
Citation: Shao, Y.; Yang, J.; Zhou, W.;

Sun, H.; Xing, L.; Zhao, Q.; Zhang, L.

An Improvement of Adam Based on a

Cyclic Exponential Decay Learning

Rate and Gradient Norm Constraints.

Electronics 2024, 13, 1778. https://

doi.org/10.3390/electronics13091778

Academic Editor: Alberto Fernandez

Hilario

Received: 11 April 2024

Revised: 26 April 2024

Accepted: 1 May 2024

Published: 4 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Improvement of Adam Based on a Cyclic Exponential Decay
Learning Rate and Gradient Norm Constraints
Yichuan Shao 1, Jiapeng Yang 2 , Wen Zhou 2, Haijing Sun 1,*, Lei Xing 3, Qian Zhao 4 and Le Zhang 1

1 School of Intelligent Science & Engineering, Shenyang University, Shenyang 110044, China;
shaoyichuan@syu.edu.cn (Y.S.); zhangle@syu.edu.cn (L.Z.)

2 School of Information Engineering, Shenyang University, Shenyang 110044, China;
yangjiapeng1024@outlook.com (J.Y.); zhouwend@outlook.com (W.Z.)

3 School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK;
l.xing@surrey.ac.uk

4 School of Science, Shenyang University of Technology, Shenyang 110044, China
* Correspondence: sunhaijing@syu.edu.cn

Abstract: Aiming at a series of limitations of the Adam algorithm, such as hyperparameter sensitivity
and unstable convergence, in this paper, an improved optimization algorithm, the Cycle-Norm-Adam
(CN-Adam) algorithm, is proposed. The algorithm integrates the ideas of a cyclic exponential decay
learning rate (CEDLR) and gradient paradigm constraintsand accelerates the convergence speed
of the Adam model and improves its generalization performance by dynamically adjusting the
learning rate. In order to verify the effectiveness of the CN-Adam algorithm, we conducted extensive
experimental studies. The CN-Adam algorithm achieved significant performance improvementsin
both standard datasets. The experimental results show that the CN-Adam algorithm achieved 98.54%
accuracy in the MNIST dataset and 72.10% in the CIFAR10 dataset. Due to the complexity and
specificity of medical images, the algorithm was tested in a medical dataset and achieved an accuracy
of 78.80%, which was better than the other algorithms. The experimental results show that the
CN-Adam optimization algorithm provides an effective optimization strategy for improving model
performance and promoting medical research.

Keywords: deep learning; cyclic exponential decay learning rate; gradient paradigm constraints;
Adam algorithm; CN-Adam algorithm

1. Introduction

With the rapid development of deep learning, the importance of optimization algo-
rithms in training neural networks is increasing. Choosing an appropriate optimization
algorithm is crucial for the training speed and performance of a model. In current deep
learning practice, the Adam optimization algorithm is widely used, which has the advan-
tages of fast convergence and good generalization performance. However, optimization
algorithms like the Adam algorithm have some drawbacks, such as sensitivity to the learn-
ing rate and selection of hyperparameters. In order to solve this problem, researchers
have started to improve the Adam algorithm regarding different aspects. To optimize the
learning rate, Yiming Jiang et al. [1] proposed the UAdam algorithm, which introduces
a generalized second-order momentum form. An increase in the parameter β leads to a
decrease in the convergence neighborhood, and by adjusting β, the convergence perfor-
mance of the algorithm can be controlled. Liu et al. [2] proposed the RAdam algorithm to
enhance the optimization algorithm’s performance by analyzing the impacts of changes
and momentum during training. Wei Yuan [3] later proposed the EAdam algorithm, which
outperforms the Adam algorithm by adjusting the position of the constant ε. Addition-
ally, Mingrui Liu et al. [4] proposed the Adam-plus algorithm, which utilizes an adaptive
step size based on the first-order momentum estimation paradigm, resulting in reduced

Electronics 2024, 13, 1778. https://doi.org/10.3390/electronics13091778 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091778
https://doi.org/10.3390/electronics13091778
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0004-6631-1941
https://doi.org/10.3390/electronics13091778
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091778?type=check_update&version=2

Electronics 2024, 13, 1778 2 of 14

parameter tuning. Ilya Loshchilov [5] proposed two algorithms: AdamW and AdamWR.
AdamWR is a variant of the Adam algorithm that corrects the weight decay problem in the
algorithm, while AdamW is a variant of Adam with thermal restart. Lei Guan [6] proposed
the Adaplus algorithm, which combines the advantages of Nesterov momentum and exact
step-size adjustment. Adaplus is based on AdamW, which combines the advantages of
the NAdam [7] and AdaBelief [8] algorithms and does not introduce additional hyper-
parameters. Juyoung Yun [9] proposed the StochGradAdam algorithm, which utilizes
selective gradient considerations for more reliable convergence. Zhang et al. [10] combined
the warmup and cosine annealing algorithms to enhance the performance of the Adam
algorithm in deep learning. Meanwhile, researchers have made improvements in the area of
differential privacy. Qiaoyue Tang et al. [11] proposed the DP-Adam algorithm, which adds
DP (differential privacy) noise that does not affect the first moment but adds a constant
bias to the second moment. Qiaoyue Tang et al. [12] proposed the DP-AdamBC algorithm,
which removes the bias in the estimation of the second moment and restores the desired
behavior of the Adam algorithm. Lu Xia et al. [13] proposed the AdamL algorithm, which
considers the information of the loss function to obtain a better generalization performance
during optimization. In addition to other algorithms that enhance traditional optimization
methods by introducing new techniques or combining multiple optimization methods,
Kavosh Asadi et al. [14] found that resetting the optimizer improves performance and
stability during the training process. Sebastian Bieringer et al. [15] proposed the AdamM-
CMC algorithm, which, unlike the traditional Adam algorithm, utilizes Markov chain
Monte Carlosampling from the posterior distribution to provide a more reliable estimate
of uncertainty. The Adan [16] algorithm utilizes a new Nesterov momentum estimation
(NME) method to estimate the first- and second-order moments in an adaptive gradient
algorithm, accelerating convergence. Yichuan Shao et al. [17] proposed a lightweight,
multi-scale neural network for detecting steel surface defects, addressing the shortcomings
of the Adam algorithm in terms of convergence speed and generalization ability. Later, they
developed a novel method for detecting dust on PV panel surfaces based on Pytorch [18].
Deep learning techniques have been increasingly utilized in healthcare. Gupta et al. [19]
employed these techniques to segment brain tumors. Lisa Y.W. Tang [20] utilized a con-
volutional network to classify the severity of hairy glass-like cloudy opacity. Bhoj Raj
Pandit [21] employed a convolutional neural network pooling layer multi-space image and
the Adam algorithm for optimization to enhance the overall accuracy and predict lung
cancer. Loris Nanni [22] proposed two DGrad-based deep networks to optimize the new
Adam algorithm and introduced a scale factor in the learning rate to test the dataset for
medical image classification.

This study focused on providing insight into the challenges faced by the Adam
algorithm in terms of convergence. We found that while the Adam algorithm performs
well in many cases, its performance may suffer in specific situations, such as when the
dataset is highly correlated or when the learning rate decay is not appropriately set. By
delving into these challenges, we aimed to reveal the limitations of the Adam algorithm and
propose improvements to enhance its performance and stability in various situations. This
study proposes a new optimization algorithm called Cycle-Norm-Adam (CN-Adam). The
CEDLR algorithm aims to periodically adjust the learning rate to jump out of local optima
and accelerate convergence. By periodically adjusting the learning rate during training,
the CEDLR algorithm helps the optimization algorithm to explore more extensively in the
search space, thus making it more likely to find the global optimum or a better solution. This
periodic adjustment of the learning rate makes the algorithm better able to adapt to different
data distributions and model structures, thus improving the efficiency and performance of
the optimization algorithm. In addition, a gradient paradigm constraint is used to limit the
size of the normalized gradient. Its main function is to prevent the problem of exploding or
vanishing gradients, thus improving the stability of the optimization algorithm. By setting
the threshold of the gradient paradigm number, the gradient paradigm constraint ensures
that the size of the gradient is always kept within a reasonable range, avoiding the problems

Electronics 2024, 13, 1778 3 of 14

that may be caused by a gradient that is too large or too small, such as unstable training or
failure to converge. Combining both techniques, the CN-Adam algorithm performs well in
deep learning and provides a feasible optimization strategy for solving practical problems.

2. CN-Adam Algorithm Design
2.1. Adam Optimization Algorithm

The Adam optimizer is an optimization algorithm that combines the momentum
method and the adaptive learning rate property [23] to train neural networks and optimize
objective functions. The core idea is to dynamically adjust the learning rate based on
the gradient profile of each parameter, as well as to accelerate convergence using the
momentum term. The Adam algorithm optimizes the parameters by maintaining first-order
and second-order moment estimates for each parameter. When updating the parameters,
Adam combines the two estimates and performs bias corrections to ensure that the initial
stage estimates are unbiased. The Adam optimizer also employs a technique known as
exponential moving average to compute first-order moment estimates and second-order
moment estimates of the gradient. By using exponential moving average, Adam is able
to efficiently aggregate and update historical gradient information to better reflect the
optimization direction of the parameters. In addition, the Adam algorithm is adaptive
in that it can automatically adjust the size of the learning rate to the specifics of each
parameter, which is particularly useful when dealing with parameters with different
gradient distributions.

In each iteration, the gradient of the loss function with respect to the parameters is
calculated using Equation (1).

gt = ∇θ ft(θt) (1)

The parameter vector θt is updated each time. gt represents the loss function of the
neural network in the t-th iteration, while gt = ∇θ ft(θt) represents the gradient of the
loss function of the neural network with respect to the parameters in the t-th iteration.
The first-order and second-order moment estimates in the Adam algorithm represent the
moving average of the first-order and second-order of the gradient. These estimates are
calculated as shown in Equations (2) and (3).

mt = β1mt−1 + (1− β1)gt (2)

vt = β2vt−1 + (1− β2)g2
t (3)

The variable β1 is used to control the contribution of past gradients to the current
estimate. Specifically, β2 is used to control the contribution of squared past gradients to the
current estimate.

The Adam optimization algorithm introduces a bias correction mechanism to address
potential bias in the first-order moment estimates and second-order moment estimations
when the decay rate is very small in the initial stage. The computation of bias correction is
shown in Equations (4) and (5).

m̂t = mt/(1− βt
1) (4)

v̂t = vt/(1− βt
2) (5)

The update of parameter θ after each iteration is computed according to Equation (6).

θt+1 = θt −
lr√

vt + ε
· m̂t (6)

where lr is the learning rate, and ε is a small positive number to avoid a zero denominator.
One of the drawbacks of the Adam optimizer is its sensitivity to the learning rate.

Although it is able to adaptively adjust the learning rate for each parameter, sometimes
this adaptivity may cause the learning rate to decay too quickly during training, thus

Electronics 2024, 13, 1778 4 of 14

affecting the convergence performance. In addition, since the Adam algorithm performs
second-order moment estimations of the gradient, this makes it potentially underperform
when dealing with non-smooth objective functions, especially when the gradient varies
over a wide range or the objective function is highly non-convex. Therefore, when applying
the Adam optimizer, attention needs to be paid to its sensitivity to the learning rate and
gradient, as well as the instability and degradation of the convergence performance that
may occur in specific scenarios.

2.2. Cyclic Exponential Decay Learning Rate

Cyclical learning rate (CLR) is a method for optimizing the training process of neural
networks, originally proposed by Leslie N. Smith [24]. The algorithm introduces the concept
of periodically adjusting the learning rate. Unlike traditional learning rate scheduling
methods, cyclical learning rates allow the learning rate to fluctuate periodically during
the training process, rather than remaining fixed or decaying linearly. This periodically
adjusted learning rate strategy adds greater flexibility and dynamics to the model training.
During training, the cyclical learning rate cause the learning rate to periodically fluctuate
within a predefined range, thus allowing the model to use different learning rates at
different training stages. This flexibility allows the model to better adapt to different data
distributions and complexities, thus improving the generalization ability of the model. In
addition, cyclical learning rate can help the model jump out of the local optimal point and
find the global optimal solution faster. Although cyclical learning rate needs to adjust some
hyperparameters to define the period and range of the learning rate, they have proventheir
effectiveness and superiority in many practical applications.

Triangular mode is the most commonly used mode in cyclical learning rate algorithms,
where the learning rate periodically fluctuates over a fixed range, forming a triangular
waveform. In this mode, the learning rate is first increased to a maximum value and then
gradually decreased to a minimum value before repeating the process. The calculation of
the triangular pattern with respect to the learning rate is shown in Equation (7).

lr_delta = lr_base + (lr_max− lr_base) ·max(0, 1− | iteration
step_size

− 2 · cycle + 1|) (7)

where lr_delta is the current learning rate. lr_base is the minimum value of the learning
rate during the change process. lr_max is the maximum value of the learning rate during
the change process. step_size is half the cycle length. iteration is the number of parameter
updates.

The cyclic exponential decay learning rate (CEDLR) method used in this paper was
different from the traditional cyclical learning rate calculation method to calculate the
learning rate. In this study, the calculation of the algorithm was modified, and the formulas
are shown in Equations (8)–(11).

cycle = math. f loor(1 + state[‘step′]/(2 ∗ step_size)) (8)

x = |state[‘step′]− 2 · cycle + 1| (9)

lr = lr_base + (lr_max− lr_base) ·max(0, 1− | state[‘step′]
step_size

− 2 · cycle + 1|) (10)

lr_delta = lr · gammastate[‘step′] (11)

where lr_delta is the current learning rate, lr_base is the minimum value of the learning rate
during the change process, and gamma is the decay coefficient. lr_max is the maximum
value of the learning rate during the change process, cycle indicates the current cycle of the
loop, state[‘step′] is the total number of parameter updates throughout the training process
of the model, and step_size is half the cycle length.

By comparing Formulas (8)–(11), it is evident that the calculation methods for iterations
and state [‘step’] are completely different. The calculation method in the original paper

Electronics 2024, 13, 1778 5 of 14

updates parameters in each epoch by dividing the total number of samples by the batch size
and rounding up. This means that multiple parameter update operations will be performed
in each epoch, and each update is considered a new iteration. In this paper, the state [‘step’]
can determine the current training process based on its value and then adjust the learning
rate as needed. The important advantage of using state [‘step’] as the global step count is
that it is an internal property of the optimizer, directly associated with the step count of
parameter updates. This makes it more suitable as a benchmark for learning rate schedulers,
as it ensures that the adjustment of learning rates is consistent with parameter updates.

By periodically adjusting the learning rate, the model can be explored and exploited
at different learning rate levels during the training process, which helps to avoid falling
into local optimal solutions. The exponential decay allows the learning rate to gradually
decrease in the later stages of training, which helps to improve the convergence and
generalization ability of the training. Taken together, this learning rate calculation method
is able to provide appropriate learning rates for the model at different stages, which speeds
up the training process and improves the model’s performance.

2.3. Gradient Norm Constraint Strategy

The gradient norm constraint strategy limits the size of the overall gradient vector by
setting a threshold for the maximum number of gradient norms, thereby controlling the
magnitude of parameter changes during each update. This constraint helps to prevent the
excessive adjustment of model parameters and improve the stability and generalization
ability of the model during training. It plays a significant role in the entire algorithm.

One of the advantages of a gradient paradigm constraint is that it prevents gradient
explosion and gradient vanishing. In deep neural networks, due to the large number of
network layers and the choice of activation function, the gradient may grow or decay expo-
nentially in the back-propagation process, which will affect the stability and convergence of
the model. The size of the gradient can be effectively controlled by the gradient paradigm
constraint, thus stabilizing the training process of the model. The gradient paradigm
constraint calculation formula is defined as shown in Equation (12).

grad =

grad· grad_norm_constraint

||grad|| ,i f ||grad||>grad_norm_constraint

grad, otherwise

(12)

where grad denotes the original gradient vector, ||grad|| denotes the gradient vector’s
paradigm, and grad_norm_constraint denotes the threshold of the gradient paradigm.

Equation (12) states that before performing the gradient update, the magnitude of the
gradient vector is calculated. If the magnitude exceeds a set threshold, the vector is scaled
to match the threshold. Otherwise, the original gradient vector remains unchanged.

Gradient norm constraints also help improve a model’s ability to generalize. Ex-
cessive gradients can lead to the over-fitting of the model to the training data, and the
gradient norm constraint defined in this article limits the size of model parameter updates.
When combined with the learning rate modified by state [‘step’], the experimental results
demonstrate an accuracy that is 3.61% and 6.4% higher than that of the Adam algorithm,
particularly in the CIFAR10 and Medical datasets.

2.4. CN-Adam Algorithm

The Adam optimizer may lead to unstable training or slower convergence at higher
learning rates. This is mainly because the learning rate adjustment mechanism of the Adam
optimizer cannot adapt well to the needs of different learning rate parameters. Its learning
rate adjustment mechanism has limited flexibility. To solve this problem, an improved
CN-Adam algorithm is proposed with the following procedure.

Initialization: The initial learning rate lr, the minimum learning rate lr_base, and the
maximum learning rate lr_max are set;the first-order momentum and the second-order

Electronics 2024, 13, 1778 6 of 14

momentum are initialized as zero vectors; and the number of steps per complete cycle
step_size is set to 1400.

Cyclic exponential decay learning rate phase: The learning rate gradually increases to
a maximum value for a specified number of steps and then gradually decreases. The current
number of training steps and the cycle size determine the current cycle position, which is
adjusted according to the position and the pre-set minimum and maximum learning rates
according to Equations (8)–(11).

The gradient paradigm constraint phase: The first step is to check whether the gradient
exceeds the set threshold. If it does, it may lead to unstable training. To stabilize the training,
the gradient is constrained, usually by a scaling operation to ensure that it does not exceed
the threshold. The scaling operation is performed by multiplying a scaling factor that
controls the gradient’s size, improving the training stability and convergence speed.

The first-order momentum and second-order momentum of the bias is computed for
parameter updates. The Adam optimization algorithm’s update rules are used, along with
bias correction terms. To prevent gradient explosion, gradient paradigm constraints are
applied. The parameter values are updated using the updated gradient and bias correction
term. Once the parameters are updated, the current gradient is saved as the last gradient to
be used in the next iteration.

The cyclic exponential decay learning rate algorithm can automatically adjust the
learning rate to promote faster convergence and better generalization of the model. The
cyclic exponential decay learning rate algorithm has high adaptability and dynamically
adjusts the learning rate based on the performance of the model during training, which
helps to avoid gradient explosion or vanishing problems. Combined with the proposed
gradient paradigm constraints, it can help control the size of gradients and prevent the
occurrence of gradient explosion problems. By combining the two, the optimizer can be
optimized to appear more stable, as shown in Algorithm 1.

Algorithm 1 CN-Adam

1: Input: initial point x0, first moment decay β1, second moment decay β2, regularization constant ε

2: Initialize m0 and v0 = 0, lr,lr_base,lr_max,step_size,gamma,grad_norm_constraint
3: For 0 to step_size do
4: gt = ∇θ ft(θt)
5: mt = β1mt−1 + (1− β1)gt
6: vt = β2vt−1 + (1− β2)g2

t
7: m̂t = mt/(1− βt

1)
8: v̂t = vt/(1− βt

2)
9: cycle = math. f loor(1 + state[‘step′]/(2 ∗ step_size))
10: x = |state[‘step′]− 2 · cycle + 1|
11: lr = lr_base + (lr_max− lr_base) ·max(0, 1− | state[‘step′]

step_size − 2 · cycle + 1|)
12: lr_delta = lr · gammastate[‘step′]

13: While lr_delta = lr · gammastate[‘step′] do
14: If lr > lr_max or lr < lr_base
15: end while
16: If ||grad|| > grad_norm_constraint
17: grad← grad· grad_norm_constraint

||grad||
18: xt = xt−1 − lrm̂t/(

√
v̂t + ε)

19: end for
Return xt

3. Experimental Design and Analysis of Results
3.1. Configuration of the Experimental Environment

The main software versions applied in the experiment are shown in Table 1. This
experiment applied the deep learning framework Pytorch Lightning, and the algorithm
used was the improved CN-Adam algorithm based on the Adam algorithm, which was

Electronics 2024, 13, 1778 7 of 14

jointly improved by the cyclic exponential decay learning rate algorithm and the customized
gradient paradigm constraint method.

Table 1. Main software versions.

Software Version

Python 3.10
CUDA cu118
torch 2.0.1

torchvision 0.15.0
Lightning 2.1.2

wandb 0.16.0

The entire experimental code was written using the PyTorch lightning framework.
The programming language was Python, Python language version is 3.10, the torch version
was 2.0.1, the torchvision version was 0.15.0, the CUDA version was cu118, the Lightning
version was 2.1.2, and the wandb version was 0.16.0.

The CN-Adam algorithm’s performance was tested using two commonly used datasets,
MNIST and CIFAR10, as well as medical domain image classification experiments. The
experiment included three datasets: MNIST, CIFAR10, and a medical dataset. MNIST is a
grayscale image dataset of handwritten numbers with an image size of 28*28. CIFAR10 is a
color image dataset containing different types of items with an image size of 32*32. The
medical dataset is divided into two parts: the upper and lower gastrointestinal tracts. For
this experiment, we used the dataset for the upper gastrointestinal system. The experi-
ment involved eight classifications, primarily consisting of various grades of hemorrhoids,
polyps, and ulcerative colitis. The image size was processed as 224*224. The experimental
dataset is presented in Table 2.

Table 2. Experimental dataset.

Dataset Sample Size Training Set Validation Set Test Set Categories Features

MNIST 70,000 55,000 5000 10,000 10
Grayscale images, few

classifications, and difficult
to recognize

CIFAR10 60,000 45,000 5000 10,000 10
Color RGB images, fewer

classifications, and difficult
to recognize

Medical 1885 900 485 500 8
Color RGB images, fewer

classifications, and difficult
to recognize

3.2. Experimental Results and Analysis

The CN-Adam algorithm was extended and improved based on the Adam algo-
rithm. It now includes the cyclic exponential decay learning rate algorithm and a gradient
paradigm constraint strategy, making it more comprehensive and flexible. These improve-
ments enhance the algorithm’s generalization ability and convergence speed for the model.
To evaluate the advantages of the CN-Adam algorithm over other optimization algo-
rithms, we conducted experimental comparisons using various optimization algorithms,
including SGD, AdaGrad, Adadelta, Adam, and two variants of Adam:the NAdam and
StochGradAdam algorithms. Several experiments were conducted to compare the accuracy
and loss values in the test set. The results proving the best performance were selected and
bolded as shown in Table 3 to demonstrate the superiority of the CN-Adam algorithm. The
table compares the experimental results of the different optimization algorithms.

Electronics 2024, 13, 1778 8 of 14

Table 3. Comparison of experimental results of different optimization algorithms.

Dataset Optimization
Algorithm Accuracy Loss

MNIST

SGD 98.42% 0.081
AdaGrad 98.51% 0.057
Adadelta 96.44% 0.13

Adam 98.53% 0.056
NAdam 98.48% 0.061

StochGradAdam 98.09% 0.07
CN-Adam 98.54% 0.06

CIFAR10

SGD 49.68% 1.434
AdaGrad 30.21% 1.935
Adadelta 23.95% 2.032

Adam 68.49% 1.21
NAdam 68.67% 1.638

StochGradAdam 68.07% 1.04
CN-Adam 72.10% 0.902

Medical

SGD 63.60% 1.185
AdaGrad 67.40% 1.012
Adadelta 56.00% 2.261

Adam 72.40% 0.872
NAdam 72.80% 0.857

StochGradAdam 70.20% 1.055
CN-Adam 78.80% 0.7245

Experimental Setup

(1) Application domain: The algorithm used three datasets in this study, namely, the
MNIST dataset on handwritten digit recognition, the CIFAR10 dataset of color images
with 10 classifications, and the medical dataset in healthcare. The download paths of
the corresponding datasets can be found in the author’s GitHub code and the data
availability statement of this article.

(2) Optimization algorithms: The experiments covered seven optimization algorithms,
namely, SGD, AdaGrad, Adadelta, Adam, NAdam, StochGradAdam, and CN-Adam,
aiming at comparing the performance differences between them.

(3) Batch size: The batch size used in each experiment was 128 to ensure the consistency
and fairness of the experiment.

(4) Learning rate setting: The initial learning rate for all three datasets was 0.001. For
the CN-Adam algorithm, the maximum learning rate was 0.01, and the minimum
learning rate was 0.0001.

(5) Epoch size: To accurately assess the performance of each optimizer, all experiments
were conducted with 100 epochs to ensure adequate and accurate model training.

(6) Adjustment of key parameters: Key parameters in the algorithm were fine-tuned based
on different datasets to ensure the comparability and accuracy of the experimental results.

(7) Data preprocessing: Before conducting the experiments, necessary data processing
operations, such as normalization, standardization, and data augmentation, were
performed to ensure the quality and consistency of the input data.

(8) Experimental results: Several comparison experiments were conducted on the MNIST,
CIFAR10, and medical datasets, taking into account factors such as Acc, loss, and GPU
power consumption to fully demonstrate the advantages of the CN-Adam algorithm.

The CN-Adam algorithm aims to quickly discover locally optimal solutions to enhance
the performance of the optimization algorithm by achieving optimal levels of test accuracy
and loss values. To evaluate the performance of the CN-Adam algorithm in various
neural networks and compare the results of the experiments, we extensively tested it on
multiple datasets and neural network models. For the MNIST dataset, we chose a simple

Electronics 2024, 13, 1778 9 of 14

fully connected neural network, and for the CIFAR10 and medical datasets, we chose a
lightweight neural network, MobileNetV2.

The experiment involved comparing the performance of the CN-Adam algorithm in
the MNIST dataset using three different learning rate size ranges and three different sets of
hyperparameters. The results of this comparison are presented, focusing on the different
combinations of learning rates. The first step of the experiment was to determine the range
interval of the learning rate. This allowed for a better determination of the values of the
other hyperparameters. Figure 1 shows the performance comparison for the MNIST dataset
at different learning rate ranges.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 15

0 5 10 15 20

0.9310

0.9405

0.9500

0.9595

0.9690

0.9785

0.9880

0.9975

1.0070

A
cc

epoch

lr_base--lr_max
 1×10-4--1×10-1

 1×10-5--1×10-1

 1×10-4--1×10-2

0 5 10 15 20

0.000

0.037

0.074

0.111

0.148

0.185

0.222

0.259

0.296

Lo
ss

epoch

lr_base--lr_max
 1×10-4--1×10-1

 1×10-5--1×10-1

 1×10-4--1×10-2

(a) (b)

Figure 1. Comparison of learning rates in the MNIST dataset: (a) comparison of accuracy; (b) com-
parison of loss values.

After analyzing Figure 1, it was determined that the combination of a minimum
learning rate of 1 × 10-4and a maximum learning rate of 1 × 10-2was optimal. This combi-
nation converged quickly and maintained a stable performance. The early performance
was poorer when the minimum learning rate was 1 × 10-5, which may have been due to
the learning rate being too small to adequately perform parameter updates. For the com-
bination of a minimum learning rate of1 × 10-1, fast convergence could not be achieved
early on. This may have been due to the learning rate being too large, resulting in unstable
fluctuations in the model during training. Therefore, the optimal learning rate combina-
tion was between 1 × 10-4and 1 × 10-2.

After determining the optimal learning rate, appropriate hyperparameter settings
can improve the model stability and highlight the CN-Adam algorithm's effect. For exam-
ple, the effects of the gradient paradigm constraints of different hyperparameters on the
performance in CIFAR10 are shown in Figure 2. These results verify the effectiveness of
the CN-Adam algorithm and provide guidance for its practical application.

0 5 10 15 20

0.190

0.285

0.380

0.475

0.570

0.665

0.760

0.855

0.950

A
cc

epoch

step_size--
grad_norm_constraint

 1400--0.82
 1400--0.89
 1400--0.95
 1400--0.9

0 5 10 15 20
0.00

0.26

0.52

0.78

1.04

1.30

1.56

1.82

2.08

2.34

Lo
ss

epoch

step_size--
grad_norm_constraint

 1400--0.82
 1400--0.89
 1400--0.95
 1400--0.9

(a) (b)

Figure 2. Comparison of different key parameter values in the CIFAR10 dataset: (a) comparison of
accuracy; (b) comparison of loss values.

Figure 1. Comparison of learning rates in the MNIST dataset: (a) comparison of accuracy;
(b) comparison of loss values.

After analyzing Figure 1, it was determined that the combination of a minimum
learning rate of 1 × 10−4 and a maximum learning rate of 1 × 10−2 was optimal. This
combination converged quickly and maintained a stable performance. The early perfor-
mance was poorer when the minimum learning rate was 1 × 10−5, which may have been
due to the learning rate being too small to adequately perform parameter updates. For
the combination of a minimum learning rate of 1 × 10−1, fast convergence could not be
achieved early on. This may have been due to the learning rate being too large, resulting in
unstable fluctuations in the model during training. Therefore, the optimal learning rate
combination was between 1 × 10−4 and 1 × 10−2.

After determining the optimal learning rate, appropriate hyperparameter settings can
improve the model stability and highlight the CN-Adam algorithm’s effect. For example,
the effects of the gradient paradigm constraints of different hyperparameters on the per-
formance in CIFAR10 are shown in Figure 2. These results verify the effectiveness of the
CN-Adam algorithm and provide guidance for its practical application.

The Figure 2 above shows that adjusting the gradient paradigm constraint value led
to significant performance differences, even with the same number of steps in the loop
learning rate. The best accuracy and lowest loss values were achieved when the gradient
paradigm constraint fetch value was set to 0.9. This setting resulted in an average accuracy
improvement of approximately 1% compared with the other values tested. The significance
of selecting an appropriate value for the gradient paradigm constraint to optimize the
algorithm’s convergence speed is emphasized. Additionally, the impact on the model
performance is highlighted.

Electronics 2024, 13, 1778 10 of 14

Electronics 2024, 13, x FOR PEER REVIEW 10 of 15

0 5 10 15 20

0.9310

0.9405

0.9500

0.9595

0.9690

0.9785

0.9880

0.9975

1.0070

A
cc

epoch

lr_base--lr_max

 1×10-4--1×10-1

 1×10-5--1×10-1

 1×10-4--1×10-2

0 5 10 15 20

0.000

0.037

0.074

0.111

0.148

0.185

0.222

0.259

0.296

L
o

ss

epoch

lr_base--lr_max

 1×10-4--1×10-1

 1×10-5--1×10-1

 1×10-4--1×10-2

(a) (b)

Figure 1. Comparison of learning rates in the MNIST dataset: (a) comparison of accuracy; (b) com-

parison of loss values.

After analyzing Figure 1, it was determined that the combination of a minimum

learning rate of 1 × 10-4and a maximum learning rate of 1 × 10-2was optimal. This combi-

nation converged quickly and maintained a stable performance. The early performance

was poorer when the minimum learning rate was 1 × 10-5, which may have been due to

the learning rate being too small to adequately perform parameter updates. For the com-

bination of a minimum learning rate of1 × 10-1, fast convergence could not be achieved

early on. This may have been due to the learning rate being too large, resulting in unstable

fluctuations in the model during training. Therefore, the optimal learning rate combina-

tion was between 1 × 10-4and 1 × 10-2.

After determining the optimal learning rate, appropriate hyperparameter settings

can improve the model stability and highlight the CN-Adam algorithm's effect. For exam-

ple, the effects of the gradient paradigm constraints of different hyperparameters on the

performance in CIFAR10 are shown in Figure 2. These results verify the effectiveness of

the CN-Adam algorithm and provide guidance for its practical application.

0 5 10 15 20

0.190

0.285

0.380

0.475

0.570

0.665

0.760

0.855

0.950

A
cc

epoch

step_size--

grad_norm_constraint

 1400--0.82

 1400--0.89

 1400--0.95

 1400--0.9

0 5 10 15 20

0.00

0.26

0.52

0.78

1.04

1.30

1.56

1.82

2.08

2.34

L
o
ss

epoch

step_size--

grad_norm_constraint

 1400--0.82

 1400--0.89

 1400--0.95

 1400--0.9

(a) (b)

Figure 2. Comparison of different key parameter values in the CIFAR10 dataset: (a) comparison of

accuracy; (b) comparison of loss values.
Figure 2. Comparison of different key parameter values in the CIFAR10 dataset: (a) comparison of
accuracy; (b) comparison of loss values.

Figure 3 shows a performance comparison of the seven optimization algorithms in the
MNIST dataset.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 15

The figure2 above shows that adjusting the gradient paradigm constraint value led
to significant performance differences, even with the same number of steps in the loop
learning rate. The best accuracy and lowest loss values were achieved when the gradient
paradigm constraint fetch value was set to 0.9. This setting resulted in an average accuracy
improvement of approximately 1% compared with the other values tested. The signifi-
cance of selecting an appropriate value for the gradient paradigm constraint to optimize
the algorithm’s convergence speed is emphasized. Additionally, the impact on the model
performance is highlighted.

Figure 3 shows a performance comparison of the seven optimization algorithms in
the MNIST dataset.

0 50 100

0.340

0.425

0.510

0.595

0.680

0.765

0.850

0.935

1.020

A
cc

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 CN-Adam

0 50 100

0.00

0.26

0.52

0.78

1.04

1.30

1.56

1.82

2.08

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 CN-Adam

(a) (b)

Figure 3. Comparison of performance of seven algorithms in the MNIST dataset: (a) comparison of
accuracy; (b) comparison of loss values.

The performance comparison of the seven optimization algorithms for the CIFAR10
dataset is shown in Figure 4.

0 50 100
0.000

0.089

0.178

0.267

0.356

0.445

0.534

0.623

0.712

A
cc

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 CN-Adam

0 50 100

0.00

0.31

0.62

0.93

1.24

1.55

1.86

2.17

2.48

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 CN-Adam

(a) (b)

Figure 4. Comparison of performance of seven algorithms in the CIFAR10 dataset: (a) comparison
of accuracy; (b) comparison of loss values.

Figure 3. Comparison of performance of seven algorithms in the MNIST dataset: (a) comparison of
accuracy; (b) comparison of loss values.

The performance comparison of the seven optimization algorithms for the CIFAR10
dataset is shown in Figure 4.

As shown in Figure 4, the CN-Adam algorithm could quickly reach the optimal
solution in this dataset, and the accuracy was improved by 3.61%, 3.43%, and 4.03%, and
the loss value was reduced by 0.308, 0.736, and 0.138 compared with the accuracy of the
Adam algorithm, the NAdam algorithm, and the StochGradAdam algorithm, which are
based on the Adam algorithm and improved by the Adam algorithm. The fast convergence
of the CN-Adam algorithm not only improves the training efficiency of the model but also
enables the model to reach the desired performance level faster. Among them, the periodic
learning rate adjustment strategy of the cyclic exponential decay learning rate algorithm
brings a broader search capability to the optimization algorithm, which helps it to jump
out of the local optimal solution and accelerate the convergence, thus further improving

Electronics 2024, 13, 1778 11 of 14

the model performance. Meanwhile, the introduction of the gradient paradigm constraint
technique effectively controls the size of the gradient, avoids the exploding or vanishing
gradient problem, and enhances the stability of the optimization algorithm.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 15

The figure2 above shows that adjusting the gradient paradigm constraint value led
to significant performance differences, even with the same number of steps in the loop
learning rate. The best accuracy and lowest loss values were achieved when the gradient
paradigm constraint fetch value was set to 0.9. This setting resulted in an average accuracy
improvement of approximately 1% compared with the other values tested. The signifi-
cance of selecting an appropriate value for the gradient paradigm constraint to optimize
the algorithm’s convergence speed is emphasized. Additionally, the impact on the model
performance is highlighted.

Figure 3 shows a performance comparison of the seven optimization algorithms in
the MNIST dataset.

0 50 100

0.340

0.425

0.510

0.595

0.680

0.765

0.850

0.935

1.020

A
cc

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 CN-Adam

0 50 100

0.00

0.26

0.52

0.78

1.04

1.30

1.56

1.82

2.08

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 CN-Adam

(a) (b)

Figure 3. Comparison of performance of seven algorithms in the MNIST dataset: (a) comparison of
accuracy; (b) comparison of loss values.

The performance comparison of the seven optimization algorithms for the CIFAR10
dataset is shown in Figure 4.

0 50 100
0.000

0.089

0.178

0.267

0.356

0.445

0.534

0.623

0.712

A
cc

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 CN-Adam

0 50 100

0.00

0.31

0.62

0.93

1.24

1.55

1.86

2.17

2.48

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 CN-Adam

(a) (b)

Figure 4. Comparison of performance of seven algorithms in the CIFAR10 dataset: (a) comparison
of accuracy; (b) comparison of loss values.
Figure 4. Comparison of performance of seven algorithms in the CIFAR10 dataset: (a) comparison of
accuracy; (b) comparison of loss values.

Due to the specificity of the medical dataset, a cross-validation strategy was used in this
dataset to demonstrate the experimental results, and the validation and test sets were used
to compare the effectiveness of the optimization algorithms in terms of accuracy and loss
values. Figure 5 shows a comparison of the accuracy of the seven optimization algorithms in
the validation set, and the accuracies of the SGD and Adadelta algorithms are significantly
lower than those of the other optimization algorithms. Although the accuracy of the CN-
Adam algorithm was slightly lower than that of the Adam algorithm and NAdam algorithm
in the early stage of training, the accuracy of the CN-Adam algorithm significantly increased
in the late stage of training as the number of training rounds increased, and it achieved good
results in the test set. The accuracy was higher than that of the Adam algorithm by 6.4%,
the NAdam algorithm by 6%, and StochGradAdam algorithm by 8.6%. This observation
reveals the superior performance of the CN-Adam algorithm in dealing with complex data
such as medical datasets. The problems with the Adam optimization algorithm have been
addressed to some extent. Although there may be performance degradation in the initial
phase, the performance gradually improves as the algorithm understands the data more
deeply and learns the process. This dynamic learning capability allows the CN-Adam
algorithm to continuously adjust its strategy and gradually optimize the model parameters,
ultimately achieving results that outperform other optimization algorithms in the later
training stages. Its robustness and adaptability enable it to better cope with the challenges in
the data domain, providing strong support for the modeling and analysis of complex data.

The loss values of the seven optimization algorithms in the test set are compared in
Figure 6. The results show that the loss value of the Adadelta algorithm was significantly
higher than that of the other six optimization algorithms. The loss value of the CN-Adam
algorithm was significantly lower than those of the other six algorithms, which were
reduced by 0.1475, 0.1325, and 0.3305 compared with the Adam algorithm, the NAdam
algorithm, which is based on the Adam algorithm, the improved NAdam algorithm, and
the StochGradAdam algorithm. Combined with the validation set and test set results,
these results show that the optimization algorithm demonstrates a superior performance
in the medical domain. This highlights the importance of optimization algorithms when

Electronics 2024, 13, 1778 12 of 14

applied in specific domains and emphasizes the need to select an appropriate optimization
algorithm for optimal performance in the medical domain.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 15

As shown in Figure 4, the CN-Adam algorithm could quickly reach the optimal so-
lution in this dataset, and the accuracy was improved by 3.61%, 3.43%, and 4.03%, and the
loss value was reduced by 0.308, 0.736, and 0.138 compared with the accuracy of the Adam
algorithm, the NAdam algorithm, and the StochGradAdam algorithm, which are based
on the Adam algorithm and improved by the Adam algorithm. The fast convergence of
the CN-Adam algorithm not only improves the training efficiency of the model but also
enables the model to reach the desired performance level faster. Among them, the periodic
learning rate adjustment strategy of the cyclic exponential decay learning rate algorithm
brings a broader search capability to the optimization algorithm, which helps it to jump
out of the local optimal solution and accelerate the convergence, thus further improving
the model performance. Meanwhile, the introduction of the gradient paradigm constraint
technique effectively controls the size of the gradient, avoids the exploding or vanishing
gradient problem, and enhances the stability of the optimization algorithm.

Due to the specificity of the medical dataset, a cross-validation strategy was used in
this dataset to demonstrate the experimental results, and the validation and test sets were
used to compare the effectiveness of the optimization algorithms in terms of accuracy and
loss values. Figure 5 shows a comparison of the accuracy of the seven optimization algo-
rithms in the validation set, and the accuracies of the SGD and Adadelta algorithms are
significantly lower than those of the other optimization algorithms. Although the accuracy
of the CN-Adam algorithm was slightly lower than that of the Adam algorithm and
NAdam algorithm in the early stage of training, the accuracy of the CN-Adam algorithm
significantly increased in the late stage of training as the number of training rounds in-
creased, and it achieved good results in the test set. The accuracy was higher than that of
the Adam algorithm by 6.4%, the NAdam algorithm by 6%, and StochGradAdam algo-
rithm by 8.6%. This observation reveals the superior performance of the CN-Adam algo-
rithm in dealing with complex data such as medical datasets. The problems with the
Adam optimization algorithm have been addressed to some extent. Although there may
be performance degradation in the initial phase, the performance gradually improves as
the algorithm understands the data more deeply and learns the process. This dynamic
learning capability allows the CN-Adam algorithm to continuously adjust its strategy and
gradually optimize the model parameters, ultimately achieving results that outperform
other optimization algorithms in the later training stages. Its robustness and adaptability
enable it to better cope with the challenges in the data domain, providing strong support
for the modeling and analysis of complex data.

0 50 100
0.496

0.527

0.558

0.589

0.620

0.651

0.682

0.713

0.744

0.775

A
cc

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 CN-Adam

Figure5. Comparison of validation accuracies of seven optimization algorithms in medical dataset.

The loss values of the seven optimization algorithms in the test set are compared in
Figure 6. The results show that the loss value of the Adadelta algorithm was significantly
higher than that of the other six optimization algorithms. The loss value of the CN-Adam

Figure 5. Comparison of validation accuracies of seven optimization algorithms in medical dataset.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 15

algorithm was significantly lower than those of the other six algorithms, which were re-
duced by 0.1475, 0.1325, and 0.3305 compared with the Adam algorithm, the NAdam al-
gorithm, which is based on the Adam algorithm, the improved NAdam algorithm, and
the StochGradAdam algorithm. Combined with the validation set and test set results,
these results show that the optimization algorithm demonstrates a superior performance
in the medical domain. This highlights the importance of optimization algorithms when
applied in specific domains and emphasizes the need to select an appropriate optimiza-
tion algorithm for optimal performance in the medical domain.

50 100

0.63

0.84

1.05

1.26

1.47

1.68

1.89

2.10

2.31

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 CN-Adam

Figure 6. Comparison of test loss values of seven optimization algorithms in medical dataset.

Figure 7 compares the GPU power wattage for the CIFAR10 dataset, showing that
the CN-Adam algorithm consumed less power than the other algorithms. However, its
training time was slightly longer due to the dynamic adjustment of the learning rate. De-
spite this, the CN-Adam algorithm demonstrated its strength in resource utilization by
maintaining the lowest level of power consumption. This emphasizes the significance of
taking into account both the power consumption and training time when choosing an op-
timization algorithm to attain optimal performance and efficiency in real-world applica-
tions.

Figure 7. Comparison of GPU power wattage for the CIFAR10 dataset.

Figure 8 displays the GPU power consumption percentages for the medical dataset.
It is evident that the CN-Adam algorithm quickly recognized the medical dataset and had
a shorter training time than all the other algorithms. This indicates its strong performance
in the medical domain, emphasizing its efficiency in processing medical data. Selecting
the appropriate optimization algorithm in the medical field is essential for achieving the
prompt recognition and efficient processing of medical data.

Figure 6. Comparison of test loss values of seven optimization algorithms in medical dataset.

Figure 7 compares the GPU power wattage for the CIFAR10 dataset, showing that the
CN-Adam algorithm consumed less power than the other algorithms. However, its training
time was slightly longer due to the dynamic adjustment of the learning rate. Despite this,
the CN-Adam algorithm demonstrated its strength in resource utilization by maintaining
the lowest level of power consumption. This emphasizes the significance of taking into
account both the power consumption and training time when choosing an optimization
algorithm to attain optimal performance and efficiency in real-world applications.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 15

algorithm was significantly lower than those of the other six algorithms, which were re-
duced by 0.1475, 0.1325, and 0.3305 compared with the Adam algorithm, the NAdam al-
gorithm, which is based on the Adam algorithm, the improved NAdam algorithm, and
the StochGradAdam algorithm. Combined with the validation set and test set results,
these results show that the optimization algorithm demonstrates a superior performance
in the medical domain. This highlights the importance of optimization algorithms when
applied in specific domains and emphasizes the need to select an appropriate optimiza-
tion algorithm for optimal performance in the medical domain.

50 100

0.63

0.84

1.05

1.26

1.47

1.68

1.89

2.10

2.31

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 CN-Adam

Figure 6. Comparison of test loss values of seven optimization algorithms in medical dataset.

Figure 7 compares the GPU power wattage for the CIFAR10 dataset, showing that
the CN-Adam algorithm consumed less power than the other algorithms. However, its
training time was slightly longer due to the dynamic adjustment of the learning rate. De-
spite this, the CN-Adam algorithm demonstrated its strength in resource utilization by
maintaining the lowest level of power consumption. This emphasizes the significance of
taking into account both the power consumption and training time when choosing an op-
timization algorithm to attain optimal performance and efficiency in real-world applica-
tions.

Figure 7. Comparison of GPU power wattage for the CIFAR10 dataset.

Figure 8 displays the GPU power consumption percentages for the medical dataset.
It is evident that the CN-Adam algorithm quickly recognized the medical dataset and had
a shorter training time than all the other algorithms. This indicates its strong performance
in the medical domain, emphasizing its efficiency in processing medical data. Selecting
the appropriate optimization algorithm in the medical field is essential for achieving the
prompt recognition and efficient processing of medical data.

Figure 7. Comparison of GPU power wattage for the CIFAR10 dataset.

Electronics 2024, 13, 1778 13 of 14

Figure 8 displays the GPU power consumption percentages for the medical dataset. It
is evident that the CN-Adam algorithm quickly recognized the medical dataset and had a
shorter training time than all the other algorithms. This indicates its strong performance
in the medical domain, emphasizing its efficiency in processing medical data. Selecting
the appropriate optimization algorithm in the medical field is essential for achieving the
prompt recognition and efficient processing of medical data.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 15

Figure 8. Percentages of GPU power consumption for medical dataset.

4. Conclusions
This study proposed a new optimization algorithm called CN-Adam, which aims to

address the shortcomings of the Adam optimization algorithm. The experimental results
demonstrate that the CN-Adam algorithm outperformed other methods, including the
StochGradAdam algorithm, in multiple datasets. The CN-Adam algorithm enhances the
stability and convergence speed of the Adam model while achieving more precise tuning
by combining the cyclic exponential decay learning rate algorithm with gradientparadigm
constraints. Although it may require more computational resources than other optimiza-
tion algorithms, the CN-Adam algorithm improves the model performance and is appli-
cable to areas such as medical image processing. This approach improves the model per-
formance and generalization ability, providing new momentum to the development of
deep learning.

Author Contributions: Conceptualization, methodology, and writing—original draft preparation,
J.Y.; software, project administration, and resources, Y.S.; data curation, W.Z.; writing—review and
editing, supervision, and formal analysis, H.S.; funding acquisition, Q.Z., L.X., and L.Z. All authors
have read and agreed to the published version of the manuscript. All authors have read and agreed
to the published version of the manuscript.

Funding: 1. The Liaoning Provincial Department of Education Basic Research Project for Higher
Education Institutions (General Project), Shenyang University of Technology, Research on Optimi-
zation Design of Wind Turbine Cone Angle Based on Fluid Physics Method (LJKZ0159); 2. the Basic
Research Project of the Liaoning Provincial Department of Education “Training and Application of
Multimodal Deep Neural Network Models for Vertical Fields”(project number: JYTMS20231160);3.
Research on the Construction of a New Artificial Intelligence Technology and High-Quality Educa-
tion Service Supply System in the 14th Five Year Plan for Education Science in Liaoning Province,
2023–2025(project number: JG22DB488); 4. the “Chunhui Plan” of the Ministry of Education, Re-
search on an Optimization Model and Algorithm for Microgrid Energy Scheduling Based on Bio-
logical Behavior(project no. 202200209); and 5. the Shenyang Science and Technology Plan “Special
Mission for Leech Breeding and Traditional Chinese Medicine Planting in Dengshibao Town, Faku
Country”(project no. 22-319-2-26).

Data Availability Statement: The Python code used in this paper is located at
https://github.com/icecream1024/CN.git (accessed on 29 March 2024). The website for the standard
CIFAR10 dataset is https://www.kaggle.com/datasets/gazu468/cifar10-classification-image (ac-
cessed on 1 May 2022). The website for the medical datasets is https://doi.org/10.1038/s41597-020-
00622-y (accessed on 28 August 2020).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jiang, Y.; Liu, J.; Xu, D.; Mandic, D.P. UAdam: Unified Adam-Type Algorithmic Framework for Non-Convex Stochastic Opti-

mization. arXiv2023, https://doi.org/10.48550/arXiv.2305.05675.
2. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the Variance of the Adaptive Learning Rate and Beyond. arXiv2021,

https://doi.org/10.48550/arXiv.1908.03265.
3. Yuan, W.; Gao, K.-X. EAdam Optimizer: HowεImpact Adam. arXiv2020, https://doi.org/10.48550/arXiv.2011.02150.

Figure 8. Percentages of GPU power consumption for medical dataset.

4. Conclusions

This study proposed a new optimization algorithm called CN-Adam, which aims to
address the shortcomings of the Adam optimization algorithm. The experimental results
demonstrate that the CN-Adam algorithm outperformed other methods, including the
StochGradAdam algorithm, in multiple datasets. The CN-Adam algorithm enhances the
stability and convergence speed of the Adam model while achieving more precise tuning
by combining the cyclic exponential decay learning rate algorithm with gradientparadigm
constraints. Although it may require more computational resources than other optimization
algorithms, the CN-Adam algorithm improves the model performance and is applicable to
areas such as medical image processing. This approach improves the model performance
and generalization ability, providing new momentum to the development of deep learning.

Author Contributions: Conceptualization, methodology, and writing—original draft preparation,
J.Y.; software, project administration, and resources, Y.S.; data curation, W.Z.; writing—review and
editing, supervision, and formal analysis, H.S.; funding acquisition, Q.Z., L.X. and L.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: 1. The Liaoning Provincial Department of Education Basic Research Project for Higher Edu-
cation Institutions (General Project), Shenyang University of Technology, Research on Optimization
Design of Wind Turbine Cone Angle Based on Fluid Physics Method (LJKZ0159); 2. the Basic Research
Project of the Liaoning Provincial Department of Education “Training and Application of Multimodal
Deep Neural Network Models for Vertical Fields” (project number: JYTMS20231160); 3. Research on
the Construction of a New Artificial Intelligence Technology and High-Quality Education Service
Supply System in the 14th Five Year Plan for Education Science in Liaoning Province, 2023–2025
(project number: JG22DB488); 4. the “Chunhui Plan” of the Ministry of Education, Research on an
Optimization Model and Algorithm for Microgrid Energy Scheduling Based on Biological Behavior
(project no. 202200209); and 5. the Shenyang Science and Technology Plan “Special Mission for Leech
Breeding and Traditional Chinese Medicine Planting in Dengshibao Town, Faku Country” (project
no. 22-319-2-26).

Data Availability Statement: The Python code used in this paper is located at https://github.com/
icecream1024/CN.git (accessed on 29 March 2024). The website for the standard CIFAR10 dataset is
https://www.kaggle.com/datasets/gazu468/cifar10-classification-image (accessed on 1 May 2022).
The website for the medical datasets is https://doi.org/10.1038/s41597-020-00622-y (accessed on
28 August 2020).

Conflicts of Interest: The authors declare no conflicts of interest.

https://github.com/icecream1024/CN.git
https://github.com/icecream1024/CN.git
https://www.kaggle.com/datasets/gazu468/cifar10-classification-image
https://doi.org/10.1038/s41597-020-00622-y

Electronics 2024, 13, 1778 14 of 14

References
1. Jiang, Y.; Liu, J.; Xu, D.; Mandic, D.P. UAdam: Unified Adam-Type Algorithmic Framework for Non-Convex Stochastic

Optimization. arXiv 2023. [CrossRef]
2. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the Variance of the Adaptive Learning Rate and Beyond. arXiv 2021.

[CrossRef]
3. Yuan, W.; Gao, K.-X. EAdam Optimizer: HowεImpact Adam. arXiv 2020. [CrossRef]
4. Liu, M.; Zhang, W.; Orabona, F.; Yang, T. Adam+: A Stochastic Method with Adaptive Variance Reduction. arXiv 2020. [CrossRef]
5. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2017. [CrossRef]
6. Guan, L. AdaPlus: Integrating Nesterov Momentum and Precise Stepsize Adjustment on Adamw Basis. In Proceedings of the

ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of
Korea, 14–19 April 2024; pp. 5210–5214. [CrossRef]

7. Dozat, T. Incorporating Nesterov Momentum into Adam. February 2016. Available online: https://openreview.net/forum?id=
OM0jvwB8jIp57ZJjtNEZ (accessed on 19 February 2024).

8. Zhuang, J.; Tang, T.; Ding, Y.; Tatikonda, S.C.; Dvornek, N.; Papademetris, X.; Duncan, J. AdaBelief Optimizer: Adapting Stepsizes
by the Belief in Observed Gradients. In Advances in Neural Information Processing Systems; Neural Information Processing Systems
Foundation, Inc. (NeurIPS): La Jolla, CA, USA, 2020; Volume 33, pp. 18795–18806.

9. Yun, J. StochGradAdam: Accelerating Neural Networks Training with Stochastic Gradient Sampling. arXiv 2023. [CrossRef]
10. Zhang, C.; Shao, Y.; Sun, H.; Xing, L.; Zhao, Q.; Zhang, L. The WuC-Adam algorithm based on joint improvement of Warmup and

cosine annealing algorithms. Math. Biosci. Eng. 2023, 21, 1270–1285. [CrossRef]
11. Tang, Q.; Lécuyer, M. DP-Adam: Correcting DP Bias in Adam’s Second Moment Estimation. arXiv 2023. [CrossRef]
12. Tang, Q.; Shpilevskiy, F.; Lécuyer, M. DP-AdamBC: Your DP-Adam Is Actually DP-SGD (Unless You Apply Bias Correction).

arXiv 2023. [CrossRef]
13. Xia, L.; Massei, S. AdamL: A fast adaptive gradient method incorporating loss function. arXiv 2023. [CrossRef]
14. Asadi, K.; Fakoor, R.; Sabach, S. Resetting the Optimizer in Deep RL: An Empirical Study. In Advances in Neural Information

Processing Systems; Neural Information Processing Systems Foundation, Inc. (NeurIPS): La Jolla, CA, USA, 2023; Volume 36,
pp. 72284–72324.

15. Bieringer, S.; Kasieczka, G.; Steffen, M.F.; Trabs, M. AdamMCMC: Combining Metropolis Adjusted Langevin with Momentum-
based Optimization. arXiv 2023. [CrossRef]

16. Xie, X.; Zhou, P.; Li, H.; Lin, Z.; Yan, S. Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models.
arXiv 2023. [CrossRef]

17. Shao, Y.; Fan, S.; Sun, H.; Tan, Z.; Cai, Y.; Zhang, C.; Zhang, L. Multi-Scale Lightweight Neural Network for Steel Surface Defect
Detection. Coatings 2023, 13, 1202. [CrossRef]

18. Shao, Y.; Zhang, C.; Xing, L.; Sun, H.; Zhao, Q.; Zhang, L. A new dust detection method for photovoltaic panel surface based on
Pytorch and its economic benefit analysis. Energy AI 2024, 16, 100349. [CrossRef]

19. Gupta, A.; Dixit, M.; Mishra, V.K.; Singh, A.; Dayal, A. Brain Tumor Segmentation from MRI Images Using Deep Learning
Techniques. In Advanced Computing; Springer Nature: Cham, Switzerland, 2023; pp. 434–448. [CrossRef]

20. Tang, L.Y.W. Severity classification of ground-glass opacity via 2-D convolutional neural network and lung CT scans: A 3-day
exploration. arXiv 2023. [CrossRef]

21. Pandit, B.R.; Alsadoon, A.; Prasad, P.W.; Al Aloussi, S.; Rashid, T.A.; Alsadoon, O.H.; Jerew, O.D. Deep Learning Neural Network
for Lung Cancer Classification: Enhanced Optimization Function. Multimed. Tools Appl. 2023, 82, 6605–6624. [CrossRef]

22. Nanni, L.; Manfe, A.; Maguolo, G.; Lumini, A.; Brahnam, S. High performing ensemble of convolutional neural networks for
insect pest image detection. Ecol. Inform. 2022, 67, 101515. [CrossRef]

23. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017. [CrossRef]
24. Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE Winter Conference on

Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.2305.05675
https://doi.org/10.48550/arXiv.1908.03265
https://doi.org/10.48550/arXiv.2011.02150
https://doi.org/10.48550/arXiv.2011.11985
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.1109/ICASSP48485.2024.10447337
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://doi.org/10.48550/arXiv.2310.17042
https://doi.org/10.3934/mbe.2024054
https://doi.org/10.48550/arXiv.2304.11208
https://doi.org/10.48550/arXiv.2312.14334
https://doi.org/10.48550/arXiv.2312.15295
https://doi.org/10.48550/arXiv.2312.14027
https://doi.org/10.48550/arXiv.2208.06677
https://doi.org/10.3390/coatings13071202
https://doi.org/10.1016/j.egyai.2024.100349
https://doi.org/10.1007/978-3-031-35641-4_36
https://doi.org/10.48550/arXiv.2303.16904
https://doi.org/10.1007/s11042-022-13566-9
https://doi.org/10.1016/j.ecoinf.2021.101515
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/WACV.2017.58

	Introduction
	CN-Adam Algorithm Design
	Adam Optimization Algorithm
	Cyclic Exponential Decay Learning Rate
	Gradient Norm Constraint Strategy
	CN-Adam Algorithm

	Experimental Design and Analysis of Results
	Configuration of the Experimental Environment
	Experimental Results and Analysis

	Conclusions
	References

