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Abstract: Currently, great emphasis is being placed on the electrification of means of transportation,
including aviation. The use of electric motors reduces operating and maintenance costs. Electric
motors are subjected to various types of damage during operation, of which rolling bearing defects
are statistically the most common. This article focuses on presenting a diagnostic tool for bearing
conditions based on mechanic vibration signals using convolutional neural networks (CNN). This
article presents an alternative to the well-known classical diagnostic tools based on advanced signal
processing methods such as the short-time Fourier transform, the Hilbert–Huang transform, etc. The
approach described in the article provides fault detection and classification in less than 0.03 s. The
proposed structures achieved a classification accuracy of 99.8% on the test set. Special attention was
paid to the process of optimizing the CNN structure to achieve the highest possible accuracy with the
fewest number of network parameters.

Keywords: induction motor drive; fault diagnosis; rolling bearing faults; artificial intelligence;
convolutional neural networks

1. Introduction

In response to the energy crisis and the need to reduce the negative impact of public
transport on the environment, there is now a strong emphasis on the electrification of
various modes of transportation, including aircrafts [1]. By replacing conventional internal
combustion engines with electric motors, operating costs can be reduced by replacing jet
fuel with electricity and reducing maintenance costs for these machines [2]. Despite the
high quality of the materials and design methods of electric machines, they are subject to
emerging defects. The effect of machine defects can range from reduced functionality to
complete failure. Due to the need to ensure the safety of electric vehicles, the diagnosis and
prediction of defects in electric machines is an important issue [3]. The correct diagnosis
and detection of damage at its initial stage significantly reduce the time of possible machine
downtime, avoid harmful, sometimes catastrophic, consequences, and reduce financial
losses [4]. The induction motors most commonly used in industrial drive systems consist of
many components. Each of these components can fail due to overload, abrasion, electrical,
mechanical, and thermal stresses, or as a result of an unbalanced load. According to the
results of statistical studies shown in [5,6], rolling bearing damage is the most common
recurring failure of electric machines. Bearing fault diagnosis is therefore crucial to ensure
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the proper maintenance and trouble-free operation of electric motors. This issue is partic-
ularly important for aviation safety, as well as for forecasting and planning maintenance
operations [7].

Superior control systems impose several restrictions on the signals used that carry
information about the machine’s condition. In the case of bearing damage diagnostics, the
most commonly used diagnostic signals are vibration [8–10], current [11,12], or acoustic
emission [13–15]. A vibration signal is a very good carrier of information and enables the
early detection of mechanical damage [16]. Vibration analysis techniques used to detect
bearing failures in electric drives are most often divided into four categories: time domain,
frequency domain, time–frequency domain, and other methods [17]. Time domain signal
analysis includes the analysis of statistical parameters such as RMS, Crest factor, and
kurtosis [18]. However, a significant drawback of these methods is their sensitivity to
noise and their inability to determine the location of the fault. Frequency domain analysis
techniques mainly include fast Fourier transform analysis and envelope analysis [19,20].
However, there are some limitations to these techniques that make them unsuitable for
analyzing non-stationary signals. Time–frequency analysis combines the advantages of
both methods and includes wavelet transforms, short-time Fourier transform (STFT), and
Hilbert–Huang transform, among others [21,22]. However, it should be noted that these
methods are more computationally complex, which can lengthen the fault detection process.

The shortest possible time between the occurrence of a defect and its detection is
crucial to ensure safety, especially in critical drives. In addition, modern control systems
enforce the need for the full automation of the fault detection process, at the same time
ensuring a short response time to the appearance of a defect while maintaining high
precision in its assessment. Therefore, to meet these requirements, but also to increase the
reliability of diagnostic systems, artificial intelligence techniques are increasingly used [23].
Artificial neural networks are now a very good tool to partially replace humans in the
decision-making process, based on signal analysis [10,24], allowing them to automate and
maintain the diagnostic process [25,26].

The most widely used neural structure in diagnostic applications is the multilayer
perceptron (MLP), whose use and good precision performance have been described
in [27–29], among others. These networks perform the primary function of learning data
approximation and perform well in simple diagnostic tasks based on signal preprocess-
ing. Other widely used types of shallow neural networks are self-organizing Kohonen
maps (SOM) [30,31], networks with radial activation functions (RBF) [32], or recurrent
structures [33]. However, these solutions base their operation on the extraction of classi-
cal symptoms, which implies the use of analysis methods whose limitations have been
mentioned above.

A natural development step in automating the decision-making process of diagnostic
systems was to use methods that would allow the direct use of the diagnostic signal. One
solution with good results was the use of deep neural networks [10,34–37]. The structure
of deep neural networks is based on the use of many different neural layers [15], each of
which introduces a certain level of abstraction by extracting successive features from the
data coming from the previous layer, starting from the input layer [38,39]. This also makes
use of features extracted from processed diagnostic signals as an input for deep network
work [10,40]; however, an important advantage of deep networks is their ability to extract
features directly from the diagnostic signal and their ability to process them for appropriate
classification [38,39,41,42].

The most widely used deep learning network structures are autoencoders [43], long
short-term memory (LSTM) [7], and convolutional neural networks (CNNs) [36,44–46].
Compared to the shallow structures mentioned above, CNNs show higher accuracy when
operating directly on the diagnostic signal presented in the form of multidimensional
arrays or vectors [38,45], further reducing the time of the diagnostic process [36,37]. CNNs
also provide automatic symptom extraction, reducing the role of an expert in the diagnostic
process. Due to the direct processing of diagnostic signals, fault response times are many
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times faster than known classical detection methods. Furthermore, the technique performs
well in detection during steady-state and transient conditions, which is extremely important
for modern drive systems. The topic of bearing damage detection using CNNs with a
direct diagnostic signal, such as vibrations, has been addressed in publications [10,15,46,47],
among others. However, in this paper, the authors used signals for a larger number of
degrees of different damage, which allows an increase in the sensitivity of the neural
structure for the initial stage of damage [15].

In addition, in the article [46], time–frequency analysis was used to develop the in-
put matrix of the network. This fact adversely affects the diagnostic process due to the
significant computational load of the applied combination of continuous wavelet analysis
(CWT) and a deep convolutional network. Furthermore, the signal acquisition time de-
clared in [46] is 0.5 s, which is 25 times longer than the time presented in this article. Also
noteworthy is the very elaborate structure of the fully connected layer presented in [46],
which is not justified, especially in the context of the initial symptom extraction applied
using CWT. The article [47] proposed an approach based on the analysis of the vibration
signal in the time domain. Feature extraction was enhanced by the statistical analysis of
vibration samples contained in the measurement vector. However, the disadvantage of
the described approach is the use of a ready-made AlexNet structure without taking into
account the possibility of optimization. The CNN structure presented in [47] contained
more than 2.5 billion parameters adapted to the training process. In addition, the transition
between convolutional layers containing more than 3.3 million parameters and a classifier
containing more than 2.6 billion parameters was not protected against a loss of generaliza-
tion. It should be noted that the lack of an optimization algorithm between the layers of
the feature detector (convolutional layers) and the layers of the classifier (fully connected
layers) results in an excessive dependence of the state of one neuron on the others. In the
approach proposed in this article, a structure with 64 thousand parameters is used. In
addition, a dropout layer [10,38] and stochastic network training methods were used to
avoid a loss of generalization ability.

Recognizing damage at a possible early stage is extremely crucial for critical propulsion
systems (aviation) given the early prediction of required maintenance work to ensure
system reliability [10]. Due to the application of ready-made neural structures with an
excessive number of neural connections presented in the literature, this article presents
the optimization of the CNN structure to maximize the accuracy of performance and
minimize the required time and computational resources. Due to the crucial role played in
modern diagnostic systems by the immunity of the solution to external disturbances [45]
and the stability of the system’s operation, it is important to optimize the neural structure
that is a key element of the diagnostic application [41]. A reduced number of network
parameters translates directly into the ability to implement the solution and response time
to an emerging defect. So far, this issue has not been discussed in the literature concerning
rolling element-bearing diagnostics, so this article describes a study showing the possibility
of deep network optimization for diagnostic tasks.

2. Rolling Bearing Damage—Analysis of the Fault Detection Problem
2.1. Extraction of Damage Symptoms Using Spectral Analysis

When damage occurs on the surface of any of the bearing elements, each time one of
the rolling elements rolls through the damaged area, a brief impulsive force is generated
that causes the bearing to vibrate. If the speed is constant, these pulses occur periodically.
Periodic changes in the vibration signal resulting from rolling bearing defects provide
excellent information to determine the nature of the damage. The analysis of the impact
of periodically occurring changes in signals, which can be understood as the evaluation
of the contribution of damage-related features to the measured signal, is now mainly
implemented using the fast Fourier transform. With the FFT, it is possible to assess the
trend of amplitude changes associated with rolling bearing defects that occur at specific
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frequencies of the spectrum. For a ball bearing in which the inner race rotates and the outer
race is stationary, the characteristic frequencies for each type of defect are as follows [16,48]:

fC = 0.5· fr·
(

1 − d·cosϑ

D

)
, (1)
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D
2d

· fr·
(
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(

d·cosϑ
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D

)
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2

· fr·
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D

)
, (4)

where fr is the rotational frequency, fC is the frequency associated with cage failure, fB is
the frequency associated with rolling element failure, fO is the frequency associated with
outer race failure, f I is the frequency associated with inner race failure, NB is the number
of rolling elements, D is the pitch diameter of the bearing, d is the diameter of the rolling
element, and ϑ is the operating angle of the bearing.

2.2. Methodology of the Conducted Experimental Research

The test bench (Figure 1) used for the experimental tests consisted of an INDUKTA
Sh90L-4 induction motor (Celma Indukta S.A., Cantoni Group, Cieszyn, Poland), which
was mechanically coupled to a PZB b44b DC external motor. Load control is achieved by
varying the motor arm current at a constant excitation current. A triaxial accelerometer
type 4506-B-003 placed on the counter-drive side and a uniaxial sensor type 4514-001
placed on the drive side were used to measure mechanical vibrations. The measured
diagnostic signal in the form of a voltage signal was fed directly to a National Instruments
measurement card. A single measurement was performed in 10 s with a sampling rate
of 50 kHz, which ensured a high resolution of the spectrum. Based on the measurements
performed on the object, the measured signal was measured and processed. For this
purpose, a measurement and diagnostic application was developed in the LabVIEW 2019
and MATLAB 2022a environments.
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Figure 1. Diagram of the test bench. 

Figure 1. Diagram of the test bench.

Two bearings from SKF 6205-Z are mounted in the engine under study, the design
dimensions of which are shown in Table 1. During the tests, the damaged bearings were
mounted on the counter-drive side. The classification and photos of all the damages tested
are shown in Figure 2. The following types of damage were investigated for the outer and
inner races:

• Longitudinal scratch at a length of 3 mm;
• A spot indentation 1 mm deep;



Electronics 2024, 13, 1722 5 of 18

• Two spot indentations 1 mm deep;
• Transverse scratch.

Table 1. Dimensions of construction of the SKF 6205-Z bearing.

Bearing Element Description Value Unit

Diameter of the rolling element d 8 mm
Bearing pitch diameter D 39 mm

Number of rolling elements NB 9 -
Bearing operating angle ϑ 0 ◦
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Figure 2. Classification of damage to the bearing analyzed.

The conduct of tests for different stages of damage made it possible to assess the
effectiveness and precision of the proposed solution for the initial and advanced stages
of the mechanical degradation of the bearing. For each of the types of damage analyzed,
measurements were carried out for the operation of the induction motor under different
load conditions (in the range of 0–TLN). Additionally, to compare the effect of an external
machine mechanically coupled to the motor under study, measurements were made in
the absence of this coupling. This eliminated the situation in which the auxiliary machine
asymmetry was transferred to the test machine. To analyze the impact of individual rolling
bearing failures, a spectral analysis of mechanical vibrations was carried out. The results of
the analysis are presented in the next section.

2.3. Spectral Analysis of Mechanical Vibration Signal

The algorithm to calculate the envelope of a signal involves averaging it with a
bandpass filter with an appropriately selected bandwidth, then using the Hilbert function,
an analytical signal is calculated, the absolute value of which is the envelope signal [49].

The band selection was determined by the technique provided by the bearing manu-
facturer (Bruel&Kjaer, Nærum, Denmark). For the induction motor used in the research
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work, used to install the bearing node described in the manufacturer’s documentation,
the frequency was determined experimentally as 1600 Hz. It should be emphasized that
the bandwidth was individually determined for each machine based on experimental
measurements of the natural frequency of the bearing node. By filtering the signal and
averaging it, it is possible to remove interference that can interfere with the extraction of
the symptoms of the damage under study.

A comparison of the frequency spectrum of the envelope for an undamaged bearing
and four different types of damage at a load equal to half the rated load and a rotational
speed of 1450 rpm is shown in Figures 3–6. For each of the cases studied, it is possible to
extract the characteristic frequencies of the damage. However, during the frequency analy-
sis of the signal, the accuracy of the analysis is affected by the resolution of the spectrum
under study. This parameter depends on the number of samples of the measured signal,
that is, the sampling frequency and the measurement time. To increase the resolution of
the spectrum at a constant sampling frequency, it is necessary to increase the measurement
time. However, an important limitation is that the measurement must take place under
constant load conditions and supply voltage frequency (steady state). This makes signal
analysis methods based on the fast Fourier transform unsuitable for applications in which
the operating conditions of the drives under testing change dynamically [50].
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3. Bearing Fault Detection and Classification System Based on a Convolutional
Neural Network

Convolutional neural networks (CNNs) are currently being used in an increasing
number of applications due to their high precision in automatic data analysis. Initially, they
were used mainly in image processing, but with the appropriate signal transformations,
they are increasingly finding widespread use in electrical machine diagnostics, among other
applications. With the ability to directly analyze diagnostic signals, CNNs are defining
increasingly abstract sets of features, enabling the generation of high-level patterns and,
ultimately, allowing appropriate signal classification. The performance of the structure is
strongly dependent on many factors, including the input signal, the selected number of
layers, and appropriately selected hyperparameters, which affect not only the accuracy
of the structure’s performance, but also the processing time of the input information, so
optimizing the structure and the parameters of the training process is an important step in
the development of a diagnostic application.

3.1. Development of Deep Network Input Information

The operation of the convolutional structure forces the processing of input information
in the form of a two- or three-dimensional matrix (Figure 7). Therefore, the appropriate
processing of diagnostic signals is aimed at making optimal use of the properties of CNN.
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The diagnostic approach proposed in the article used signals recorded from a triaxial sensor.
Given this, the collected data included three time series for the X, Y, and Z axes, respectively.
In each measurement series, 1000 samples were recorded, which corresponded to a signal
acquisition time of 0.02 s. The vectors were then transformed into a 25 × 40 matrix. The use
of such a matrix shape allows the use of filters in convolution layers with small dimensions.
In addition, the developed structure does not require the use of the zero-padding technique.
Thus, the entirety of the detected simple and higher-order features is taken into account in
the final classification.
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An equally important aspect of preparing the signals for input to the CNN was
the normalization of vectors containing samples of the measured mechanical vibrations.
Overestimated values affect the updates of the network weights and significantly increase
computation time, and thus training time. This fact is due to very large gradient jumps
known in the literature as an “exploding gradient.” In the final stage of processing, the
data were combined into a 3D matrix, and in this form, they were fed to the input of the
structure. In total, 19,500 samples were collected (1500 cases for each of the 13 damage
categories). The developed data set was randomly divided into three packages (keeping
the same number of samples in the considered class):

• Training package used in the training process,
• Validation package used to analyze the stability of the learning process and avoid loss

of generalization (analysis of learning curves),
• Testing package used to determine the additional precision coefficient of the network

(after the training process).

Table 2 shows the exact distribution of data allocated to the training, validation, and
testing processes for each piece of damage under investigation, where the sets were chosen
to contain different loads, from 0 to nominal in 20% increments. This was done to ensure
the good generalization of the network being trained.

Table 2. Summary of the number of samples for each type of damage and process.

Type of Fault
Number of Samples (Cases)

Training Validation Test

No fault 500 500 500

Inner race 2500 2500 2500

Outer race 2500 2500 2500

Rolling element 500 500 500

Cage 500 500 500

Summary 6500 6500 6500
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3.2. Development of Deep Network Structure

CNNs are steadily gaining popularity due to their ability to use raw data in the classi-
fication process. Their architecture in general usually includes layers such as a convolution
layer, which is responsible for converting the provided data into new information with a
higher degree of abstraction, a pooling layer, which is responsible for selecting the infor-
mation created in the convolution layer, thus leading to a reduction in the dimension of
the data, and a fully connected layer, which is ultimately responsible for classifying the
input data based on the features detected by the convolution layers. However, the pro-
posed CNN structure also includes additional layers to ensure the restoration of non-linear
dependencies and the stabilization of the training process (Table 3).

Table 3. Parameters of the convolutional neural network structure used.

Parameter Name Parameter Value Structure Scheme

Number of convolution layers 3
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Number of filters 20-40-60
Dimension of filters 5 × 5

Stride (1 × 1), (2 × 2), (2 × 2)
Number of normalization layers 3

Value of the coefficient ε 0.001
Number of activation layers 3

Activation function ReLU
Number of pooling layers 3

Pooling method maximum
Window size 3 × 3

Stride (1 × 1), (2 × 2), (2 × 2)
Dropout probability 0.5

Number of fully connected layers 2
Number of fully connected neurons (60), (13)

• Convolution layer: Consisting of a set of different filters, each of which is responsible
for extracting a different selected feature (by tuning the window parameters). The
filter window determines the output features using a convolution operation of the
filter g and the set h to which the filter is applied:

C = g[x, y] ∗ h[x, y] = ∑
i

(
∑

j
(g[i, j]·h[x − i, y − j])

)
(5)

where C is the resulting matrix of higher-order features found with the selected filter.
• Batch normalization layer: Used to speed up the network training process and increase

accuracy by reducing the internal variation of the data range. During the training
process, the mean and standard deviation are calculated for each mini-packet and
provide the normalization of the convolution layers’ weighting factors to the 0–1 range.

• Activation function: Ensures that the network correctly reproduces non-linear relation-
ships. For CNNs, the most commonly used activation function is the Rectified Linear
Unit (ReLU). ReLU is most commonly used because of the simplicity of calculating
both the result and the derivative, which accelerates the training process.

• The pooling layer: Determines which information is useful in context to evaluate the
class of the input matrix. In addition, it allows the dimensionality of the data to be
reduced, leading to lower computing power requirements and improved generaliza-
tion capabilities.

• Dropout layer: involves removing selected neural connections at the input of the first
fully connected layer, which allows one to speed up the training process and, above
all, to make the state of individual neurons independent of each other (improving
generalization ability).
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• Fully connected layer: Is responsible for determining the contribution of matrix fea-
tures to the final evaluation of category membership. The most common way to use the
final classification is to use the softmax function, which determines the probabilities of
a given input belonging to each of the analyzed classes.

3.3. Convolutional Neural Networks—Training Process Hyperparameters

One of the most commonly used algorithms in the training process is stochastic
gradient descent (SGD), which is characterized by calculating an averaged gradient for
individual mini-batches of learning data. However, a limitation of the SGD algorithm is the
high variance of the gradient update, which can lead to slow convergence (getting stuck
at the local minimum or the so-called saddle). A popular enhancement to this algorithm
is the addition of a “momentum” factor, which introduces gradient-matching adaptation
by referring to the history of gradient changes in earlier learning iterations (Table 4). This
extension is referred to as stochastic gradient descent with momentum (SGDM), which
allows not only for the better convergence of the network learning process, but also for
bypassing local minima of the objective function. According to the SGDM algorithm, in
each iteration, the average gradient was determined for 90 randomly selected samples
(mini-batch) from the entire training data set. The number of iterations was selected so that
all training data samples were presented at each epoch. Moreover, after the end of each
epoch, the mini-batch was shuffled, thanks to which the gradient was averaged based on
different samples. Updates to network parameters are based on the following formula.

θt+1 = θt − vt+1 (6)

where
vt+1 = µ·vt + η·∇J(θt) (7)

and where θt is the network parameters in step t, ∇J is the gradient of the objective function,
η is the learning rate, vt is the velocity vector in step t, and µ is the momentum factor.

Table 4. Parameters of the CNN training process.

Parameter Name Parameter Value

Learning method SGDM
Momentum value 0.95

Initial value of learning rate 0.002
Number of learning epochs 500

Decreasing period 10
Input matrix size 25 × 40

Execution environment GPU
Mini-batch size 90

Size of training data set 6500
Number of considered classes 13

4. CNN-Based Diagnostic System for Bearing Faults

Fault diagnostic systems that use direct signal processing are characterized by an
extended structure compared to classical solutions. The extensive network architecture
enables the extraction of the characteristics of the input matrices for assignment to one
of the damage categories considered. Deep neural networks are distinguished by their
lack of formal rules for the selection of network hyperparameters, so these structures in
diagnostic applications are often too extensive. Therefore, it is important to optimize the
number of neuronal connections. Of key importance for a CNN is the selection of the
number of filters that perform the function of extracting the features of the input matrix.
The applications of deep neural networks in electrical motor diagnostics encountered in
the literature are characterized by the large number of filters that significantly increase
the number of parameters required for adaptation during the training process. Another
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approach described in the literature is the use of pre-trained structures developed for
image recognition tasks such as AlexNet, RespNet, and GoogLeNet. The result of the
elaborate structure is a significant lengthening of the process of the adaptation of weighting
factors of convolutional layers. To eliminate this phenomenon, the research assumed a
minimum precision threshold of the network with the selection of parameters dedicated
to the development of the smallest possible structure that achieves the assumed efficiency
threshold. Moreover, it is important to adapt the structure of the deep network to the
changing conditions of the training process such as available data packets. Only in the
absence of a strict dependence on the precision of the diagnostic system on the size and
quality of the available information is it possible to ensure correct fault detection [51].
During the experimental study, structures with three convolutional layers and one classifier
layer were analyzed. The process was limited to changing the number of filters of three
convolutional layers. Optimization included the amount of information that went to the
classifier, which allowed the input matrix to be properly assigned to a class. A total of
125 deep convolutional network structures were analyzed (changing the number of filters
in each layer from 20 to 100 with a step of 20). For each of the analyzed structures, the
number of neural connections, the number of parameters required for tuning, as well as
the training time, and the final precision achieved for the test data were determined. To
analyze the accuracy of the training process, the impact of available training data on the
precision of the bearing damage detection system was determined. Research included the
use of variable sizes of training samples from the available data package in the process of
adapting the weight coefficients of the network. To show the influence of the amount of
information (λ coefficient: training data size/training packet in percent) on the effectiveness
of fault classification, the same CNN structure was used in each case. The research used
a range of coefficient changes from 5% to 49% with a 2% step of change. The results
of the conducted analyses are presented in Figure 8b. The test results are shown in the
dependence of the network’s accuracy on the number of its parameters in the figure below.
As can be seen in Figure 8a, increasing the number of parameters does not necessarily
translate into an increased accuracy of network performance. In addition, outlier samples
are observed which, despite an increase in the number of neural connections, did not result
in correct adaptation. Nevertheless, the trend of changes allows a limited increase in the
precision of the damage class assessment. This means that the choice of network parameters
should be a compromise between the number of parameters and the assumed minimum
precision of the detection system. Therefore, in further studies, out of the 125 structures
analyzed, those selected were the ones that met the assumed quality criterion with the
lowest possible number of neural connections. Moreover, the research has shown that
the use of a training data package containing over 25% of available samples provides less
than a 99% level of damage classification precision (Figure 8b). This means that despite
the available information obtained as a result of a short acquisition time, it is possible
to develop sufficient sets of training data. Moreover, the high efficiency for the variable
conditions of the training process (available data) confirms the high quality of the automatic
extraction of damaged features directly visible in mechanical vibration signals.

The classification performance was determined based on a data set that contained
samples for 13 categories (Appendix A) with a total dimension of 6500 cases. Based on the
results of neural computations for 125 CNN structures, those that met certain assumptions
regarding the precision of damage classification were selected (Table 5).

The juxtaposition of the obtained results presented in Table 5 allows us to observe that
as the number of neuronal connections increases, the ability of the structure to recognize
individual classes of damage increases. However, achieving a precision of more than 99.8%
requires the use of a much more extensive structure with a large number of convolution
filters. However, it should be emphasized that the training time did not increase with
increasing network parameters. This fact is related to the much simpler extraction of
features from the input matrix with an increased number of filters. The elaboration of
universal features contained in the input information by a CNN structure with a small
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number of neural connections requires greater precision in the selection of the network’s
weighting coefficients. Given this, the process is limited by the need to adjust the learning
rate to values that allow for small changes in the weights of the network connections. This
problem does not occur in structures with a much larger number of filters that enable the
memorization of many features of the input matrix. Taking into account the implementation
of CNN in programmable systems, it is crucial to provide as small several parameters as
possible to ensure a high level of efficiency. Therefore, the adjustment of the precision
threshold should be closely related to the task implemented by the neural structure.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 19 
 

 

Figure 8a, increasing the number of parameters does not necessarily translate into an in-

creased accuracy of network performance. In addition, outlier samples are observed 

which, despite an increase in the number of neural connections, did not result in correct 

adaptation. Nevertheless, the trend of changes allows a limited increase in the precision 

of the damage class assessment. This means that the choice of network parameters should 

be a compromise between the number of parameters and the assumed minimum precision 

of the detection system. Therefore, in further studies, out of the 125 structures analyzed, 

those selected were the ones that met the assumed quality criterion with the lowest possi-

ble number of neural connections. Moreover, the research has shown that the use of a 

training data package containing over 25% of available samples provides less than a 99% 

level of damage classification precision (Figure 8b). This means that despite the available 

information obtained as a result of a short acquisition time, it is possible to develop suffi-

cient sets of training data. Moreover, the high efficiency for the variable conditions of the 

training process (available data) confirms the high quality of the automatic extraction of 

damaged features directly visible in mechanical vibration signals. 

 
(a) 

 
(b)  

Figure 8. Dependency of network accuracy on (a) the number of its parameters and (b) the training 

set size: λ = training data size/training packet. 

The classification performance was determined based on a data set that contained 

samples for 13 categories (Appendix A) with a total dimension of 6500 cases. Based on the 

results of neural computations for 125 CNN structures, those that met certain assumptions 

regarding the precision of damage classification were selected (Table 5). 

Table 5. Summary of selected CNN structures. 

Assumed 

Accuracy 

Achieved 

Accuracy 

Convolutional Layers CNN Learnable 

Parameters 
Training Time [s] 

1 Layer 2 Layers 3 Layers 

90.0% 96.323% 20 20 40 5071 1281 

92.0% 96.323% 20 20 40 5071 1281 

94.0% 96.323% 20 20 40 5071 1281 

96.0% 96.323% 20 20 40 5071 1281 

98.0% 98.185% 20 40 60 7203 1246 

99.0% 99.062% 20 60 80 9535 1212 

99.5% 99.569% 20 80 60 9815 1279 

99.8% 99.815% 80 20 20 64,413 1263 

99.9% 99.908% 100 20 80 127,753 1256 

Figure 8. Dependency of network accuracy on (a) the number of its parameters and (b) the training
set size: λ = training data size/training packet.

Table 5. Summary of selected CNN structures.

Assumed
Accuracy

Achieved
Accuracy

Convolutional Layers CNN Learnable
Parameters

Training Time
[s]1 Layer 2 Layers 3 Layers

90.0% 96.323% 20 20 40 5071 1281
92.0% 96.323% 20 20 40 5071 1281
94.0% 96.323% 20 20 40 5071 1281
96.0% 96.323% 20 20 40 5071 1281
98.0% 98.185% 20 40 60 7203 1246
99.0% 99.062% 20 60 80 9535 1212
99.5% 99.569% 20 80 60 9815 1279
99.8% 99.815% 80 20 20 64,413 1263
99.9% 99.908% 100 20 80 127,753 1256

In the neural calculations implemented, the network structures with a variable number
of parameters in the range were analyzed: 4245–545,253. Of particular note, the highest
precision of the neural structure (99.923%) was obtained for a network with 207,493 pa-
rameters, which is less than half of the analyzed range. Expanding the number of neural
connections twice (545,253 parameters) did not result in such high precision (99.877%).
Furthermore, increasing the number of parameters beyond 12,000 in the described diag-
nostic application resulted in a maximum increase in the classification precision of 0.25%.
Therefore, increasing the network architecture should only be done up to a certain range,
where a clear increase in efficiency due to an increase in the number of tuneable parameters
is observable. In practical applications, the process of parameter selection is carried out
while observing learning curves for the test data. Example waveforms of the curves for the
structures described in Table 5 are shown in Figure 9.

The analysis of the learning curves shown in Figure 9 clearly shows a much higher
level of precision of the diagnostic system based on extended structures. However, the
analysis makes it possible to observe that regardless of the structure used, the training
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process converges. As the number of neuronal connections increases, a reduced level of
oscillation of the learning curves for testing data is noticeable. In addition, in the case of a
reduced structure (red color), much lower dynamics of the learning process were observed.
This means that the structure requires a larger number of epochs to tune the classifier
parameters for the reduced number of diagnostic symptoms extracted from the convolution
layers. The approximation shown in Figure 9 allows us to see that increasing the structures
has an effect only up to a certain range, which confirms the results shown in Table 5.
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Concerning the importance of fault detection systems, the limitations associated with
the use of CNNs should be noted. The implementation of CNNs in the diagnostic system
results in difficulties in the form of a lack of formal rules for selecting hyperparameters
for the structure and training process, the need for large learning datasets capable of
providing automatic symptom extraction, the long process of training the network, the risk
of losing its generalization capability, and the time to compute the response depending on
the input information and network structure. However, these limitations were addressed
in the study by optimizing the network structure and using the hyperparameter selection
technique presented in [52]. Next, running the study on 1000 samples over a period, with a
measurement lasting 10 s and a sampling rate of 50 kHz, yielded 500 cases from a single
measurement, whereas using classical methods such as FFT would yield only one case; so,
despite the need for a large training data set, it was simple and quick to develop. Further,
the training process was optimized by using the SGDM algorithm based on mini-batches
of data to average the gradient (speeding up the learning process, compared to classical
approaches where usually the gradient is calculated for each sample separately), and the
network training itself was performed using a GPU, giving a training time of slightly
more than 20 min. Subsequently, the risk of losing the generalization of the network was
eliminated through several approaches: the use of a stochastic learning technique (giving
efficient exploration of the solution space and avoiding local minima), the analysis of
learning curves for training and validation data (which helps verify that the model does
not begin to over-fit the training data), and the use of a dropout layer (involving random
resetting of the neuron weights, which forces the network to learn more elaborate and
robust representations of the data). Finally, the study showed an average response time for
the optimized network of 0.03 s. This time can be considered constant due to the constant
size of the input matrix and the invariant number of operations performed on the network.
Additionally, the network response was further accelerated by optimizing the structure,
which in its smallest version has only 5071 parameters (with an accuracy of more than 96%,
Table 5).

To verify the performance of CNN in fault diagnostic application, the next stage of
the research concerns the analysis of the network’s response to test packets containing
samples obtained for the 13 classes. The responses of the developed neural structures were
summarized in the form of confusion matrices shown in Figure 10.
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NF—no fault, IR—inner race fault, OR—outer race fault, B—ball defect, C—cage defect.

The key task of diagnostic systems is to detect and evaluate the type of damage, while
the precise determination of the degree of the defect is a secondary function. Therefore,
in the first step, the responses of the network were analyzed in the form of division into
each category of damage: inner race (IR), outer race (OR), ball (B), and cage (C). In the
confusion matrices shown in Figure 10, the percentage effectiveness of the systems for each
of the categories considered was represented. On this basis, the initial verification of the
proposed structures was determined.

As can be observed in Figure 10, as the number of filters in each convolution layer
increases, the proportion of false information obtained in the CNN output decreases.
However, it should be emphasized that each of the structures presented, except for 20-20-40
(Figure 10a), was characterized by almost 100% defect detection precision, understood
as the recognition between defect and no-defect states. Furthermore, an increase in the
number of filters increased the effectiveness of the classification of the type of fault. Based
on the analysis of the results shown in Figure 10, as well as the number of parameters of the
structure (Table 5) and the analysis of the training process (Figure 9), it was decided that
the 80-20-20 structure should be used in further studies. This network was characterized
by a small number of parameters, a short weight adaptation time, and high detection and
classification precision. To verify the selected structure, tests were carried out, including
the classification of the type of defect and evaluation of the degree of rolling bearing
degradation. The results obtained for different loads are shown in Figure 11.

The experimental verification of the developed detection system based on a deep
neural network was carried out for defects of different kinds as well as degrees. As bearing
damage cannot be modeled during drive operation, the course of mechanical vibration
signals on the axis was artificially modeled by combining fragments of signals measured
on the real object. As a result, it was possible to determine the response time of the neural
structure to the occurrence of bearing damage.
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The analysis of the results of the experimental verification shown in Figure 11 un-
ambiguously confirms the high level of precision of the developed diagnostic method.
The selected structure of the convolutional neural network is characterized by the high
detection of damage and the assessment of the degree of fault. In addition, the short
response time to an emerging defect is particularly notable, even in the case of damage
at an early stage. Based on the analysis of CNN’s response to the given input matrix, an
average detection time of about 0.03 s was determined. As can be observed in Figure 11a,
the response of the system is delayed concerning the moment the defect disappears. The
fact is related to the presence in the input data buffer (data frame) of the samples charac-
teristic of the damage state. Due to this, the neural structure still has information on part
of the features attributable to the damage state. However, it should be noted that, from a
practical point of view, damage decay does not occur and this study aimed to assess the
response of CNN to dynamically changing input information. Only then is it possible to
determine the response time, as well as the resistance to changes in the technical state of
the bearing, and the operating conditions of the motor (load moment). The course of the
network response, shown in Figure 11b, makes it possible to notice the false information
about the technical condition of the bearings. An in-depth analysis of the CNN confirmed
that the cause of the anomalies that appear is the previously described method of modeling
mechanical vibrations. The use of a combination of diagnostic signal vectors results in the
lack of an unambiguous response of the network when the input data buffer is half full of
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samples characteristic of the fault condition and its absence. The response of the network
determined by the probability of belonging to one of the categories is then ambiguous.
However, in the practical implementation of the diagnostic system, such a situation will
not occur.

5. Conclusions

The proposed diagnostic approach based on CNN’s direct processing of mechanical
vibration signals in rolling bearing diagnostics is an alternative to current methods that
use advanced signal processing methods. Furthermore, the optimization of the neural
structure allowed the reduction of the number of parameters to the necessary minimum,
while ensuring a very high level of precision in the short time of damage detection and
classification. In addition, the developed diagnostic system was characterized by a high
sensitivity to a change in the degree of damage, so the application can be used in safety-
critical systems. Future research will include an investigation into the applicability of
current signals in rolling bearing damage diagnostics, which is not currently achievable
using classical diagnostic methods such as the short-time Fourier transform, the Hilbert–
Huang transform, etc. In addition, work on the application of a convolutional neural
network in the diagnosis of bearing damage during transients (start-up, braking, and
dynamic load changes) is planned to be carried out.
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Appendix A

Table A1. Description and designations of the investigated damages.

Type of Damage Label Parameters

Rolling element B Spot indentation 0.5–1 mm deep
Cage C Spot indentation 2 mm deep

Inner race

IR1 Spot indentation 1 mm deep
IR2 Spot indentation 1 mm deep
IR3 Two spot indentations 1 mm deep
IR4 Longitudinal scratch at a length of 3 mm
IR5 Transverse scratch

Outer race

OR1 Spot indentation 1 mm deep
OR2 Spot indentation 1 mm deep
OR3 Two spot indentations 1 mm deep
OR4 Longitudinal scratch at a length of 3 mm
OR5 Transverse scratch
NF No fault
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