
Citation: Jiang, C.; Mu, X.; Zhang, B.;

Xie, M.; Liang, C. Category Level

Object Pose Estimation via Global

High-Order Pooling. Electronics 2024,

13, 1720. https://doi.org/10.3390/

electronics13091720

Academic Editor: Zhenhua Guo

Received: 20 March 2024

Revised: 19 April 2024

Accepted: 26 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Category Level Object Pose Estimation via Global
High-Order Pooling
Changhong Jiang 1 , Xiaoqiao Mu 2, Bingbing Zhang 3 , Mujun Xie 1,* and Chao Liang 4,*

1 School of Electrical and Electronic Engineering, Changchun University of Technology,
Changchun 130012, China; jch@ccut.edu.cn

2 School of Mechanical and Electrical Engineering, Changchun University of Technology,
Changchun 130012, China; 1202001003@stu.ccut.edu.cn

3 School of Computer Science and Engineering, Dalian Minzu University, Dalian 116602, China;
icyzhang@dlnu.edu.cn

4 Collage of Computer Science and Engineering, Changchun University of Technology,
Changchun 130012, China

* Correspondence: xiemujun@ccut.edu.cn (M.X.); liangchao@ccut.edu.cn (C.L.)

Abstract: Category level 6D object pose estimation aims to predict the rotation, translation and
size of object instances in any scene. In current research methods, global average pooling (first-
order) is usually used to explore geometric features, which can only capture the first-order statistical
information of the features and do not fully utilize the potential of the network. In this work, we
propose a new high-order pose estimation network (HoPENet), which enhances feature representation
by collecting high-order statistics to model high-order geometric features at each stage of the network.
HoPENet introduces a global high-order enhancement module and utilizes global high-order pooling
operations to capture the correlation between features and fuse global information. In addition, this
module can capture long-term statistical correlations and make full use of contextual information.
The entire network finally obtains a more discriminative feature representation. Experiments on
two benchmarks, the virtual dataset CAMERA25 and the real dataset REAL275, demonstrate the
effectiveness of HoPENet, achieving state-of-the-art (SOTA) pose estimation performance.

Keywords: pose estimation; pooling; high-order

1. Introduction

Object pose estimation aims to identify an object’s six-dimensional pose in the camera
coordinate system. It is a very challenging problem for computer vision and robotics
technology with critical applications in robotic grasping [1,2], scene understanding, aug-
mented reality [3], and autonomous driving [4,5]. Currently, there are two types of 6D
object pose estimation methods: instance-level pose estimation [2,6] and category-level
pose estimation [7–11]. Instance-level pose estimation requires pre-obtaining the 3D CAD
model of each object and its dimensions. However, since most objects have never been
seen and no known CAD model exists, this approach is limited. In contrast, category-level
pose estimation does not require precise CAD models, can be generalized to unseen objects,
and is more generally applicable.

Recently, many methods for category-level pose estimation have emerged, which can
be divided into two types: prior-free [9,12–14] and prior-based [8,15–19] methods. Prior-free
methods primarily emphasize the design of the model structure to extract features fitting
the data, yet their performance tends to be poor. Conversely, prior-based methods leverage
prior knowledge to guide models, leading to significant progress and widespread attention.
Existing prior-based class-level pose estimation methods, such as NOCS [9], define a shared
space with consistent object scaling and orientation known as normalized object coordinate
space (NOCS) and aim to recover the perspective in NOCS for pose estimation. To address
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intra-class shape variations, prior studies [8] pre-learn dense and static point clouds from
given object instances as classification shape priors to explicitly model deformations for
reconstructing 3D object models. However, this approach results in redundant shape
priors and increases computational costs. Therefore, Query6DoF [20] introduces sparse and
learnable category queries instead of dense point clouds as shape priors, utilizing implicit
shared semantics to encode object shapes and reduce computational overhead.

Additionally, since the input is point cloud data and point clouds are unordered,
most methods [12] employ techniques similar to PointNet [21]. However, PointNet’s
main structure, a pooling operation, leads to the loss of detailed local geometric structure
information and cannot adaptively learn regions of interest, making it unsuitable for
extracting feature information. Building upon Query6DoF [20], we further explore effective
modeling of complex geometric feature distributions. Traditional methods typically employ
global average pooling (first-order) operations to explore geometric features, obtaining
only first-order statistical information and failing to fully utilize the network’s potential.
Hence, it is crucial to consider feature distribution comprehensively. Researchers have
investigated higher-order pooling methods and achieved unexpected results in fields such
as image classification and video recognition [22–27]. Most methods integrate high-order
pooling at the end of the network to substitute global average pooling (GAP). However,
the emergence of GSoP [28] effectively introduces high-order representations in early layers,
thereby enhancing the nonlinear capabilities of convolutional networks. Motivated by this,
we investigate the impact of high-order modeling methods on category-level 6D object
pose estimation.

Specifically, we propose a high-order pose estimation network (HoPENet), which
enhances feature representation by collecting high-order statistics to model high-order
geometric features at each network stage. The network structure is depicted in Figure 1.
HoPENet follows the model architecture of Query6DoF. Firstly, it employs category queries
as implicit shape priors to capture the most representative object features and disregard
insignificant shape details, thereby reducing computational overhead. Subsequently, global
high-order enhancement modules are incorporated into each network stage, facilitating
the gradual acquisition of high-order geometric information to capture feature correlations.
Differing from ordinary pooling operations, the global high-order enhancement module
employs global high-order pooling operations to gather high-order statistics from instance
features, making it more adept at extracting geometric feature information. Consequently,
the network ultimately achieves a more discriminative feature representation. public
data benchmarks. The proposed model is evaluated on two public data benchmarks.
The contributions of this paper can be summarized as follows:

• We propose the HoPENet model for category-level 6D object pose estimation. HoPENet
incorporates global high-order enhancement modules into each stage of the model
and utilizes global high-order information throughout the network to model com-
plex feature distributions, thereby enabling the model to learn a more discriminative
feature representation.

• The global high-order enhancement module incorporates high-order information into
the attention mechanism, employs global high-order pooling operations to capture
feature correlations, integrates global information, and enhances features. By modeling
the high-order statistics of the entire tensor, the proposed module can capture long-
term statistical correlations and fully leverage contextual information.

• We conduct comprehensive ablation studies to validate the effectiveness of the pro-
posed HoPENet network in 6D object pose estimation. Experimental results on the
REAL275 and CAMERA25 datasets demonstrate that the proposed method surpasses
the baseline model.
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Figure 1. Diagram of the high-order pose estimation network structure. The network comprises
feature extraction, high-order query, and pose estimation components.

2. Related Works
2.1. Category-Level 6D Object Pose Estimation

NOCS [9] defines a normalized object coordinate space to handle distinct and unseen
object instances within a given category. However, NOCS lacks an explicit representation
of shape changes. SPD [8] proposes reconstructing object models in NOCS to capture
intra-class shape variations explicitly, modeled by pre-learning shape priors. DualPoseNet
stacks two parallel pose decoders (explicit and implicit encoders) on top of a shared
pose encoder for complementary supervision. SGPA [15] is influenced by the class prior
advantage and introduces a structure-guided prior adaptive scheme to estimate the 6D
pose of the object. DPDN [19] utilizes self-supervised methods to reduce domain gaps and
implements a deep version of shape prior deformation in feature space for direct regression.
However, the class above priors mostly use dense point clouds, resulting in redundancy
and high computational cost. Query6DoF [20] employs sparse queries as shape priors and
an attention mechanism to select object features. Similarly, we build upon this network
architecture but focuses more on effectively extracting geometric features.

2.2. Higher Order Pooling

Researchers have explored the effects of higher-order pooling methods on tasks such
as images and videos in the context of deep convolutional neural networks [22–27]. In com-
parison to first-order methods like global average pooling, high-order pooling can capture
richer statistics. DeepO2P [22] initially incorporates covariance pooling at the end of the
final convolutional layer to enhance the network’s feature expression capabilities signif-
icantly. G2DeNet [29] enhances DeepO2P [22] by effectively utilizing a global gaussian
distribution to model feature statistics. Meanwhile, MPN-COV [23], proposed by Li et al.,
demonstrates exceptional performance by judiciously leveraging the geometric structure
of covariance. However, this method involves computing the intrinsic decomposition
(EIG) of the square root of the matrix, which may pose limitations on computational power.
Subsequently, iSQRT-COV [26] introduced a method to rapidly compute the square root of a
matrix, suitable for existing GPU operations. The aforementioned works employ high-order
modeling at the end of the network. However, GSoP [28] explores introducing high-order
representation in early layers, which can leverage overall information across the entire
network and yield favorable outcomes in image recognition. Our study will investigate
the impact of high-order modeling at different stages of the network on category-level 6D
object pose estimation.

3. Method
3.1. High-Order Pose Estimation Network

Our network aims to utilize only point clouds as input to estimate the pose and
size of category-level objects, enhance the network’s capability to extract geometric fea-
tures, and facilitate the model in learning a more discriminative feature representation.
The method proposed in this paper is grounded on the Mask R-CNN framework. It in-
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volves transferring the target segmentation results to the three-dimensional point cloud
and uniformly sampling the point cloud data. Utilize this point cloud data as input for
our method.

The input point cloud data can be expressed as P, P ∈ RN×3, where N represents the
number of center points, and each point has 3-dimensional coordinates. The point cloud
data is sent to the feature extraction module to extract the geometric features of the target
F, F ∈ RN×d, where d represents the dimension of the space. Referring to [20], generate
a set of queries for each object category, utilizing Q, Q ∈ RN×d as an implicit shape prior.
Traditional approaches with shape priors pre-learn dense and static point clouds from
given object instances to model deformations for explicit 3D object model reconstruction.
However, such explicit shape priors are redundant and lead to increased computational
costs. In Literature [20], query Q is employed as an implicit shape prior. The number of
queries Q is significantly smaller than that of points P, thereby reducing the computational
burden. Additionally, Q is learnable and does not require additional training.

Specifically, the structure of the proposed high-order pose estimation network is
depicted in Figure 1. For feature extraction, PointNet++ is employed as the backbone
to extract geometric features from the point cloud data. The extracted features are then
utilized for high-order query estimation to establish similarity relationships. The specific
operation is as follows: Initially, the feature F and the query Q are forwarded to a global
high-order enhancement module to capture feature correlations, fuse global information,
and enhance geometric features. The detailed operation of this module is described in the
subsequent section.

Next, compute the cross-attention between feature F and query Q to determine the
relevant features. The calculation process involves:

Ai = Attn(F, Q) (1)

Ai, Ai ∈ RNQ×NP is the i-th attention map. NQ is the number of queries. NP denotes the
number of points. Parts with similar semantics to the query can be obtained by computing
attention. Therefore, the result of the cross-attention is:

A = (AiF)W (2)

where A ∈ RNQ×d. Add the attention-extracted feature A to Q to obtain a new query:

Q
′
= Q + A (3)

where Q
′ ∈ RNQ×d. Additionally, prior to this step, a global high-order enhancement

module was incorporated to enhance features. Consequently, the new query Q
′

acquires
useful features from F. Then, referring to the feature space established by reference [20],
calculate the similarity between F and Q

′
to obtain the corresponding matrix:

M = Norm(MLP)(FQ
′T) (4)

where M ∈ RNQ×NP . Similar to the attention calculation method, the sampled features of
M and Q

′
are obtained, with residual connections added:

M
′
= MQ

′
+ F (5)

Next, match the obtained sampled features with the original object features and
concatenate them using a simple MLP. To further enhance the geometric features, a global
high-order enhancement module is inserted at this stage. Subsequently, the feature F

′
is

obtained, where F
′ ∈ RNP×d. Finally, in the pose estimation stage, three MLPs are employed

to predict the object’s rotation, translation, and size, respectively, to determine the final
pose and size of the object.
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3.2. Global High-Order Enhancement Block

Given the unordered nature of point cloud data, most networks employ the PointNet
model for feature extraction. However, this model primarily consists of pooling operations,
which may lead to the loss of geometric structure in features and hinder overall modeling.
Therefore, we propose a global high-order enhancement module that utilizes global high-
order pooling operations to capture feature correlations, integrate global information,
and enhance features.

The structure of the global high-order enhancement module is shown in Figure 2.
Given an input tensor t, t ∈ RN×D, where N represents the number of points in the
point cloud, and each point has D-dimensional coordinates. Firstly, convolutional layers
downsample N to N

′
to alleviate the computational burden. Subsequently, a second-order

pooling operation is employed to compute the feature correlation, resulting in a covariance
matrix of N × N. It can be expressed as:

c = conv(2nd pooling(t)) (6)

Here, 2nd pooling represents the global second-order pooling operation. Attention modules
typically utilize global first-order pooling to compute the average value of a specific
dimension, which limits their modeling capabilities for geometric features. We employ a
global second-order pooling method, which calculates the statistical correlation between
a specific value and all values in that dimension. This approach effectively captures the
geometric relationships of features and enhances the modeling ability of the network. Next,
two consecutive convolutional layers are utilized to obtain the weight vector t

′
, as follows:

t
′
= conv1(conv2(c)) (7)

where t
′ ∈ RN

′×1. Then, multiply the weight vector with the input tensor to obtain the new
feature f .

f = t · t
′

(8)

Here, f ∈ RN×D. The aforementioned process represents an operation in the quantity
dimension (Number-wise GHoE Block) and can also be extended to the position dimension
(Position-wise GHoE Block). At this point, the correlation between spatial positions is
computed, resulting in the covariance matrix of D × D. We also compared two types of
calculation methods in the experiment. The specific results are presented in Section 4.2.

Conv

Conv

Conv

2nd-order 

pool

Input

..
GAP

FC

˟˟

Norm

MLP

˟˟

++

++

Output

Figure 2. Overview of global high-order enhancement module.
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After obtaining the feature f , the global features are fused. This can be formulated
as follows:

m = FC(GAP( f )) (9)

f
′
= f + Norm( f mT)g (10)

Firstly, global average pooling is employed for the above process to obtain global
features. Subsequently, the attention operation is utilized, with f as the query and m as
the key and value, to derive f

′
. Finally, f

′
is passed through an MLP with a residual

connection added.

4. Experiments
4.1. Implement Details
4.1.1. Datasets

We evaluate the proposed HoPENet using two benchmarks: the virtual dataset CAM-
ERA25 and the real dataset REAL275 [9]. The CAMERA25 dataset is generated by composit-
ing virtual objects into natural scenes context-awarely, with 1085 object instances rendered.
The CAMERA25 dataset contains 300 K synthetic RGB-D images, of which 25 K images are
used for testing. The REAL275 dataset is complementary to the CAMERA25 dataset and
contains 8K RGB-D images, of which 4.3 k real-world images are used for training, 0.9 k
for validation, and 2.7 k for testing. Both datasets contain six categories: bottles, bowls,
cameras, cans, laptops, and mugs.

4.1.2. Implement Details

To build HoPENet, we employ the same data processing method as [8] and select
PointNet++ to extract features. For the model training, we utilize the AdamW optimizer, set
the initial learning rate to 1e-4, and the weight decay to 1e-4. The model undergoes training
for a total of 100 epochs, with a batch size of 15 × 4. The model was trained and tested using
the open-source PyTorch deep learning framework, and all experiments were conducted
on a PC equipped with 4 NVIDIA GeForce RTX 3090 GPUs. For evaluation indicators,
we adhere to the NOCS [9] evaluation scheme and utilize the mean Average Precision
(mAP) and n◦m cm under various intersection-over-union (IoU) thresholds as evaluation
criteria. 3D IoU calculates the overlap between two 3D bounding boxes under predicted
and ground truth poses. A prediction is deemed correct if the overlap ratio exceeds the
fixed threshold. We use thresholds of 25, 50, and 75 for measurement, respectively. n◦m
represents the calculated rotation and translation error between predicted and ground truth
poses. A prediction is deemed correct if both the rotation and translation errors are below
the angle and distance thresholds. Four standards of 5◦2 cm, 5◦5 cm, 10◦2 cm, and 10◦5 cm
are used, respectively.

4.2. Ablation Studies
4.2.1. The Impact of Covariance Size

The global high-order enhancement module (GHoE module) plays a central role in
the network proposed in this paper, where calculating the covariance matrix is a critical
operation. Therefore, the impact of the size of the covariance matrix on model performance
was evaluated on the REAL275 dataset, and the results are shown in Table 1. Firstly,
the table presents the performance of the original network without employing the global
high-order enhancement module. It is evident that regardless of the size of the covariance
matrix used, the proposed network outperforms the baseline model across most evaluation
indicators. This demonstrates the effectiveness of the GHoE module in improving the
feature expression capability of the model. Subsequently, the table illustrates the impact
of the number-wise GHoE Block on model performance for N values of 64, 128, and 256,
respectively. When N = 128, HoPENet achieves the best results, with mAP values of
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84.3%, 82.7%, and 76.2% for IoU25, IoU50, and IoU75, respectively, slightly surpassing those
of the baseline model. For the 5◦2 cm metrics, HoPENet achieves a 50.5% mAP, a 3.7%
improvement over the baseline model. It also outperforms the baseline model significantly
in other metrics. Performance begins to degrade as the dimensions of N increase or
decrease. Lastly, the table presents the results obtained by the position-wise GHoE Block
when d = 128. Despite the results showing a slight improvement of 1% over the baseline
model for the 5◦2 cm metrics, there remains a gap compared to the number-wise GHoE
Block. This indicates that performing covariance pooling using multiple points is more
effective than using coordinate locations for covariance pooling.

Table 1. Effect on covariance matrix size on REAL275 dataset.

mAP

Configuration Size IoU25 IoU50 IoU75 5◦2 cm 5◦5 cm 10◦2 cm 10◦5 cm

baseline - - 82.9 76.0 46.8 54.7 67.9 81.6
number-wise

cov size N 64 × 64 84.3 81.9 75.2 48.0 55.1 69.1 81.6

number-wise
cov size N 128 × 128 84.3 82.7 76.2 50.5 57.9 70.6 82.5

number-wise
cov size N 256 × 256 84.3 82.4 75.4 47.8 56.5 67.9 81.1

position-wise
cov size d 128 × 128 84.2 81.6 75.4 47.8 55.0 69.7 81.6

4.2.2. Fusion of Number- and Position-Wise GHoE Block

Number- and Position-wise GHoE Block can be combined to capture high-order
statistical information across various dimensions. Specifically, the average, maximum,
and cascade operations are employed to fuse tensors of two dimensions, respectively.
The experimental results are presented in Table 2. The fusion effect is evaluated on the
CAMERA25 and REAL275 datasets, respectively. The left side of Table 2 displays the
experimental results of the CAMERA25 dataset. At this point, the average fusion method
demonstrates optimal effectiveness, surpassing the other two fusion approaches and out-
performing the number- and position-wise GHoE Block alone. On the right side of the
table, results from the REAL275 dataset reveal that leveraging covariance pooling based on
the number of points remains the most effective. However, fusion results are less favorable,
particularly with cascade operations performing the worst. Notably, the average result
aligns closely with using the Number-wise GHoE Block alone. These disparities stem
from differences in the datasets. Consequently, we designate the average fused network as
HoPENet, while the model solely employing covariance pooling based on the number of
points is defined as HoPENet*. Both model architectures serve as methods in this article.

Table 2. Comparison of different fusion schemes on the REAL275 and CAMERA25 dataset.

CAMERA25 REAL275

Configuration IoU25 IoU50 IoU75 5◦2 cm 5◦5 cm 10◦2 cm 10◦5 cm IoU25 IoU50 IoU75 5◦2 cm 5◦5 cm 10◦2 cm 10◦5 cm

position-wise 94.5 92.2 88.4 78.4 84.0 83.9 90.4 84.2 81.6 75.4 47.8 55.0 69.7 81.6
number-wise 94.5 92.2 88.4 78.4 84.0 83.9 90.4 84.3 82.7 76.2 50.5 57.9 70.6 82.5

average 94.5 92.6 89.3 79.8 85.2 84.8 91.3 84.3 82.3 76.2 49.0 56.7 71.1 81.7
maximum 94.5 92.5 88.7 79.2 84.4 84.6 90.8 84.3 81.6 75.0 48.7 58.9 68.5 81.9

concatenation 94.4 92.3 89.1 78.7 84.1 84.4 91.1 84.1 82.1 71.2 34.6 50.4 57.4 81.5

4.2.3. The Impact of the Position of Global Higher-Order Enhancement Modules

As described in the methods section, global higher-order enhancement modules are
inserted at four different locations. In this experiment, we investigate the impact of placing
global high-order enhancement modules at various locations on model performance on
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the REAL275 dataset. The results are presented in Table 3. Each position is tested with
only one global higher-order module inserted at a time. It is observed that placing the
module closer to the end of the network yields better results. Specifically, when the global
high-order enhancement module is inserted at Position3, our method achieves the best
performance according to the 5◦2 cm metric. Furthermore, transitioning to Position4 and
inserting the global high-order enhancement module results in optimal measurements at
5◦5 cm, 10◦2 cm, and 10◦5 cm. However, this operation has little impact on indicator IoU.

Table 3. Comparison of global high-order enhancement module numbers on the REAL275 dataset.

mAP

IoU25 IoU50 IoU75 5◦2 cm 5◦5 cm 10◦2 cm 10◦5 cm

Positon1 84.3 82.7 76.0 48.0 56.5 68.7 81.7
Positon2 84.3 82.4 74.4 48.0 55.7 68.0 80.9
Positon3 84.3 82.0 75.1 48.7 56.9 70.1 80.2
Positon4 84.3 82.1 75.2 48.5 57.0 70.4 82.6

4.2.4. The Impact of the Number of Global Higher-Order Enhancement Modules

We assess the impact of the number of global high-order enhancement modules on
model performance, as presented in Table 4. Firstly, the upper section of the table displays
the results obtained by inserting two global high-order enhancement modules. Notably,
when positioned at 3 and 4, the model achieves optimal measurements at 10◦2 cm and
10◦5 cm, respectively, with other indicators also exhibiting relatively high performance.
This indicates that the insertion of two global high-order enhancement modules is effective,
with closer proximity to the end of the network resulting in improved model efficacy.
Subsequently, the middle section of Table 4 compares the results obtained by inserting
three global high-order enhancement modules. Interestingly, the results do not significantly
differ from those obtained with only two modules. This similarity may be attributed to the
comparable enhancement strength between the two and three modules. Finally, the last
row of data presents the results obtained by inserting four global high-order enhancement
modules, with the model achieving the highest mAP of 50.5% under the 5◦2 cm metric.
This highlights the importance of considering both the number and positioning of inserted
global high-order enhancement modules, aligning with the network architecture design.

Table 4. Comparison of global high-order enhancement module positions on the REAL275 dataset.

mAP

IoU25 IoU50 IoU75 5◦2 cm 5◦5 cm 10◦2 cm 10◦5 cm

Position1+2 84.2 82.8 75.6 45.2 53.7 69.4 82.6
Position1+3 84.3 82.8 76.4 49.4 58.9 68.9 81.5
Position1+4 84.3 83.0 74.9 46.9 55.9 68.7 82.6
Position2+3 84.3 82.6 75.3 47.1 56.0 69.8 82.5
Position2+4 84.3 82.2 76.0 47.7 55.5 71.0 82.0
Position3+4 84.3 82.7 76.6 48.8 57.3 70.6 83.7

Position1+2+3 84.3 81.9 75.2 47.6 55.5 69.5 81.9
Position1+2+4 84.3 81.4 74.2 45.7 53.9 67.9 80.7
Position2+3+4 84.3 82.4 76.1 47.4 54.8 70.0 82.2

Position1+2+3+4 84.3 82.7 76.2 50.5 57.9 70.6 82.5

4.3. Comparisons with Existing Methods

We compared the proposed HoPENet with existing methods on the CAMERA25 and
REAL275 datasets, and the results are presented in Table 5. It is observed that for the
CAMERA25 dataset, besides measuring IoU50, the HoPENet* method introduced in this
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paper outperforms all existing methods in other indicators. Notably, IoU is not particularly
sensitive to object pose estimation. Moreover, HoPENet* is only 0.8% lower than GPV-Pose
and achieves the second-highest mAP in the table, demonstrating the effectiveness of this
method. For the REAL275 dataset, HoPENet achieves a 50.5% mAP under the 5◦2 cm metric,
showcasing the best performance compared to existing methods. Specifically, it surpasses
NOCS by 42.3%, Query6DoF by 1.5%, and exhibits significantly superior performance
compared to other representative methods such as DualPoseNet, GPV-Pose, SPD, SAR-Net,
SGPA, and RBP-Pose. Additionally, HoPENet also attains the highest mAP in the table
at the 10°2 cm metric. In addition, we visualize several metrics of HoPENet alongside
other methods on the CAMERA256 dataset in Figure 3 for intuitive observation. The above
indicates that the proposed method of using higher-order pooling is effective for pose
estimation tasks.

Table 5. Comparison with state-of-the-art methods on CAMERA25 and REAL275 datasets is pre-
sented. HoPENet represents the result of covariance pooling after averaging by number and location,
while HoPENet* denotes a model solely performing covariance pooling based on the number of
points. The best results are highlighted in bold.

CAMERA25 REAL275

Method IoU50 IoU75 5◦2 cm 5◦5 cm 10◦2 cm 10◦5 cm IoU50 IoU75 5◦2 cm 5◦5 cm 10◦2 cm 10◦5 cm

NOCS [9] 83.9 69.5 32.3 40.9 48.2 64.6 78.0 30.1 7.2 10.0 13.8 25.2
DualPoseNet [13] 92.4 86.4 64.7 70.7 77.2 84.7 79.8 62.2 29.3 35.9 50.0 66.8

GPV-Pose [30] 93.4 88.3 72.1 79.1 - 89.0 83.0 64.4 32.0 42.9 - 73.3
SPD [8] 93.2 83.1 54.3 59.0 73.3 81.5 77.3 53.2 19.3 21.4 43.2 54.1

SAR-Net [31] 86.8 79.0 66.7 70.9 75.6 80.3 79.3 62.4 31.6 42.3 50.3 68.3
SGPA [15] 93.2 88.1 70.7 74.5 82.7 88.4 80.1 61.9 35.9 39.6 61.3 70.7

RBP-Pose [32] 93.1 89.0 73.5 79.6 82.1 89.5 - 67.8 38.2 48.1 63.1 79.2
Query6DoF [20] 92.3 88.6 78.4 83.9 84.0 90.5 82.9 76.0 46.8 54.7 67.9 81.6

HoPENet 92.2 88.4 78.4 84.0 83.9 90.4 82.7 76.2 50.5 57.9 70.6 82.5
HoPENet* 92.6 89.3 79.8 85.2 84.8 91.3 82.3 76.2 49.0 56.7 71.1 81.7

Figure 3. Visualized comparison between HoPENet and other recent works.

5. Conclusions

We propose HoPENet, a category-level 6D object pose estimation method designed
for unseen objects. This method introduces global high-order enhancement modules at
each network stage to gradually learn high-order geometric information for capturing
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feature correlations. The global high-order enhancement module utilizes global high-order
pooling operations to gather high-order statistics from instance features, making it more
suitable for extracting geometric feature information. Consequently, the network achieves a
more discriminative feature representation, which competes effectively with other methods.
The advanced statistical metrics used in this paper employ global second-order pooling
operations. In the future, we aim to investigate the impact of higher-order operations on
pose estimation tasks.
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