the world’s first CNN entirely written by AI
for its IC manufacturing with a free PDK, being a benchmark for systems that can be generated today
with LLMs.

Keywords: convolutional neural network; hardware design; integrated circuit; large language models

1. Introduction

The history of Integrated Circuit (IC) design is marked by innovation and technological
strides. It began in the late 1950s with the introduction of the transistor [1]. Texas Instru-
ments pioneered the first IC in 1958, integrating two transistors on a silicon–germanium
bar [2]. Until the arrival of Computer-Aided Design (CAD) tools in 1966, ICs were manually
drawn on paper [3].

The evolution of Hardware Description Language (HDL) started in the early 1970s
with Register Transfer Level (RTL), allowing for thousands of transistors per IC [4]. DEC’s
PDP-16 RT-Level Modules [5], Instruction Set Processor Specifications [6], and Incremen-
tal System Programming Language [7] were significant contributions. In the late 1970s,
programmable logic devices increased the demand for standard languages, and in 1985,
Gateway and Intrametric introduced Verilog and VHSIC Hardware Description Language
(VHDL) [8,9].

Alongside Verilog and VHDL, C-based hardware description languages, known as
High-Level Synthesis (HLS), emerged. SystemC allowed the use of standard C++ and a
class library for HDL generation in 1999, simplifying the IC development process with
HLS [10]. Today, HLS tools like LegUP, Xilinx Vivado HLS, and Intel’s HLS compiler
transform C++ into HDL.
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On the other hand, the journey of Artificial Intelligence (AI) started in the 1960s
and improved during the 1970s and 1980s with foundational concepts and algorithms
of deep learning and Artificial Neural Networks (ANN) [11,12]. During the late 1980s
and early 1990s, the Machine Learning (ML) and AI community experienced a wave of
enthusiasm as it was discovered that ANNs could tackle certain problems in novel ways.
These networks had the distinct advantage of processing raw and diverse data types and
developing hierarchical structures autonomously during the training phase for predictive
tasks. However, the computational power at the time was insufficient for large-scale
problems, limiting the application to smaller, simpler tasks [12–14].

It was not until the end of the 2000s that technological advancements, propelled by
Moore’s Law, equipped computers with the necessary power to train extensive ANNs on
substantial, real-world challenges, such as the Imagenet project [15]. This advancement
was largely due to the advent of general-purpose computing on graphics processing units,
which offered superior floating-point performance compared to Central Processing Units
(CPUs) [16]. This shift enabled ANNs to achieve remarkable results on complex issues of
significant importance.

The last decade has been transformative for ML, especially with the rise of deep
learning techniques that utilize ANN. These advancements have significantly enhanced
the precision of systems in various domains [17]. Notable progress has been made in fields
such as computer vision [18–21], speech recognition [22,23], language translation [24], and
other complex natural language processing tasks [25–30]. This progress is attributed to the
collective efforts and breakthroughs documented in key research papers.

Additionally, reinforcement learning shows promise in automating the design of cus-
tom Application-Specific Integrated Circuit (ASIC) by solving nondeterministic polynomial-
hard optimization problems that are currently reliant on human expertise. This approach
could revolutionize the synthesis, placement, and routing processes in chip design, poten-
tially outperforming human teams by rapidly generating efficient layouts [31–33]. Google’s
preliminary experiments with this technology have yielded encouraging results, suggesting
a future where machine learning accelerates and enhances the ASIC design process [14].

Research conducted by International Business Strategies Inc. in 2014, 2018, and
2022 categorizes the IC design costs into seven components: Intellectual Property (IP),
Architecture, Verification, Physical Design, Software, Prototyping, and Validation. These
studies reveal that design costs fluctuate significantly due to two primary factors: the
prevailing technology at the time and the nanometer scale at which it is desired to fabricate.
For instance, the design cost for a 28 nm circuit was approximately USD 140 million in
2014, reduced to USD 51.3 million in 2018, and further decreased to USD 48 million in 2022.
Based on the 2018 and 2022 analyses, the estimated distribution of costs is as follows: IP
at 6.85%, Architecture at 5.24%, Verification at 21.24%, Physical Design at 10.2%, Software
at 43.32%, Prototyping at 5.24%, and Validation at 7.92%. These percentages provide a
framework for approximating the allocation of expenses in IC design.

Advancements in machine learning could streamline the entire ASIC design process,
from high-level synthesis to low-level logic placement and routing. This automation could
drastically cut down design time from months to weeks, changing the economic calculus by
reducing costs in Prototyping, Verification, and Architecture, combined with open-source
tools and IPs, design costs would be further reduced. It may be feasible to create customized
chips, which are currently reserved for high-volume and high-value scenarios.

Today, commercial LLMs like OpenAI’s ChatGPT [34], Google’s Bard [35], and Mi-
crosoft AI chatbot [36] have been used to introduce innovative HDL generation. These
methods involve feeding the LLM with the system specifications, which then automatically
produce HDL code. This synergy between AI and IC development promises enhanced
efficiency and opens new frontiers in the field. Nevertheless, the state-of-the-art models fall
short in their ability to effectively comprehend and rectify errors introduced by these tools,
making it challenging to autonomously generate comprehensive designs and testbenches
with minimal initial human intervention [37–39].
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This work combines different processes to increase the complexity of an IC and reduce
the amount of work required. The primary research inquiry revolves around the capability
of contemporary commercial LLMs to produce Convolutional Neural Network (CNN)
hardware designs that are not only synthesizable, but also manufacturable using the first
open-source Process Design Kits (PDKs) called SKY130A.

The development of AI by AI—a CNN IC engineered for MNIST dataset classification—
involves the use of LLM, Vivado HLS, Verilog, OpenLane, and Caravel. AI by AI was
entirely crafted by OpenAI’s ChatGPT-4. It began as a TensorFlow (TF) CNN architecture,
followed by a downscaling from Python to C++, and then was translated to Verilog using
Vivado HLS. The layout design process is made by OpenLane, resulting in a layout IP
of the CNN. The journey culminated with the integration of the CNN IP with Caravel, a
template System on Chip (SoC) which is ready for manufacturing using ChipIgnite shuttles,
a multi-project wafer program by Efabless, with the SKY130A PDK [40,41]. Throughout
this paper, we delve deeply into the development of AI by AI IC from TF to tape-out.

The remainder of this work is organized as follows: Section 2 provides an overview of
the employed tools, outlining both their advantages and disadvantages; Section 3 explains
the workflow and conversation flow; Section 4 is about the implementation of AI by AI
IC; Section 5 shows the obtained results; Section 6 presents the discussions; and, finally,
Section 7 concludes this work.

2. Development Tools
2.1. Vivado HLS 2019.1

While traditional HDLs like Verilog and VHDL are acknowledged for their efficacy,
their low-level abstraction often leads to long development cycles. A divergent approach
is presented by HLS, offering a faster and more agile solution for hardware description
development [42].

HLS functions through an automated process, enabling the generation of synthesizable
RTL code from algorithms scripted in high-level languages such as C/C++ or System C.
Although the resulting RTL code is commonly implemented on a Field-Programmable Gate
Array (FPGA), it can also be translated into silicon, since it is described in HDL. In this
case, the attractiveness of HLS lies in the possibility of generating HW with programming
languages [42–44], Table 1 shows some advantages and disadvantages of HLS.

Table 1. Advantages and disadvantages of HLS.

Advantages of HLS Disadvantages of HLS

Reduces development time and effort Does not have the same quality of results
as HDLs

Architecture selection and optimization Inconveniences in the hardware description

Parallelism and pipelining Does not support all the features and
constructs of the input languages

Allocates and shares resources efficiently May not be compatible with all the existing
tools and flows

2.2. OpenLane

This software is an open-source automated flow for layout design, conformed by
various tools from OpenROAD and Qflow, focusing on the RTL to Graphic Design System
(GDSII) design. Initially deployed for implementing the StriVe family, a RISC-V based SoC,
using free EDA tools and the first open-source PDK SKY130A.

Currently comprising over seventy scripts and utilities, OpenLane can be configured
for customized flows, enabling the implementation of diverse designs with any technology
or PDK. The flow encompasses stages like synthesis, floorplaning, placement, Clock Tree
Synthesis (CTS), routing, tapeout, and signoff [45–47].

The OpenLane flow initiates with HDL synthesis where the Yosys synthesis tool op-
timizes the design, resulting in a netlist mapped by the PDK. During this phase, design
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constraints like clock definition and boundary conditions can be integrated, and Static Tim-
ing Analysis (STA) can be executed using the OpenSTA tool. Subsequently, floorplanning is
conducted, with OpenROAD tools employed for macro-related tasks, producing a Design
Exchange Format (DEF) file and defining matrix and macro core sizes. The Padring tool is
harnessed for chip-level floorplanning, optimizing core pin positions for improved pad
frame and core interconnect placement.

Post-floorplanning, standard cell, and macro placement are accomplished using the
Re-PlAce tool, with subsequent placement checks conducted via OpenDP. The CTS phase
follows, with TritonCTS placing clock branches and OpenDP adding necessary buffers.
Routing is executed through a two-step approach: an initial phase with FastRoute, followed
by a more intricate process with TritonRoute. In the concluding stages, the design undergoes
verifications, including Design Rule Check (DRC), Layout Versus Schematic (LVS), and
STA. Successful completion of these checks deems the design suitable for approval [45,48];
a graphical representation of the described process is illustrated in Figure 1 below.

Figure 1. OpenLane workflow [48].

With the rise of OpenLane, new research has made a comparative analysis of this open-
source tool with commercial tools [45–47,49,50]. Table 2 shows some of the advantages and
disadvantages of OpenLane.

Table 2. Advantages and disadvantages of OpenLane.

Advantages of OpenLane Disadvantages of OpenLane

The entire flow is configured through a single
configuration file

Less control over the flow compared to
commercial tools

Automated flow, requires no manual
intervention, once configured

Commercial tools have better time
optimization

Open-source, no charge for use OpenLane uses more logic cells in the design
Reduces the time and expertise required to

obtain the GDSII
OpenLane generated designs tend to consume

more power
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2.3. Caravel

Caravel is an SoC template developed by Efabless and built upon SKY130A and
GF180MCUC technologies. It comprises three main sections: the template frame and
two wrapper modules, known as the management area and user area [51].

The template frame is equipped with essential components, including a clocking
module, Delay Locked Loop (DLL), user ID, housekeeping Serial Peripheral Interface
(SPI), Power-On Reset (POR), and a General-Purpose Input/Output (GPIO) controller. The
management area, housing a RISC-V based SoC, can configure and control the user area.
The user area occupies a silicon space of 2.92 mm by 3.52 mm and includes 38 I/O pads,
128 Logic Analyzer (LA) signals, and four power pads. Figure 2 shows the block diagram
of Caravel and its three sections [51].

Figure 2. Caravel SoC architecture [51].

The very nature of a template offers great advantages when designing an IC; however,
it also has some limitations. Table 3 shows these advantages and disadvantages.

Table 3. Advantages and disadvantages of Caravel.

Advantages of Caravel Disadvantages of Caravel

Allows low-cost and low-risk custom
SoC design Limited to SKY130A and GF180MCUC PDKs.

Supports various open-source tools and flows
for IC design

May not be suitable for complex or high-end IC
design projects

Enables fast SoC prototyping Limited by 10 mm2 and 38 GPIO pins
Enables collaboration and sharing with the

open-source hardware community
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3. Workflow and Conversation Flow
3.1. Large Language Model Conversation Flow

The cornerstone of this work lies in the use of a commercial LLM for precise code
generation, guided by the conversational flow depicted in Figure 3.

Figure 3. Conversation flow with LLM for code generation, highlighting the transition points and the
recommendation for generation of prompts and new chat session.

The process starts by combining code from a higher abstraction level, if available, with
the initial prompt. If the AI response does not meet the expected criteria, the creation of a
more detailed prompt is initiated, to clarify specific requirements.

Upon receiving the expected response, the progression involves code simulation and
testing, which means running the function for different cases and getting the expected
result. The conversation concludes when the code functions as intended. However, in cases
of code malfunction, the subsequent step entails the crafting of a new prompt incorporating
error messages, heightened specificity, illustrative examples, or details regarding required
code modifications, e.g., if the code does not work due to a data type error, it communicates
so to the AI. After multiple iterations, when the LLM consistently produces similarly
incorrect responses, it indicates the need to commence a new chat session.
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3.2. From TensorFlow to Layout

Throughout the entire workflow, LLM played a central role in code generation, align-
ing with the conversation flow detailed in Section 3.1. AI by AI commences with the creation
and training of the CNN architecture via TF. This initial phase allows training the CNN
and capturing its essential weights and biases.

Considering the limitations of Caravel, we chose to implement a compact CNN with
the following layers: Input layer (28 × 28 × 1), Convolutional Layer 1 (26 × 26 × 4), Max
Pooling Layer 1 (6 × 6 × 4), Convolutional Layer 2 (4 × 4 × 8), Max Pooling Layer 2 (2 × 2 × 8),
Flattening Layer (1 × 32), and dense layer.

Subsequently, the transformation of the TF model into a set of Python functions
dedicated to executing the inference of the CNN, without the use of libraries, is initiated. A
pivotal following step involves converting the Python-based forward function into C++,
allowing the use of Vivado HLS.

The workflow culminates with the implementation of the CNN at the layout level,
integrating it with Caravel. Figure 4 presents a visual representation of this process.

Figure 4. Workflow for the development of a CNN using LLM, from TF architecture to GDSII
throughout Caravel integration.

4. Development of AI by AI

The development of AI by AI consists of a series of dialogues with ChatGPT-4, fol-
lowing the conversational structure outlined in Figure 3. For access to the complete
conversations, the generated code, and the entire project, please refer to the following
GitHub repository: https://github.com/Baungarten-CINVESTAV/AI_by_AI (accessed on
4 March 2024). Table 4 provides the ChatGPT URL of each conversation and the main topic
covered in those conversations, accessed on 4 March 2024.

https://github.com/Baungarten-CINVESTAV/AI_by_AI
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Table 4. ChatGPT-4, conversation URL.

Subject of the Conversation URL

Implementing a CNN in TF (accessed on 4 March
2024) https://chat.openai.com/share/4e8a7cf2-a9e9-4461-a4b3-b9e8b4aa284f

Implementation of a forward function in Python
without libraries (Bare-Metal) (accessed on 4 March

2024)
https://chat.openai.com/share/c96772be-4dac-43da-8013-c657dd935efa

From Python to C code I (accessed on 4 March 2024) https://chat.openai.com/share/c96772be-4dac-43da-8013-c657dd935efa
From Python to C code II (accessed on 4 March 2024) https://chat.openai.com/share/64b09191-401e-4d04-8eb5-5383b95ceea5
Bias and weights as global parameters (accessed on 4

March 2024) https://chat.openai.com/share/4b8237a4-20c3-434b-89fb-084fc5b57287

From C to HLS I (accessed on 4 March 2024) https://chat.openai.com/share/9037bfcd-8d23-4701-bafd-59eca930a822
From C to HLS II (accessed on 4 March 2024) https://chat.openai.com/share/84dd776b-0036-4fec-a878-dbcb33f6f210

Add function, half-precision floating-point (accessed
on 4 March 2024) https://chat.openai.com/share/0f617bfd-f59a-49a3-a561-20b2779ca121

Mult, Relu, Max function, half-precision
floating-point (accessed on 4 March 2024) https://chat.openai.com/share/2b207fc6-5952-4ef7-a562-64765e2d6722

Exponent function, half-precision floating-point
(accessed on 4 March 2024) https://chat.openai.com/share/5345f69b-5e04-4fdf-a062-f29b2fcc4564

This chapter is structured into five distinct subsections, as visually represented in
Figure 4. In each of these sections, the relevant prompts, primary challenges, key consider-
ations, and the step-by-step development process are detailed. The journey commences
with the creation of the CNN using TF, and culminated with the generation of the GDSII
file ready for manufacturing.

4.1. CNN with TF

The CNN was designed for image inference tasks toward the renowned MNIST
dataset [52]. To harness the power of cloud computing, we opted for Google Colab [53],
primarily due to its integration of TF libraries and the capacity to use GPUs.

The noteworthy prompts that emerged during the interactions with ChatGPT-4 included:

- Generate a CNN for the MNIS dataset using TF and Google Colab.
- Change the CNN model to be: 4 × 3 × 3 Conv2D, 4 × 4 MaxPool, 8 × 3 × 3 Conv2D,

2 × 2 MaxPool, and work with float16.
- Obtain the weights and biases for each layer, then write those weights on a .npy

file and .bin file. Save both as a float16 data type.

The approach taken involved implementing a compact network using the following
layers 4 × 3 × 3 Conv2D, 4 × 4 MaxPool, 8 × 3 × 3 Conv2D, 2 × 2 MaxPool, flatten, and
finally, the dense layer, as well as the use of half-precision floating-point format to optimize
resource usage. Figure 5 illustrates the CNN created.

Figure 5. CNN architecture for the task of classifying MNIST images.

https://chat.openai.com/share/4e8a7cf2-a9e9-4461-a4b3-b9e8b4aa284f
https://chat.openai.com/share/c96772be-4dac-43da-8013-c657dd935efa
https://chat.openai.com/share/c96772be-4dac-43da-8013-c657dd935efa
https://chat.openai.com/share/64b09191-401e-4d04-8eb5-5383b95ceea5
https://chat.openai.com/share/4b8237a4-20c3-434b-89fb-084fc5b57287
https://chat.openai.com/share/9037bfcd-8d23-4701-bafd-59eca930a822
https://chat.openai.com/share/84dd776b-0036-4fec-a878-dbcb33f6f210
https://chat.openai.com/share/0f617bfd-f59a-49a3-a561-20b2779ca121
https://chat.openai.com/share/2b207fc6-5952-4ef7-a562-64765e2d6722
https://chat.openai.com/share/5345f69b-5e04-4fdf-a062-f29b2fcc4564
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The implemented CNN utilizes a total of 666 parameters. This breakdown encom-
passes 36 weights and 4 biases for the initial convolutional layer, 288 weights and 8 biases
for the second convolutional layer, and, finally, 320 weights and 10 biases for the dense
layer. In terms of memory consumption, this results in a total of 1.332 KB required only
for storing the weights and biases. At the end of the training phase, the model showed an
accuracy of 99.4%. Part of the TF code of the CNN generated by the IA can be found below.

# Define the CNN model
model = models.Sequential()
model.add(layers.Conv2D(4, (3, 3), activation='relu', input_shape=(28,28,

1)))↪→

model.add(layers.MaxPooling2D((4, 4)))
model.add(layers.Conv2D(8, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(10, dtype='float16'))

4.2. Forward Function in Python

Implementing the inference function in Python without the use of the TF library is
a critical step in the process because, as we approach lower-level languages or avoid the
use of libraries, we obtain answers with a higher number of errors. To face that problem,
we provide the LLM with examples in a higher level language. In this case, ChatGPT-4
is instructed to utilize the pre-existing network, created with TF, to create the inference
function using the weights and biases from previously saved NumPy files.

Key prompts from interactions with ChatGPT-4:

- Write a bare metal implementation of the CNN, just the forward function, assuming
that the CNN was trained previously.

- Call the function forward based on the previous weights and biases .np file.
- Develop a functionality test of the previous code showing the selected image and

its label.

The previous chat generated six essential secondary functions required for inference
implementation: relu, softmax, conv2d_forwar, maxpool2d_forward, flatten, dense_forward,
and a main function named forward, which calls within it the secondary functions. The
following code shows the definition of the forward function and how it was used to perform
the test phase.

def forward(X, W_conv1, b_conv1, W_conv2, b_conv2, W_dense2, b_dense2):
out = conv2d_forward(X, W_conv1, b_conv1)
out = relu(out)
out = maxpool2d_forward(out, 4)
out = conv2d_forward(out, W_conv2, b_conv2)
out = relu(out)
out = maxpool2d_forward(out, 2)
out = flatten(out)
out = dense_forward(out, W_dense2, b_dense2)
out = softmax(out)
return out

for i in range(10000):
# prepare the input
x = test_images[i].astype(np.float16)
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# Ensure that the single image has the right shape (28, 28, 1)
single_image = np.reshape(x, (28, 28, 1))
output = forward(single_image, weights_conv1, biases_conv1,

weights_conv2, biases_conv2, weights_dense2, biases_dense2)↪→

# Find the index of the maximum value
prediction = np.argmax(output)
# compare the prediction with the actual label
actual_label = np.argmax(test_labels[i])
#actual_label = test_labels[i]
if prediction == actual_label:

correct_predictions += 1
# calculate the accuracy
accuracy = correct_predictions / 10000
print("The accuracy of the forward_pass function is:", accuracy)

Chat interactions from Sections 4.1 and 4.2 were brief, primarily due to the use
of Python.

4.3. From Python to C++

Utilizing a low-level programming language necessitated a more explicit approach
to crafting prompts. This involved providing the entire code for the seven previously
generated functions and demanded a higher number of iterations.

Main prompts obtained during interactions with ChatGPT-4:

- I develop the following CNN model in a python bare metal implementation for the
mnist dataset:
The CNN model is:

<Here, the python code is attached>
Rewrite the Python code on a C code: Weights and biases will be loaded from the
bin file.

- Implement the whole forward function and develop the fmaxf function used in the
maxpool layer.

- Create a function that convert the forward function into one hot output.
- Based on the C code create a function that compares the output of the forward

function and the label:
<Here, the C++ code is attached>

After the “From Python to C code” conversations mentioned in Table 4, we achieved
a successful implementation of all the layers of the CNN in a short time. The C++ code
presented below shows how the forward function is called N times for the test phase.

// Load the weights and biases from the binary files
load_weights_biases();
// For each image
for (int i = 0; i < NUM_IMAGES; ++i) {

// Call the forward pass function
out_forward = forward_pass(images[i], one_Hot_output);
printf("Predicted label = %d, Actual label = %d\n", out_forward,

labels[i]);↪→

// If the predicted label matches the actual label, increment the
count of correct predictions↪→

if (out_forward == labels[i]) {
++correct_predictions;

}
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}
// Calculate the accuracy
float accuracy = ((float)correct_predictions / NUM_IMAGES) * 100.0f;
printf("Accuracy = %.2f%%\n", accuracy);

Part of the forward_pass function is presented below, where each of the layers, both
convolutional and maxpool, was implemented through a series of for loops, where variable
i represents the pixel coordinate in x, variable j represents the pixel coordinate in y, and
variable k represents the filter number. On the other hand variables di and dj represent the
kernel, being a 3 × 3 kernel for the first convolutional layer.

int forward_pass(float* image, int* one_hot_output) {
// Assume here that the image has a size of 28x28x1 and weights and

biases are already loaded↪→

// First Conv2D layer: input is 28x28x1, filter is 3x3x1x4
// It results in a 26x26x4 output (we are assuming VALID padding)
float conv1[26][26][4];
for(int i = 0; i < 26; i++)

for(int j = 0; j < 26; j++)
for(int k = 0; k < 4; k++) {

conv1[i][j][k] = 0;
// Convolution operation
for(int di = 0; di < 3; di++)

for(int dj = 0; dj < 3; dj++)
conv1[i][j][k] += image[(i+di)*28 + (j+dj)] *

weights_conv1[(di*3 + dj)*4 + k];↪→

conv1[i][j][k] += biases_conv1[k];
// ReLU activation
conv1[i][j][k] = relu(conv1[i][j][k]);

}

The C++ code provided by the AI can be easily scaled and customized to create various
convolutional layers, changing only the ranges of the first two for loops that represent the
size of the image, the third for represents the amount of filter that the layer has, and the
last two for loops represent the size of the kernel. This versatility opens the opportunity to
construct a wide range of CNNs, and all with the code provided by the AI.

4.4. Vivado HLS Considerations

The C++ code generated by the IA uses floating data types, although Vivado HLS
supports this type of data when implemented at the hardware level it uses a restricted
Floating Point Units (FPUs) IP, so its use is limited only to Xilinx boards.

To face this issue, C++ functions that utilize 16-bit integer data types, but perform
floating-point operations at the bit level, were developed through a series of LLM conversa-
tions, keeping in mind the IEEE® 754 half-precision floating-point format.

A total of eight functions were developed: addition, subtraction, multiplication, di-
vision, exponential, softmax, relu, and max. The addition, multiplication and division
functions can be found in Appendix A.

The main prompts obtained during interactions with ChatGPT-4 are:
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- Develop an [addition, subtraction, multiplication, division, relu, max] function of
two numbers of 16 bits with the following structure, sign bit, 5-bit exponent, 10-bit
mantissa. Generate the C code for HLS.

- Consider the case in which A and B are the same number.
- Consider the case in which A or B are equal to 0.
- Consider the case in which A and B have different signs.
- Develop an exp function of a number of 16 bits with the following structure, sign

bit, 5 bits exponent, 10 bits mantissa. Generate the C code for HLS, avoid the use of
floating point data type, and if you use an add, mult, div functions use:

<Here, the C++ code floating functions are attached>

The generated functions are then used to perform floating operations and used to
replace the arithmetic symbols of the existing solution; e.g., instead of executing the

conv1[i][j][k] += image[(i+di)*28 + (j+dj)] * weights_conv1[(di*3 + dj)*4
+ k];↪→

operationpresented in the forward function, the operation is executed as

aux_mult = multiply_custom_float(image[(i+di)*28
+(j+dj)],weights_conv1[(di*3 + dj)*4 + k]);↪→

conv1[i][j][k] = add(conv1[i][j][k],aux_mult);

where the multiplication of the pixel and the kernel is performed by the multiply_custom_floa
function, and the summation of the convolution by the add function.

Due to variations in rounding methods for floating operations, the accuracy experi-
enced a 1.4% reduction, which means that change from 99.4% to 98%. However, this error
can be avoided if the floating functions created use exactly the same rounding algorithm
used by TF.

4.5. Integration of the CNN with Caravel

To integrate the CNN with the SoC template Caravel involves the creation of a single
macro encompassing the logic of all the modules generated by HLS, because the logical
density of the design utilizes the majority of the user area an external memory was em-
ployed for image storage which was connected to Caravel via GPIO ports. Meanwhile, the
CNN was linked to the Caravel RISCV processor using the LA ports as Figure 6 illustrates.
This connection allowed the RISCV processor to manage the initiation of the inference
process, with the signal la_data_in[2], system restarts, with the signal la_data_in[1], and
receive the response of the inference from the CNN, with the signal la_data_out[31:28];
Table 5 shows the connection between AI by AI and Caravel.

The verilog code provided to the OpenLane layout tool is just an instantiation of the
IP generated by HLS connected to the Caravel ports; Appendix B shows this instantiation.

Table 5. Pinout of Caravel and AI by AI.

Caravel AI by AI Type

wb_clk_i o_mux_clk Input
io_in[36] o_mux_clk Input
io_in[37] s_mux_clk Input

o_mux_clk ap_clk Input
la_data_in[1] in_ap_rst Input

io_in[35] in_ap_rst Input
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Table 5. Cont.

Caravel AI by AI Type

wb_clk_i o_mux_clk Input
io_in[36] o_mux_clk Input
io_in[37] s_mux_clk Input

o_mux_clk ap_clk Input
la_data_in[1] in_ap_rst Input

io_in[35] in_ap_rst Input
la_data_out[2] ap_start Input
la_data_out[3] ap_done Output
la_data_out[4] ap_ready Output

io_out[16:5] image_r_Addr_A Output
io_out[17] image_r_EN_A Output

N/A image_r_WEN_A Output
N/A image_r_Din_A Output

io_in[33:18] image_r_Dout_A Input
io_out[34] image_r_Clk_A Output

N/A image_r_Rst_A Output
la_data_out[31:28] ap_return Output

Figure 6. AI by AI and Caravel integration diagram.

5. Results

After establishing the connections between Caravel and the CNN, a testbench of the
entire SoC was developed using the training data set to evaluate the performance of the CNN.
Due to the RISC-V managing the SoC, some registers using C++ were configured to enable the
utilization of LA ports, allowing communication between the CNN and the RISC-V processor,
as well as GPIOs that enabled connectivity between the external SRAM and the SoC.
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Figure 7 illustrates the SoC testbench, the image stored in memory, and the C++ code
programmed in the RISC-V processor. The figure depicts the processor’s handling of reset
signals, start processes, the waiting period for the done signal, and the resulting inference
values. After 1000 iterations, the system yields the same results as the HLS test, with an
accuracy of 98%, proving that it works as intended.

Figure 7. Testbench of the IC AI by AI implemented with SKY130A standard cells.

Table 6 presents the layout specifications, with the SKY130A PDK, for the AI by AI system,
including the gate count, die area, latency, maximum frequency, and power consumption.

Table 6. AI by AI layout specifications with the SKY130A PDK.

Parameter Value

Core area 10.27 mm2

Core Utility 8.747 mm2

Cells per mm2 26,241
Latency 161.19 K

Maximum frequency 40 MHz
Static Power 70.5 mW

Switching Power 50.5 mW
Buffers 65,142

Flip-Flops 49,973
Diode 33,839

Number of Cells 94,415

The outcome of the RTL to GDSII conversion process, along with its integration with
the RISC-V made with Caravel, is visually presented in Figure 8. It illustrates two distinct
areas: the user area, representing a flat implementation of the CNN, and the management
area, housing the processor and its associated peripherals.

This project was the winner of the AI-generated design competition hosted by Efabless,
which can be accessed at this link: https://efabless.com/genai/challenges/2-winners
(accessed on 4 March 2024).Additionally, the CNN SoC is currently undergoing fabrication
through the multi-project wafer shuttle CI 2309, which is available at https://platform.
efabless.com/shuttles/CI%202309 (accessed on 4 March 2024).

https://efabless.com/genai/challenges/2-winners
https://platform.efabless.com/shuttles/CI%202309
https://platform.efabless.com/shuttles/CI%202309
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Figure 8. Caravel GDSII file and CNN layout details.

6. Discussion

The findings of this research highlight significant aspects, such as:

1. The current limitations of LLMs in generating HDL code.
2. Establishing a workflow that utilizes LLMs to generate and downscale systems from

TF to HDL.
3. Introducing a new approach for converting HLS to GDSII using open-source PDKs

and tools.
4. Achieving the fabrication of a CNN IC entirely created by AI.
5. Setting a precedent for current AI-generated systems by providing specific system in-

formation, such as core area, cells per square millimeter, latency, power consumption,
number of flip-flops, and total number of cells.

6. Offering open-source access to the entire project, from the initial conversation with
the AI to the final GDSII files generated.

These findings directly address our central research question, “are contemporary
commercial LLMs capable of producing synthesizable and manufacturable CNN hardware
designs using the first open-source PDKs (SKY130A)?”,by providing new understanding
and evidence that current commercial LLMs are not capable of directly creating a CNN in
HDL; however, they are capable of creating synthesizable HLS code that can be used to
generate IC with open-source tools. The paper elucidates the development of AI by AI, an
innovative IC harnessing the power of AI. Our methodology involved the transformation
of AI-generated TF code into Verilog, progressing through layout implementation and
seamless integration with a RISC-V via Caravel. This process ultimately enabled us to
propel AI by AI into the manufacturing phase through the ChipIgnite program.

AI by AI stands as a pioneering achievement, being the first CNN IC of its kind to be
entirely conceptualized by AI and be fabricated with the open-source PDK SKY130A. Our
approach harmoniously merges cutting-edge technologies, such as commercial LLMs, with
more traditional ones like HLS and Verilog, creating an innovative workflow for developing
intricate digital systems, particularly CNNs, and exploring the capacities of the current
LLM. Frameworks like Caravel and multi-project wafer programs such as ChipIgnite have
simplified and made cost-effective the layouts development and fabrication process.

While current commercial LLMs may not yet excel in rapidly and accurately producing
Verilog and VHDL code, they have matured enough to proficiently handle programming
tasks. The sequential transition from higher abstraction to lower abstraction languages,
supplemented by tools like HLS, empowers us to generate functional Verilog code that
seamlessly integrates into the silicon-level implementation process. This combination of
technologies and methodologies has opened new horizons for AI-driven IC development.
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7. Conclusions

AI is experiencing a boom in various sectors, including IC design. With LLMs such as
ChatGPT, exploration in HDL generation has begun, which could reduce design costs by
31.72%—impacting prototyping, architecture, and verification phases, and compressing
design timelines from months to weeks. Additionally, leveraging open-source tools and IPs
could further reduce costs associated with software (43.32%) and IP (6.85%), respectively.
Despite the potential, current LLMs have difficulties in producing complex HDLs systems
with accurate performance, and open-source IPs are not as abundant as software libraries.
Therefore, current research is focused on high-level languages such as Python and C++ to
enable LLMs to efficiently create complex systems such as CNNs. HLS becomes crucial
in this context for translating high-level code into HDL that, through the physical design
flow, generates an IC that can be manufactured. The use of HLS causes some issues related
to floating point operations, which can lead to a loss of accuracy and increased logical
demands. If the loss of accuracy is significant, we recommend accessing the TF code and
replicating in C++ the rounding algorithms it uses. This research establishes a benchmark
for current LLM capabilities in ICs design, in particular for the design of CNNs, and is a
point of comparison for evaluating future AI-generated ICs.

Author Contributions: Conceptualization, E.I.B.-L. and S.O.-C.; methodology, E.I.B.-L. and S.O.-C.;
software, E.I.B.-L.; validation, E.I.B.-L., M.A., R.Y.V.M. and G.P.-D.; formal analysis, E.I.B.-L. and
R.Y.V.M.; investigation, E.I.B.-L. and M.A.; resources, S.O.-C.; writing—original draft preparation,
E.I.B.-L.; writing—review and editing, E.I.B.-L., S.O.-C., M.A., R.Y.V.M. and G.P.-D.; supervision,
S.O.-C. and M.A.; project administration, E.I.B.-L. and S.O.-C.; funding acquisition, S.O.-C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available or are mentioned in
this paper.

Conflicts of Interest: Dr. Mohamed Abdelmoneum and Dr. Ruth Ruth Yadira Vidana Morales are
employed by Intel Corporation. The remaining authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

Appendix A. Half Precision Floating Point Functions in C++

int16_t add(int16_t a, int16_t b) {
if (a == 0) return b;
if (b == 0) return a;
int16_t signA = a >> 15;
int16_t signB = b >> 15;
int16_t expA = (a >> 10) & 0x1F;
int16_t expB = (b >> 10) & 0x1F;
int16_t mantissaA = a & 0x3FF;
int16_t mantissaB = b & 0x3FF;
int16_t i_loop;
// Denormalize the mantissas
mantissaA |= 0x400;
mantissaB |= 0x400;
// Align mantissas by shifting the one with the smaller exponent
i_loop = 0;
while (expA < expB) {

mantissaA >>= 1;
expA++;
i_loop++;
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if(i_loop>50)
{

break;
}

}
i_loop = 0;
while (expB < expA) {

mantissaB >>= 1;
expB++;
i_loop++;
if(i_loop>50)
{

break;
}

}
// Perform add2ition or subtraction based on the signs
int32_t resultMantissa;
if (signA == signB) {

resultMantissa = mantissaA + mantissaB;
} else if (signA) {

resultMantissa = mantissaB - mantissaA;
} else {

resultMantissa = mantissaA - mantissaB;
}
int16_t resultSign = (resultMantissa < 0) ? 1 : 0;
if (resultMantissa < 0) {
resultSign = 1;
resultMantissa = -resultMantissa;
} else {

resultSign = 0;
}
// Normalize the result
i_loop = 0;
while (resultMantissa >= 0x800) {

resultMantissa >>= 1;
expA++;
i_loop++;
if(i_loop>50)
{

break;
}

}
i_loop = 0;
while (resultMantissa < 0x400) {

resultMantissa <<= 1;
expA--;
i_loop++;
if(i_loop>50)
{

break;
}

}
// Create the result
int16_t result = (resultMantissa & 0x3FF) | (expA << 10);
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if ((signA && signB) || resultSign) {
result |= 0x8000;

}
return result;

}
int16_t multiply_custom_float2(int16_t a, int16_t b) {

if (a == 0 || b == 0) return 0;
// Extracting sign, exponent, and mantissa for 'a'
int16_t sign_a = (a >> 15) & 1;
int16_t exponent_a = (a >> 10) & (int16_t)0x1F;
int16_t mantissa_a = a & (int16_t)0x3FF;

// Extracting sign, exponent, and mantissa for 'b'
int16_t sign_b = (b >> 15) & 1;
int16_t exponent_b = (b >> 10) & (int16_t)0x1F;
int16_t mantissa_b = b & (int16_t)0x3FF;

// Calculating the result's sign, exponent, and mantissa
int16_t sign_result = sign_a ^ sign_b;
int16_t exponent_result = (exponent_a - 15) + (exponent_b - 15) + 15;

// Remove bias, add2, then add2 bias back↪→

int32_t mantissa_result = (1024 + mantissa_a) * (1024 + mantissa_b);

// Normalizing the mantissa
if (mantissa_result >= (1 << 21)) {

mantissa_result >>= 1;
exponent_result += 1;

}
mantissa_result = (mantissa_result >> 10) - 1024; // Remove the

implicit leading one↪→

// Check for underflow or overflow
if (exponent_result < 0) return 0; // Underflow

if (exponent_result >= 0x1F) return sign_result ? (int16_t)0x8000 :
(int16_t)0x7FFF; // Overflow↪→

// Combining sign, exponent, and mantissa into a 16-bit integer
int16_t result = (sign_result << 15) | ((exponent_result &

(int16_t)0x1F) << 10) | (mantissa_result & (int16_t)0x3FF);↪→

return result;
}

int16_t divide_custom_float2(int16_t a, int16_t b) {
int16_t sign_a = (a >> 15) & 1;
int16_t exponent_a = (a >> 10) & (int16_t)0x1F;
int16_t mantissa_a = (a & (int16_t)0x3FF) | (int16_t)0x400;
int16_t sign_b = (b >> 15) & 1;
int16_t exponent_b = (b >> 10) & (int16_t)0x1F;
int16_t mantissa_b = (b & (int16_t)0x3FF) | (int16_t)0x400;
if (mantissa_b == 0) return 0;
int16_t sign_result = sign_a ^ sign_b;
int16_t exponent_result = exponent_a - exponent_b + 15;
int32_t remainder = mantissa_a << 10;
int32_t divisor = mantissa_b << 10;
int32_t quotient = 0;
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for (int i = 0; i < 10; i++) {
remainder <<= 1;
if (remainder >= divisor) {

remainder -= divisor;
quotient = (quotient << 1) | 1;

} else {
quotient <<= 1;

}
}
if (quotient < (int16_t)0x400) {

quotient <<= 1;
exponent_result -= 1;

}
int16_t mantissa_result = quotient & (int16_t)0x3FF;
int16_t result = (sign_result << 15) | ((exponent_result &

(int16_t)0x1F) << 10) | mantissa_result;↪→

return result;
}

Appendix B. Top Module Verilog Code

module user_project_wrapper #(
parameter BITS = 32

) (
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
inout [`MPRJ_IO_PADS-10:0] analog_io,
// Independent clock (on independent integer divider)
input user_clock2,
// User maskable interrupt signals
output [2:0] user_irq

);
/*--------------------------------------*/
/* User project is instantiated here */
/*--------------------------------------*/

wire in_ap_rst;
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wire _in_ap_start;
wire _ap_done;
wire _ap_idle;
wire _ap_ready;
wire [31:0] _image_r_Addr_A;
wire _image_r_EN_A;
wire [1:0] _image_r_WEN_A;
wire [15:0] _image_r_Din_A;
wire [15:0] i_in_image_r_Dout_A;
wire _image_r_Clk_A;
wire _image_r_Rst_A;

wire [3:0] _ap_return;
assign in_ap_rst = la_data_in[1]|io_in[30+5];
assign io_oeb[30]=1;
assign _in_ap_start = la_data_in[2];
assign la_data_out[3]=_ap_done;
assign la_data_out[4]=_ap_idle;
assign la_data_out[5]=_ap_ready;
assign la_data_out[31:28] = _ap_return;

//External memory controls
assign io_out[11+5:0+5] = _image_r_Addr_A[11:0]; //Addres
assign io_oeb[11+5:0+5] = 11'b0;
assign io_out[12+5] = _image_r_EN_A; //r_Enb
assign io_oeb[12+5]=0;
assign i_in_image_r_Dout_A = io_in[28+5:13+5]; //Data_input
assign io_oeb[28+5:13+5]=16'hFFFF;

assign io_out[29+5] = _image_r_Clk_A; //CLK
assign io_oeb[29+5]=0;

forward_pass AI_by_AI (
.ap_clk(wb_clk_i),
.ap_rst(in_ap_rst),
.ap_start(_in_ap_start),
.ap_done(_ap_done),
.ap_idle(_ap_idle),
.ap_ready(_ap_ready),
.image_r_Addr_A(_image_r_Addr_A),
.image_r_EN_A(_image_r_EN_A),
.image_r_WEN_A(_image_r_WEN_A), //We just read the memory dont write

in it↪→

.image_r_Din_A(_image_r_Din_A),

.image_r_Dout_A(i_in_image_r_Dout_A),

.image_r_Clk_A(_image_r_Clk_A),

.image_r_Rst_A(_image_r_Rst_A),

.ap_return(_ap_return)
);
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