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Abstract: For over a century, induction furnaces have been used in the core of foundries for metal
melting and heating. They provide high melting/heating rates with optimal efficiency. The occurrence
of faults not only imposes safety risks but also reduces productivity due to unscheduled shutdowns.
The problem of diagnosing faults in induction furnaces has not yet been studied, and this work is
the first to propose a data-driven framework for diagnosing faults in this application. This paper
presents a deep neural network framework for diagnosing electrical faults by measuring real-time
electrical parameters at the supply side. Experimental and sensory measurements are collected
from multiple energy analyzer devices installed in the foundry. Next, a semi-supervised learning
approach, known as the local outlier factor, has been used to discriminate normal and faulty samples
from each other and label the data samples. Then, a deep neural network is trained with the
collected labeled samples. The performance of the developed model is compared with several state-
of-the-art techniques in terms of various performance metrics. The results demonstrate the superior
performance of the selected deep neural network model over other classifiers, with an average
F-measure of 0.9187. Due to the black box nature of the constructed neural network, the model
predictions are interpreted by Shapley additive explanations and local interpretable model-agnostic
explanations. The interpretability analysis reveals that classified faults are closely linked to variations
in odd voltage/current harmonics of order 3, 11, 13, and 17, highlighting the critical impact of these
parameters on the model’s prediction.

Keywords: induction furnace; fault diagnostic; deep neural network; explainable AI; XAI; LIME
explanation; SHAP interpretation

1. Introduction

Induction heating furnaces operate based on eddy current losses in electrically con-
ductive materials when exposed to varying magnetic fields. Induction furnaces (IFs) are
characterized by efficiency, rapid heating, controllability, and cleanliness. Thus, they are
widely used in industry for heating, melting, welding, or hardening metals. As shown in
Figure 1, the power supply of an IF comprises four main parts: a rectifier, a DC link, an in-
verter, and a resonance tank [1]. The inverter topology could be a current source or voltage
source feeding a parallel or series resonant circuit, respectively. In this work, the furnaces
have voltage source-type series-resonant inverter configurations, as shown in Figure 2.
The six-phase fully controlled rectifier consists of silicon-controlled rectifiers (SCRs) that
facilitate the primary AC to DC conversion. The rectifier produces a fixed DC voltage and
the SCRs are used for AC line interruption in the case of faults in circuits following the
rectifier. The current limiting reactor is placed in series with the inverter to limit the inrush
current during a short circuit and SCR faults. The DC capacitors filter the rectifier output
voltage ripple and act as voltage sources for series resonance circuits. The furnace coil and
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series AC capacitors form a resonance circuit with a variable resonant frequency as the
inductance varies depending on the charge state inside the power coil. When driving the
series resonant load, there is always a phase shift between the output voltage and current
except at the resonance frequency in an ideal state. Therefore, there are anti-parallel diodes
with SCRs to bypass the current in this state. In order to regulate the power, the switching
frequency is varied above or below the resonance. The circuit impedance of the tank circuit
increases, and, consequently, the amount of power delivered to the coil decreases. The
power of a furnace is automatically limited to regulate these parameters: the AC capacitor
voltage, inverter current, inverter frequency, and furnace voltage. If either of these values
exceeds its preset value, the inverter’s power is then automatically diminished by the
inverter control board even if the power is set to maximum by the operator.

RECTIFIER DC LINK INVERTER
RESONANCE 

TANK
TRANSFORMER

Figure 1. General block diagram of induction furnaces.

In high-power IFs, the system components must be cooled with a coolant, such as
water, to dissipate heat generated in power semiconductors, busbars, capacitors, and in-
duction coil. The coolant circulates through heatsinks, copper tubes, and an induction
coil to transfer the heat to the cooling towers. Any interruption in water flow may cause
serious damage to components, particularly power semiconductors. The operations of a
foundry are characterized by their continuous nature, where the chemical and metallur-
gical processes are at an elevated temperature and the products have to remain hot [2].
Interruption and stoppage in their operations are very costly and must be minimized.
Therefore, a data-driven diagnostic system can enhance the safe operation of systems and
help to remain productive [3–5]. Furthermore, when a detected fault alerts the operator to
a potential failure, providing an explanation will support the prediction and could even
prevent an unnecessary shutdown. This clarification is essential for the integration of AI
into critical applications like manufacturing, where decisions can have a significant impact.
In this paper, a deep learning-based framework has been proposed for diagnosing IF faults.
A post hoc explainable artificial intelligence (XAI) module has been devised in the proposed
framework, which can further interpret the constructed black box deep learning model to
provide understandable outcomes and establish trust.

Δ Y

Rectifier DC Link DC LinkInverter Rectifier

Induction

Coil

Figure 2. Induction furnace with series resonance half-bridge inverter.

2. Related Works

Fault detection and diagnosis of machinery are among the primary applications of
artificial intelligence (AI) in industry, as the health of machines and equipment plays a
key role in enhancing the productivity and efficiency of systems [6]. In general, feature
extraction and selection techniques have been widely used along with data-driven diag-
nostic systems [7,8] as they enable the identification of faulty patterns and features from
vast amounts of data samples, facilitating the accurate diagnosis of faults and enhancing
the system’s ability to detect potential faults effectively. However, these techniques cannot
provide any explanation of the diagnostic system’s decision and the impact of features.
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With the success of using intelligent diagnostic tools, there is a great demand for their
explainability to establish trust. XAI helps in discovering intelligent predictive models and
explaining their outcomes for the operators. In the literature, there is no research work
available to address diagnosing faults in IFs. However, various research works have been
accomplished to address the problem of diagnosing faults in other systems by XAI tools.
In the following, different approaches are discussed and compared in terms of incentives
for using XAI. For fault detection in high-speed rail systems, four knowledge extraction
methods are compared in [9], including case-based reasoning (CBR), association rule learn-
ing (ARL), the Bayesian network (BN), and a neuro-fuzzy system with respect to five
characteristics. The Bayesian network is chosen for the work because of the explainability
of the constructed model integrated with correlation-based feature selection (CFS). The
health of water pumps is monitored for preventive maintenance in [10]. The proposed
method makes use of a Type-2 fuzzy logic system (FLS) to make the model interpretable.
With 100 rules and four antecedents per rule, the system provides high explainability and
trust compared to other opaque box models. In [11], bearing faults have been diagnosed
using Shapley additive explanations (SHAP) followed by a K-nearest neighbor (KNN)
classifier. The proposed approach could be adapted to work on different datasets with
different configurations, as a generalized model. Anomaly detection of rotating machin-
ery was performed in an unsupervised manner in [12]. The work compares 11 different
methods and chooses the isolation forest method due to its good overall performance.
Then, using a model-agnostic SHAP and a model-specific local depth-based isolation forest
feature importance (DIFFI), the feature importance is extracted. Finally, the root cause
analysis outputs the most important specific features. The linear motion guide faults are
discovered in [13]. This work employs a 1D convolutional neural network (CNN) for
time-domain training, and, then, uses a frequency-domain-based gradient-weighted class
activation map (FG-CAM) to visualize the classification criteria. The notion of Grad-CAM
is to interpret the model by using the process of learning in reverse. The authors expect
that the proposed method can be applied to various complex physical models. Similar
approaches are presented in [14–16]. For anomaly detection and prognosis of gas turbines,
Bayesian long short-term memory (LSTM) is employed and the outputs are explained using
SHAP [17]. Alongside the prediction, two output layers, the AU layer and the EU layer, are
added to generate data and parameter uncertainty. The uncertainty mirrors the model’s
confidence in predictions. The root-mean-square error (RMSE) and early prediction score
are calculated for the performance evaluation. Moreover, for the evaluation of the SHAP
explanation, two metrics—local accuracy and consistency—are examined. Artificial neural
networks (ANNs) and support vector machines (SVMs) are used in [18] for heat recovery
failure detection in the air handling unit (AHU). Then, the model’s decisions are justified
using the explanation provided by local interpretable model-agnostic explanations (LIME).
The author states that the trustworthiness of the model is the aim of explanations provided
to the user. For fault diagnosis of gearboxes [19], a Deep CNN (DCNN) has been developed
based on the layer-wise relevance propagation (LRP) technique. The LRP is an explanation
method for the DCNN classifier, which quantifies the contribution of the individual inputs
to the output. In other words, LRP brings more transparency to the decision made by
DCNN and opens up the opportunity for widespread DCNN usage for machine fault
diagnosis. In another work, Grezmak et al. [20] utilize CNN and LRP for motor fault
diagnosis. They investigate the performance of the CNN by time-frequency spectra images
of vibration signals measured on an induction motor. Amarasinghe et al. [21] propose
a framework for deep neural network (DNN)-based anomaly detection and a post hoc
explanation generated by LRP. Similarly, condition monitoring of hydraulic systems has
been proposed using a framework that combines a DNN with DeepSHAP for interpretabil-
ity [22]. An XAI-based chiller fault detection and diagnosis is presented in [23]. This work
uses the extreme gradient boosting (XGBoost) model, an ensemble of classification and
regression trees. The explanation introduced by LIME helps to detect preliminary faults by
possibly resorting to human operators. In addition, this information improves accuracy,
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reduces fault detection time, and establishes trust with the field personnel. The remaining
useful life (RUL) is an estimate of the remaining time for the repair or replacement of a
machine. To predict the RUL of turbofan engines, [24] implemented a DNN model coupled
with LIME. The outcomes indicate that the model effectively understands the underlying
physics with simpler data sets, and LIME provides clear explanations. However, both the
model and explainer struggle to deliver satisfactory results with more complex data. In the
same application, three algorithms are employed in [25]: CNN, LSTM, and Bidirectional
LSTM. The effect of each input variable is confirmed through SHAP. The SHAP provides
an intuitive visualization of the effect of each feature on the predicted results. Conventional
CNN filters are not transparent and they include noisy and undesirable spectral shapes.
This issue is addressed in [26] with the utilization of SincNet. SincNet encourages the first
layer of the CNN to generate interpretable filter kernels. The method, referred to as Deep-
SincNet, demonstrated better performance, greater interpretability, enhanced immunity
to noise, and lower implementation costs compared to conventional CNNs. Resembling
the F. B. Abid et al. method, T. Li et al. [27] replaced the first layer of the CNN with a
wavelet convolutional layer (CWConv). This wavelet-driven deep neural network is called
WaveletKernelNet (WKN) and represents more meaningful kernels. The accuracy of WKN
is 10% higher than the standard CNN, plus the CWConv layer is interpretable.

Apart from explainability, two data-driven studies were conducted by
Yolim Choi et al. [28,29] to predict the RUL of an IF refractory. They prove that multilayer
perceptron (MLP) performs better than recurrent neural networks (RNNs) and LSTM methods
in predicting RUL. The study employs basic electrical parameters such as input/output
power, voltage and current, converter DC voltage, and frequency. In the second work, a
novel s-convolutional LSTM method is proposed to predict RUL. In terms of RMSE and
Pearson correlation coefficient (PCC) metrics, it is shown that s-ConvLSTM outperforms
MLP and LSTM.

In our study, the time and frequency domain parameters are extracted from the IF
power supply. Then a framework is introduced consisting of, first, a semi-supervised
anomaly detector to identify faulty samples from normal data samples; second, a DNN to
classify fault type in a supervised manner; and third, the use of XAI methods to interpret
the predictions. To the best of the authors’ knowledge, this is the first study that introduces
XAI-based fault diagnosis in IF, utilizing empirical data samples from the industry.

3. Problem Statement

Fault detection and diagnosis help take recovery actions before a critical failure hap-
pens, causing subsequent damages to other parts of equipment, or, in extreme cases,
exposing personnel to safety hazards. IFs play a key role in heating and melting metals
in industry. In foundries with a continuous casting machine, the uninterrupted operation
of the furnaces is essential, as any stoppage could trigger a breakout in the production
process. Additionally, a prolonged shutdown of a furnace during operation can lead to
melt blocking in the crucible if the charge is not dumped. Early detection and the diagnosis
of faults in IFs provide the following benefits:

- Prevents further damage to components, especially power semiconductors.
- Reduces repair time and overall downtime.
- Reduces the repair cost.
- Enhances furnace system health and performance.
- Boosts productivity.
- Mitigates potential safety hazards.

Data-driven fault detection and diagnostic models employ deep learning solutions and are
built by means of sensor data. There are no previous studies on fault diagnosis of IFs in
the literature. In this study, we provide a deep learning solution to detect and diagnose
faults using data samples collected from an energy analyzer device. There are several
faults related to the electrical components. In the high-power furnace cabinet, there are
several AC and DC oil-filled water-cooled capacitors. Capacitors are very sensitive to
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temperature increases; therefore, the water outlet temperature typically must not exceed
45 ◦C. The most common failure in these capacitors is dielectric damage due to excessive
current, voltage, or temperature. A damaged capacitor often results in a phase-to-phase or
phase-to-ground short circuit and draws significant inrush current. IFs rely on electronic
circuits for rectifier and inverter control while providing protection. The control boards
issue trigger signals to power circuit switching elements. Issues in these electronic circuits
have diverse effects on the operation of the furnace. For instance, a faulty inverter control
card may trigger thyristors on opposite legs at the same time, thus causing a short circuit
across the DC rail. Improper firing might lead to a short circuit or harmonic generation.
Conducted/radiated interference, power supply issues, loose connection, and component
overheating are common reasons for the control system malfunctioning. The changeover
switch (COS) is used for transferring power from one crucible to another in case of crucible
stops for relining or patching. Water flows through the switch to stabilize its temperature.
These high-current offload switches are made up of high-conductivity copper with silver
contacts to minimize resistance and loss. A common failure in COS is the corrosion of
switchblades due to misalignment or overheating. The misalignment or gap between
moving and stationary contacts leads to small arcs and gradually melts the contact’s
surface. Additionally, a drop in water pressure or a rise in inlet water temperature can lead
to erosion of the silver contacts due to overheating. Earth leakage is a prevalent fault among
others and occurs when there is a current leakage to the ground at the inverter output side.
The most severe accident is when molten metal penetrates through the furnace lining and
touches the coil. The ground leak detector (GLD) circuit protects the furnace from such
accidents. Since the power circuit is isolated from the ground, the GLD senses ground leaks
by applying a DC voltage between the inverter output and the ground. A malfunctioning
GLD either fails to detect earth leakage current or may trigger false alarms. The other group
of faults is related to semiconductors including thyristors, flywheel diodes, or components
in the snubber circuit. These types of faults are due to over-voltage, over-current, short
circuits, earth leakage, overheating, or loose connection. In rare cases, the di/dt reactor fails
with an inductance change or insulation breakdown. There are plenty of fixed temperature
switches on the water supply manifolds to shut off the inverter when the temperature
surpasses a threshold level. The temperature of the components generally rises due to
cooling system problems such as faulty pumps, clogged water hoses or pipes, and water
pressure drops. Based on the authors’ expertise in IFs, faults often originate from a single
source within the furnace and can escalate to affect other furnace components. The main
goal of this framework is to detect faults early to prevent subsequent damage.

The deep learning approach attempts to predict the IF faults with a high degree of
precision. However, only diagnosing a potential fault would not be enough to justify
the system status and subsequent actions, particularly when there is a substantial risk of
unintended bias during the learning phase, and a false shutdown can lead to serious conse-
quences. Thus, it is imperative that the system’s alarms are supported by a comprehensive
set of justifications, which provide the control room operators with confidence. The XAI
techniques can analyze and clarify the predictions of the trained models, such as neural
networks, to pinpoint the features that contribute most to the decision. This ensures more
reliable predictive models, thereby securing the trust of end-users.

4. Proposed Approach

This work proposes a transparent and efficient method for diagnosing faults in IFs
that are solely based on real-time monitoring of electrical parameters collected by a power
quality and energy analyzer device. The system setup is shown in Figure 3. There are
218 parameters recorded by each energy analyzer in two sets: general and harmonic
parameters. All measurements are sent to a central data server and can be visualized or
exported for monitoring and further analysis. General parameters include line voltage
(VL12, VL23, VL31), phase voltage (VT, V1, V2, V3), phase current (IT, I1, I2, I3), residual
current (Inull), active power (PT, P1, P2, P3), reactive power (QT, Q1, Q2, Q3), apparent
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power (ST, S1, S2, S3), frequency (Freq), first harmonic power factor (PFT, PF1, PF2, PF3),
harmonic distortion for current and voltages (THD, OHD, EHD), K-factor, total active and
reactive energy (generated or consumed), demand (Dem), voltage, and current unbalance
rate (UnbV, UnbI). The Avr, Max, and Min prefixes denote the average, maximum, and
minimum recordings of the voltage and current. The K-factor is defined as follows:

K f actor = ∑k
n=1( fn × n)2

∑k
n=1( fn)

2 (1)

where fn is the nth harmonic value. The K-factor represents the weighting of harmonic load
currents based on their impact on transformer heating. A K-factor of 1.0 signifies a linear
load with no harmonics and higher values indicate that the load introduces harmonics,
leading to extra heating effects. The minimum, maximum, or average values of the voltage
and current are evaluated based on cycle-by-cycle values within a period of one minute.
The residual current is the vector sum of the phase currents. The maximum demand value
is the average demand during a period of 15 min. Moreover, the voltage and current
unbalance rate is defined as follows:

UnbV =
Vm − V

V
× 100 (2)

UnbI =
Im − I

I
× 100 (3)

where V and I are the average values and Vm and Im are the maximum values of the voltage
and current. Moreover, harmonic parameters consist of harmonic data up to the 22nd order
for the phase voltage and current. Assuming mn as the RMS value of the nth harmonic,
the total harmonic distortion (THD) is determined using the following equation:

THD =

√
∑max

n=2 m2
n

m1
(4)

Similarly, even harmonic distortion (EHD) and odd harmonic distortion (OHD) are
defined as follows:

EHD =

√
m2

2 + m2
4 + m2

6 + ...√
m2

1 + m2
2 + m2

4 + m2
6 + ...

(5)

OHD =

√
m2

3 + m2
5 + m2

7 + ...√
m2

1 + m2
3 + m2

5 + m2
7 + ...

(6)

In total, there are 92 general parameters and 126 harmonic parameters. From these,
15 features with low correlation were removed from the dataset. The recording intervals
for the general and harmonic parameters differ. General parameters are recorded every
minute, while harmonic parameters are recorded every 10 min. Therefore, the date and
time stamp of the samples are used to downsample the general parameters to properly
match the harmonic parameters.

Most of the faults cause subsequent damage to other components such as semicon-
ductors, capacitors, snubbers, and control systems. Therefore, the initial cause of a failure
is identified in the maintenance reports and flagged as a fault case. Considering these
criteria, a total of 290 faults are considered in this study. Then, for each fault case, the energy
analyzer data samples were cropped from the beginning of the furnace cycle to the time of
the fault occurrence. A furnace cycle is considered from the time of filling the furnace with
cold scrap and starting the inverter to the moment of inverter shutdown by the operator
and discharging the molten metal. For the above furnace, this cycle lasts for roughly two
hours and normally repeats ten times a day according to the furnace production reports.
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Figure 3. The general diagram of the IF system.

In order to label the samples, we employ the local outlier factor (LOF) algorithm,
which is an unsupervised anomaly detection method. LOF calculates the local density
deviation of a given data point in relation to its neighbors. As there are many normal
samples available in our database, we use LOF in a semi-supervised manner and then try
to find novelty in the samples. As a result, we can find outliers among collected samples.
Detected outliers are assigned a label according to the corresponding fault case.

After data labeling, we use a deep neural network to train a model and diagnose
fault samples in real time. For the DNN model buildup, we try to minimize the number
of layers in order to decrease the computation time, while keeping acceptable prediction
accuracy. We adopted the DNN method in this paper due to its effectiveness in real-time
fault diagnosis, particularly in the vital and high-value contexts of induction furnaces in
foundries. As shown in Figure 4, the proposed model is constructed based on five dense
layers with batch normalization. This setting is based on extensive iterative experimenta-
tion. The Softmax function is employed for the classification tasks to predict the probability
of different classes, and the categorical cross-entropy is utilized as the cost function for the
model training. The cross-entropy for each sample, s, in multi-class classification can be
defined as follows:

CEs = −
n

∑
i=1

ys,ilog(ps,i) (7)

where n is the number of classes and p is the predicted probability of class i for the sample s.
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Figure 4. Different layers of the constructed model.
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The interpretation of the predictions of the complex DNN model is of paramount
importance. The explanations will enable users to understand and trust the predictions
generated by the model. The LIME algorithm [30] is used to interpret the outcome of the
proposed diagnostic model. LIME is a local approach that can explain the conditional
interactions between features and classes for a single sample. At a high level, the algorithm
follows these steps:

- It perturbs the desired prediction to create replicated feature data that has slight
value modifications.

- It calculates the distance between each perturbed data point and the original sample.
- It obtains the outcomes of perturbed data using our black box model.
- It selects features that have the most contribution to the model outcome.
- It approximates a linear model using the perturbed data and selected features.
- An explanation is created based on the feature weights of the approximated linear model.

The explanation for the sample, s, is represented as follows:

explanation(s) = argmin{L( f , g, πs) + Ω(s)} (8)

where g is the linear approximation of the original model f around sample s with locality
πs. L is a function that measures the distance between f and g in the given neighborhood.
It represents how closely the explanation matches the original model’s prediction. Ω(s) is a
regularization term that measures the complexity of the explanations, i.e., the number of
non-zero coefficients.

The LIME results are verified by applying SHAP [31]. SHAP is a unified framework
based on the Shapley value. SHAP can produce local and global explanations for a model.
In presenting a global explanation, we explore the importance of a particular feature for
predictions made by the model.

5. Experimental Results and Discussion

The data were collected from a foundry operating three identical 15-ton, 5 MW series-
resonance half-bridge inverters. The configuration of the furnaces is shown in Table 1. All
furnaces are fed through a common 20 KV switchgear. However, dedicated voltage and
current transformers are connected to the input of each furnace power transformer for
energy analyzer measurements. The data collection began on the date of commissioning
for each furnace.

Table 1. Induction furnace specification.

Specification Value

Rated Power 5000 KW
Input Voltage 550–690 V

Output Frequency 200–400 Hz
Output Voltage 3–4 Kv

5.1. Outlier Detection

The raw data for each fault are collected and labeled accordingly. The LOF algorithm
marks each sample as normal or an outlier. The algorithm was initially trained using
21,603 normal samples collected from fault-free furnace operations on random days. We
ensured no faults occurred within 24 h before and after the sampling period. Each sample
identified as an outlier is given an appropriate fault label at the end of that period. Table 2
displays the outliers detected by the LOF algorithm.
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Table 2. Fault statistics.

Fault Types Label #Fault
Cases

Total
Samples

#Outlier
Detected

Capacitor 1 37 487 108
Control System 2 24 333 82
Change Over Switch (COS) 3 13 181 19
Earth Fault 4 88 1071 302
Flywheel Diode 5 6 67 9
di/dt Reactor 6 7 55 23
Thyristor (SCR) 7 29 370 116
Temperature 8 86 1007 192

5.2. Model Evaluation

Upon processing the raw data, the proposed model is constructed and then evaluated
with test data. To evaluate the efficiency of the model, the accuracy of its predictions is
compared with those obtained by the ensemble learners, e.g., extreme gradient boosting
(XGB), light gradient boosting (LGB), and random forest (RF), as well as classic machine
learning (ML) methods including logistic regression (LR), MLP, KNN, SVM, DT, and NB
classifiers. Comparing various classifiers enables us to determine the best predictive model
for this application. Our proposed deep learning model employs the Stochastic Gradient
Descent optimizer to control the rate of gradient descent. In the data pre-processing stage,
we normalized the data by applying the min-max scaling technique. The batch size is set to
128, and the number of epochs varies, i.e., the training automatically stops when validation
loss reaches a minimum value. Validation data constitutes 10% of the training data. The
performance of the proposed model is assessed using four metrics: accuracy, precision,
recall, and F-measure. The F-measure, also known as the F1 score, integrates precision and
recall metrics to strike a balance between the two. Since data are class imbalanced, we use
weighted averaging for each class metric’s computation. For instance, the precision for
class i is determined as follows:

Pri =
TPi

TPi + FPi
(9)

TP stands for true positive and FP means the number of false positives. The weight
precision is defined as follows:

Pr =
n

∑
i=1

Wi × Pri (10)

where n is the number of classes and Wi is the weight assigned to class i:

Wi =
TPi + FPi

∑n
i=1(TPi + FPi)

(11)

The model is evaluated through 10-fold cross-validation, which randomly partitions
data into 90% for the training and 10% for the test. The class ratio is maintained throughout
the 10 folds the same as the ratio in the original data. In each fold, 10% of the training set
is kept for validation and tuning the model’s hyper-parameters. In our analysis, various
classifiers were compared in terms of accuracy, precision, recall, and F-measure.

In prediction tasks, the F-score is a widely used evaluation metric that leads to a single
score accounting for both precision and recall concerns. Table 3 illustrates the performance
comparison results. The obtained metrics reported in this table are the average values over
all folds. It can be seen that DNN reveals the best values across all measures compared to
other classifiers. An average F-measure of 0.9187 is scored by DNN, followed by 0.8998 is
reached by LGB. Tree ensemble methods stand in second place with nearly equal figures.
MLP shows a higher precision of 0.9025 than tree ensemble algorithms but due to the
increased false negative rate in MLP, the recall and F-measure values are alleviated. Despite
achieving a high precision of 0.8736, NB performs poorly in other evaluation metrics.
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The main reason for the poor performance of the Bayesian classifier is the unequal class
distribution and the insufficient number of fault cases in our experimental data. Figure 5
shows the F-measure values obtained by each model at each fold of cross-validation. Using
the F-score metric, it can be verified that the selected DNN model outperforms the lowest
average score of the naïve Bayes classifier by 15.22%.

Table 3. Performance metrics obtained by each method.

Classifier Precision Accuracy Recall F-Measure

DNN 0.9127 0.9142 0.9287 0.9187
MLP 0.9025 0.8859 0.9007 0.8989
XGB 0.8894 0.8990 0.9188 0.8992
LGB 0.8914 0.8982 0.9175 0.8998
RF 0.8880 0.8972 0.9177 0.8960

KNN 0.8778 0.8834 0.9021 0.8874
SVM 0.8144 0.8573 0.8801 0.8274
DT 0.8746 0.8514 0.8697 0.8715
LR 0.8376 0.8647 0.8857 0.8557
NB 0.8736 0.7237 0.7440 0.7973
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Figure 5. F-measure values obtained by each model at each fold of cross-validation.

6. Explanation for Predictions

The explanations provided by LIME and SHAP will enable users to understand and
interpret the predictions generated by the model. We employ both techniques to explain the
predictions of our model. A randomly chosen earth fault sample with a probability of 52%
is used for further explanation. For faster and improved performance, the DeepSHAP [31]
approach is used for our model to compute SHAP values. As shown in Figures 6 and 7,
both algorithms are configured to show only the top 20 most important features. The
features are sorted in descending order from top to bottom. In Figure 7, the top features
are listed on the vertical axis while the horizontal axis indicates SHAP values. There are
11 common features identified by both methods. In both figures, it can be realized that
the phase III voltage harmonic of order 13 (V3H13) has the most significant impact on the
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predicted result. On the left side of the LIME plot, prediction probabilities of the different
faults have been presented. There is a 52% probability of an earth fault while having a 24%
chance of being in the normal state.

Figure 6. LIME feature weights for a single representative sample of the earth leak fault.

Therefore, the features with positive contributions are presented in green and placed
on the right side of the vertical bar. On the contrary, the features with a negative effect on
the decision are positioned on the left side of the bar. Likewise, in the SHAP plot, the red
bars indicate factors with positive SHAP values, such as V3H13, I2, PT, etc., and negative
ones are in blue, like I1 and THDV1, etc. This graph demonstrates how to transition from
the mean of all predictions, E[f(x)], to the predicted probability.

Furthermore, we can visualize SHAP values for a set of correct predictions of the same
class to have a global explanation. A global summary plot is shown in Figure 8, combining
feature importance with feature effects. The vertical axis illustrates the prominent features,
whereas the horizontal axis corresponds to SHAP values. Each row represents a feature and
each point illustrates a sample. The red dots show high feature values while the blue dots
show low values. The features are ordered according to their importance. Some features
have distinguishable red and blue dots distributed along the x-axis so that we can easily
infer their impact. Apparently, the high values of the total power factor (CosPhiT) and 13th
harmonic of phase I voltage (V1H13) together with low values of 13th harmonic of phase
III voltage (V3H13), and current (I3H13) and 11th harmonic of phase I voltage (V1H11)
elevate SHAP values and the probability of earth fault. Moreover, by comparing this plot
and LIME local explanation for one of these samples in Figure 6, we can observe similar
parameters like V3H13, I3H13, CosPhiT, and V1H13 contributing in the earth fault decision.
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Figure 7. SHAP values for a single representative sample of the earth leak fault.

Figure 8. Global explanation using SHAP for the earth leak fault.

For further verification of explanations, we applied post hoc explainers to other con-
structed models. We have chosen a sample earth fault from the test set that all models
correctly predict. As anticipated, each model presents varying probabilities for this partic-
ular case. Table 4 displays the top 20 features ranked by the score for each model, along
with the associated probabilities. For instance, DNN identified the fault as an earth fault
with 81% probability, while the XGB demonstrated higher confidence at a probability of
96%. We applied TreeSHAP for XGB and DT classifiers. Features that are reported by both
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LIME and SHAP are marked in bold. It can be seen that in cases of deep learning model
and SVM, both explainers uncover 55% of the same features. Additionally, it is evident that
some features are highlighted by at least five models as reasons for the earth fault. These
common features are V3H13, V3H21, P2, I2, and CosPhi3, where V3H13 is reported by
all models. Therefore, we can conclude that a decrease in the 13th harmonic of phase III
voltage could be a solid indication of the earth fault.

Table 4. Feature importance comparison of models W.R.T. individual fault samples.

DNN XGB KNN SVM DT NB LR

p = 0.81 p = 0.96 p = 1.00 p = 0.56 p = 0.92 p = 1.00 p = 0.55

SHAP LIME SHAP LIME SHAP LIME SHAP LIME SHAP LIME SHAP LIME SHAP LIME

I2 I1 Freq P2 AvrI2 V1H18 V3H3 I2 P2 S3 V1H14 V1H20 Q2 Q2
MaxI2 I2 P2 S2 AvrI3 I2H22 P2 P2 AvrI1 P2 V1H12 V3H13 QT V3H13
P2 PT PF1 UnbV V3H13 V3H13 Q2 V3H17 UnbV MinI2 V2H12 I1H13 I1H13 QT
AvrI3 V3H13 V3H21 V3H13 AvrI1 ST S2 S2 I1H11 V3H13 P2 I3H5 V3H13 V3H21
PT P2 CosPhi2 V1H18 P2 AvrI1 I1H13 V3H21 I2H8 I2H4 I3 P2 I2 P3
I3 MaxI2 UnbI I2H8 I1 MinV3 IT Q2 CosPhi3 I2H16 V2H14 PT V1H7 I2
V3H13 CosPhi3 S2 I2H21 MaxI3 AvrI2 Freq I1 I2H5 V2H20 P1 V3H21 Freq Freq
THDV1 S1 UnbV V1H15 MaxI2 AvrI3 I2 PT Freq Q3 AvrV2 ST I2H19 V1H12
VL23 V3H21 V3H4 V2H12 Q2 MinI2 I3 ST S3 MinV2 S2 V1H2 V2H13 AvrI1
ST V3H17 AvrI1 V2H8 PT P1 I2H15 S1 I2H11 KFactorI1 I3H15 KFactorI3 S2 I1H13
MinI2 ST V1H14 I2H6 I3 I1H14 V3H13 V2H13 PFT I2H19 IT I3H20 I2H15 I3H6
CosPhiT V2 CosPhi3 THDI3 ST I3H20 V2H13 OHDV3 CosPhiT AvrI3 MinI1 I3H9 I3 I2H2
S1 MinV2 I2H15 IT MinI3 OHDI3 I1 I3 V3H19 OHDV1 UnbV V1H6 MaxI1 V1H7
V1H12 THDV1 I2H16 I2H2 MinI1 S2 PT S3 V3H13 V3H21 I2H19 V2H3 OHDV3 V1H13
CosPhi3 P3 MinV1 I3H15 S2 I2 QT VL23 MinI3 EHDV1 EHDV2 I2H16 IT KFactorV1
V1H19 VL12 V3H13 KFactorI3 I2 V2H20 CosPhi3 OHDV2 I2H10 I3H14 MaxI1 V1H18 THDV3 MinI2
V3H3 AvrI2 V2H14 I1H4 IT I2H20 OHDV3 I2H7 I1H9 Q2 I2H6 KFactorV1I1 V2H10
VLT MinI3 AvrI2 V3H15 P1 V1H12 ST V3H21 I3H9 V3H5 I1H20 V1H22 V2H6 I3H14
I2H13 I2H19 V3H5 MinV1 S3 EHDI2 THDV3 V3H13 V2H3 EHDI2 Q3 IT V3H21 CosPhi3
V3H21 VL23 I1H21 I2H15 MaxI1 VL23 CosPhi2 Freq V3H7 V1H14 I2H14 CosPhi3 Q3 AvrI2

Note: Features identified by both LIME and SHAP are emphasized in bold.

Similarly, we could analyze other fault types for a global explanation using the SHAP
explainer. Since LIME only provides a local explanation, we applied the algorithm to
individual samples of each fault, repeatedly, then, gathered the recurring features. Hence,
we can identify the features that contribute most to each fault. Table 5 lists the high-scored
general and harmonic parameters. These parameters are sorted based on their importance.
The general deduction from this table is that odd harmonics of order 3, 11, 13, and 17,
as well as general parameters including phase currents, power factors, and harmonic
distortion, have a significant impact on our model’s predictions. In fact, rectifiers cause odd
harmonics in the power line and a 12-pulse rectifier can extend these harmonics to a higher
order while eliminating the 5th and 7th orders. Moreover, the primary Delta winding
of the transformer remarkably attenuates triplen harmonics. Thus, we expect that any
abnormalities may result in variations of other odd harmonics. This can be clearly noticed
from the explanations gathered in Table 5 as voltage and current harmonics of orders 13 and
11 are mostly repeated in the results. Having discussed the global explanations, a domain
expert could investigate the reasons behind DNN’s decisions using SHAP/LIME local
explanation and gain confidence by comparing them with the findings in Table 5.

Table 5. Global explanations for different fault types.

Class No. Class Name General Parameters Harmonic Parameters

1 Capacitor P2, I1, CosPhi1, CosPhi2, CosPhi3,
CosPhiT V2H13, V3H11, V1H6, V3H3, V1H3

2 Control System I2, I1, P1, P2, KFactorV1, CosPhi2 V3H13, I2H15, V3H3, V1H3
3 COS CosPhi3, CosPhi1, MaxI1, VL23, VL31, I2 V1H19, V3H13
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Table 5. Global explanations for different fault types.

Class No. Class Name General Parameters Harmonic Parameters

4 Earth I1, I2, P1, PT, I3, QT, THDV1, CosPhiT V3H13, I3H13, V1H13, V3H21, V1H11,
I1H11

5 Flywheel Diode CosPhiT, CosPhi1, I1, I2, CosPhi3, P3, P2, V3H3, I3H17, V3H17, V3H5, I1H13, I3H13

6 Reactor CosPhi3, CosPhi2, CosPhiT, I1, MaxI2, IT,
P1, QT V3H13, V1H13, V1H3, I2H13, V3H3,

7 Thyristor CosPhi3, THDV1, I2, ST, I1, P1, S2,
CosPhiT, KFactorV1 V3H13, V1H13, V2H17, I1H13, V2H13

8 Temperature CosPhiT, P1, I1, OHDI2, EHDV3, THDV1,
OHDI3, CosPhi3

V1H13, V3H3, V1H3, V3H13, V3H11,
V1H7, V3H5

7. Conclusions

This work develops an efficient data-driven framework for diagnosing faults in in-
duction melting furnaces. The framework uses real-time electrical parameters from power
quality and energy analyzers on the supply side. We adopted a DNN classifier for early
fault detection due to its effectiveness in real-time fault diagnosis, particularly in the critical
and high-stakes environments of induction furnaces in foundries. The DNN was trained in
a supervised manner, and its predictive capabilities were tested with experimental data.
The model’s performance was compared with other competitors, demonstrating that the
proposed DNN model outperforms the ensemble learners, MLP, and classical ML methods
in terms of precision, recall, accuracy, and F-measure. Finally, post hoc explanations of
the model’s predictions were presented to the user in terms of the relevance score. Model-
agnostic LIME and SHAP techniques were employed to generate the explanations. The
contribution of features to each fault class was extracted using global explanations obtained
from the SHAP and LIME plots. Based on the explanation, one can find that classified faults
are commonly associated with variations in odd voltage/current harmonics of orders 3, 11,
13, and 17. The main constraint of the work is the skewed class distribution, which forces
models to be biased toward the majority class and can increase the error in the prediction of
the minority class samples. A further constraint is the difficulty of interpreting explanations
provided by the LIME algorithm, which requires advanced knowledge of the system.
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Abbreviations
The following abbreviations are used in this manuscript:

AHU air handling unit
AI artificial intelligence
ANN artificial neural network
ARL association rule learning
BN Bayesian network
CBR case-based reasoning
CFS correlation-based feature selection
CNN convolutional neural network
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COS changeover switch
CWConv continuous wavelet convolutional
DCNN deep convolutional neural network
DIFFI depth-based isolation forest feature importance
DNN deep neural network
DT decision tree
EHD even harmonic distortion
FG-CAM frequency-domain-based gradient-weighted class activation map
FLS fuzzy logic system
GLD ground leak detector
IF induction furnace
KNN K-nearest neighbor
LGB light gradient boosting
LIME local interpretable model-agnostic explanations
LOF local outlier factor
LR linear regression
LRP layer-wise relevance propagation
LSTM long short-term memory
MLP multilayer perceptron
NB naïve Bayes
OHD Odd harmonic distortion
PCC Pearson correlation coefficient
RF Random forest
RMSE Root-mean-square error
RNN Recurrent neural network
RUL Remaining useful life
SHAP Shapley additive explanations
SCR Silicon-controlled rectifier
SVM Support vector machine
THD Total harmonic distortion
XAI explainable artificial intelligence
XGB extreme gradient boosting
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