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Abstract: Despite the great success of Convolutional Neural Networks (CNNs) in various visual
recognition tasks, the high computational and storage costs of such deep networks impede their
deployments in real-time remote sensing tasks. To this end, considerable attention has been given to
the filter pruning techniques, which enable slimming deep networks with acceptable performance
drops and thus implementing them on the remote sensing devices. In this paper, we propose a
new scheme, termed Pruning Filter with Attention Mechanism (PFAM), to compress and accelerate
traditional CNNs. In particular, a novel correlation-based filter pruning criterion, which explores
the long-range dependencies among filters via an attention module, is employed to select the
to-be-pruned filters. Distinct from previous methods, the less correlated filters are first pruned
after the pruning stage in the current training epoch, and they are reconstructed and updated during
the next training epoch. Doing so allows manipulating input data with the maximum information
preserved when executing the original training strategy such that the compressed network model
can be obtained without the need for the pretrained model. The proposed method is evaluated on
three public remote sensing image datasets, and the experimental results demonstrate its superiority,
compared to state-of-the-art baselines. Specifically, PFAM achieves a 0.67% accuracy improvement
with a 40% model-size reduction on the Aerial Image Dataset (AID) dataset, which is impressive.

Keywords: deep feature learning; filter pruning; remote sensing imagery; self-attention

1. Introduction

With mass applications of remote sensing equipment, how to perform efficient remote sensing
image scene classification is becoming a significant, yet challenging research problem. In recent years,
Convolutional Neural Networks (CNNs) have shown appealing performance on various computer
vision tasks, which have been applied broadly in remote sensing image scene classification [1–6].
However, large amounts of computational resources from the high-performance GPUs are required to
run the complicated CNNs. Moreover, traditional CNNs usually contain many network parameters,
even millions, which indicates that remote sensing equipment suffers from high demands for large
memory storage space. Most of the remote sensing devices prefer to conduct real-time data collection
and analysis on an aircraft, rather than making a decision in a workshop. In this context, the computing
power in existing remote sensing devices is quite limited due to the embedded low-level CPUs and
GPUs, thus making it infeasible to deploy the deep learning techniques on those machines directly.
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Hence, the above research issues motivated us to build a lightweight CNN model for remote sensing
image classification, which significantly reduces the required hardware resources, e.g., memory costs
and FLOPs (Floating-Point Operations), such that remote sensing images can be processed in the smart
sensor without the need to send those images back to the data center for further processing.

Many approaches have been proposed for deep network compression and acceleration, where
three mainstream categories are discussed: network binarization, compact block, and filter pruning.
In network binarization, the deep networks [7,8] are compressed by using the binarized weights and
activations to reduce the memory space while achieving relatively good performance, which refuted
the conclusion of the previous work [9] that a model that is highly binarized might achieve very bad
performance at an early time. After that, BinaryConnect [10] constrained the full precision weights
of the neural network filters to the discrete values (+1 or −1) during propagations. As an extension
work of BinaryConnect, BinaryNet [11] binarized both weights and activations. However, the arbitrary
binarization significantly weakens the feature representation ability of the deep networks, thus
leading to less favorable performance. To reduce the quantization errors caused by the binarization,
XNOR-Net [12] made use of a single scaling factor and binary filters, while Modulated Convolutional
Networks (MCN) [13] combined a real-valued matrix with binary filters to reconstruct unbinarized
filters. Both methods make the models compressed, but still maintain high accuracy when conducting
image classification tasks. Beyond this, many works are devoted to employing compact blocks
(e.g., convolutional filter with small receptive fields) in the deep network structures to reduce
computational costs while avoiding large quantization errors that damage the original network’s
expressiveness. For instance, Network in Network [14] used 1× 1 convolution kernels to reduce the
network parameters. ResNet [15] reduced a large number of network parameters by involving the
residue modules. Moreover, ShuffleNet [16] proposed pointwise group convolution and channel shuffle
to construct an efficient network structure that can run on mobile devices with limited computing
resources. MobileNet [17] used depth-wise convolution and point-wise convolution instead of normal
convolution to build light, deep neural networks. However, a small receptive field focused on
the local details excessively without considering the global information, thus compromising the
classification performance.

Apart from these above methods, some prior works adopted filter pruning (i.e., channel pruning
or network slimming), which is also the focus of this paper, to compress the deep network. The core
idea behind filter pruning is that the small-valued (i.e., unimportant) activation and connection can be
pruned during the iterative training processes to obtain more compact and efficient models [18–24].
For example, in [24], they compressed the deep neural networks by simply discarding unnecessary
connections that were less than the default threshold. However, it was still required to retrain the
sparse network model to compensate for the accuracy decline caused by the pruning. Instead of merely
discarding the network parameters, recent works [25–31] compressed the complicated deep models
via pruning the less important filters, thus reducing the computation costs dramatically due to fewer
feature maps involved in the subsequent calculations. Subsequently, the work in [29] proposed a
filter pruning method to remove the filters with the smallest absolute values and their corresponding
feature maps in the next convolutional process for a compact network model. Nevertheless, most
of the previous filter pruning works compressed the deep CNNs based on the pretrained models.
They removed those filters permanently and then fine-tuned the pruned models to recover the huge
accuracy drop, which was computationally expensive and inefficient. He et al. [32] adopted a soft
pruning method to dynamically remove redundant filters, where the significance of a filter was
evaluated by calculating the norm value of each filter and making a comparison among them. However,
they only focused on the importance of individual filters without taking the correlation/dependency
among filters into consideration, which made the filter selection less discriminative. Moreover,
they evaluated the filter significance based on shallow strategies like thresholding, absolute, or norm
values, which affected the classification performance considerably because of mistaken pruning.
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In this paper, we propose a novel filter pruning method, termed Pruning Filter with Attention
Mechanism (PFAM), which integrates the attention module with softly pruning the less correlated
filters to obtain compact deep network model for the remote sensing image classification. To be specific,
by deploying the attention module, the target filters that have smaller correlation values that others
are pruned in the current pruning stage. In the next training epoch, the pruned filters in the previous
pruning stage are recovered and further updated to avoid the accuracy loss because of the pruning
process. By conducting such iterative training steps, the compact deep network model can be finally
obtained with satisfactory performance. The contributions of our work are illustrated in the following
three aspects:

(1) A novel deep network compression method termed Pruning Filter with Attention Mechanism
(PFAM) is proposed for efficient remote sensing image classification. The compact network model
is obtained by integrating the attention-based filter pruning strategy into a unified end-to-end
training process.

(2) A novel correlation-based filter selection criterion is proposed in the filter pruning, where the
correlation value of each filter is calculated through the attention module, and then, the less
correlated filters are pruned to reduce the network complexity. By using the proposed attention
module, it models the correlation among filters efficiently via exploring their long-range
dependencies, which is more likely to make wise decisions in selecting the to-be-pruned filters
without compromising the network performance.

(3) Extensive experiments on three remote sensing image datasets demonstrate that our proposed
PFAM outperforms the state-of-the-art algorithms significantly.

The rest of this paper is organized as follows. Section 2 discusses previous representative
approaches in the research field of network compression. Then, our proposed filter pruning method is
detailed in Section 3. Section 4 shows the experimental results on multiple remote sensing datasets.
Finally, the discussion and conclusions of this research are drawn in Sections 5 and 6, respectively.

2. Related Works

In network pruning, the unimportant activations and connections could be removed to obtain
more compact models. For instance, Han et al. [23] discarded the unnecessary connections that were
less than a default threshold value, and then, they retrained such a sparse model to improve its
accuracy. Deep Compression [33] achieved great energy and memory savings by extending their
previous work [23]. In particular, they combined the connection pruning with the quantization
techniques, where several remaining important connections could share the same weights. Then,
Huffman encoding technology was utilized to make further compression. Although Deep Compression
obtained a high compression ratio on the CNN models by removing unimportant parameters,
the parameter importance varied dramatically if changing the network structure. This implies that this
sort of hard pruning method will suffer if the important connections are removed incorrectly during
long-time training.

To enhance it, dynamic network surgery was proposed in [34], where the pruning and splicing
methods are jointly combined to recover some important connections that were removed incorrectly
before. They are recovered as significant connections again during the next training period,
thus reducing the possibility of misclassification to the maximum extent. More importantly, the pruning
and training processes are synchronized seamlessly such that the problems of long retraining time and
incorrect pruning can be solved effectively. Alternatively, unlike conventional weight or connection
pruning, Li et al. [29] proposed a filter pruning method named Pruning Filters for Efficient ConvNets
(PFEC) to delete some filters and their related feature maps in the next convolutional process to reduce
the computation costs. In particular, the absolute values of the filters are calculated and ordered from
smallest to largest, then the filters with the smallest values are removed to obtain a highly compressed
network model. Liu et al. [30] proposed a pruning method termed network slimming by enforcing
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channel-level sparsity in the network. To be specific, they evaluated the scores of the input channels by
calculating the corresponding weights of the batch normalization layers. These scores are compared
with a pre-set threshold value, and those filters with scores lower than the threshold are removed.

Unlike previous research works that utilized hard filter pruning technology, the soft pruning
method was proposed in Soft Filter Pruning (SFP) [32] and Filter Pruning via Geometric Median
(FPGM) [35], where the pruned convolution filters are recovered and involved in the next training
iteration, rather than being deleted once and gone permanently. By doing so, there is no need to go
through the fine-tuning process on the pretrained model to compensate for the accuracy drop after
the pruning. One more advantage of such a soft pruning scheme is that it saves much training time
by conducting the pruning process immediately after the end of each training process. Our method
generally follows the soft pruning method as [32,35]; however, it utilizes an advanced pruning
filter selection strategy based on the correlation between filters from the involved attention module,
thus obtaining a more robust and compact network model.

3. Methodology

3.1. Motivation

As discussed in the previous sections, earlier filter pruning works [29–31] generally compressed
the deep CNNs in a hard manner. To be specific, these algorithms firstly prune the unimportant
filters in every single convolutional layer from a pretrained model directly, where the significance
evaluation of the single filter is often inexact because of ambiguous calculations in one certain layer.
Then, the pruned model needs to go through the fine-tuning stage to compensate for the performance
degradation caused by the pruning. However, once the filters are selected, these to-be-pruned filters
are abandoned permanently during the pruning process and never recovered again in the following
fine-tuning stage. Although the model is dramatically reduced in size due to the removal of filters,
such a hard pruning method is more likely to yield unsatisfactory performance due to the shrinkage of
model capacity. Besides, it is worth mentioning that these methods may have expensive computational
resources costs to get the final pruned model fine-tuned on the training data.

In contrast to the hard pruning methods, Reference [32] proposed to dynamically remove the
filters in a soft manner by calculating the norm value of each filter independently. Despite its advances,
the underlying mechanism that focuses on the individual effect of the single filter in one convolutional
layer without considering the global relationship among them is deemed suboptimal. In other words,
the least important filter that is determined individually is not the least important one if a global view
considering all the filters is adopted. From another perspective, it might be useful if we investigate
the long-range dependency of filters and involve these dedicated dependency/relationships among
filters in the to-be-pruned filter selection. In traditional CNNs, however, the long-range dependency
among layers can only be obtained by repeatedly backpropagating through the stacking convolutional
layers. That is to say, the current deep networks are usually inefficient at capturing such long-range
dependencies, and it is difficult to operate locally when the information needs to be passed back and
forth between relatively remote locations [36]. To tackle the above problems, the attention mechanism
was applied in many applications to obtain better network performance. For example, Mnih et al. [37]
utilized an attention module in the network training that pays more attention to the local areas with
high-correlated weights from the whole target areas, which simulates the human’s visual attention
behavior when observing images. Following previous works [38–40], they adopted a self-attention
module that calculates the response at a specific position as a weighted sum of the features at all
positions [41–44]. In this case, the weights or attention vectors were calculated with low computational
costs, while a good balance between the long-range dependency modeling ability and computational
efficiency was achieved.

Inspired by previous works, we propose a new filter pruning method termed Filter Pruning
with Attention Mechanism (PFAM), which integrates an attention mechanism into the filter pruning.
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In particular, the attention module is used to count and collect the correlation value of each filter and
then select the less correlated filters based on those values; hence, the overall correlations among all
filters in one convolutional layer are considered to obtain the minimal accuracy loss globally. In the
pruning stage, the values of those selected as less correlated are set to zero, which means these filters
are removed. In the next training epoch, the values of pruned filters are recovered from zero to
non-zero and updated by the upcoming forward-backward operations. By doing so, the training
data can be processed by the original training strategy without compromising the performance,
while the compressed network model can be obtained in the end with no need for the pretrained
model. The general process of the proposed filter pruning approach is shown in Figure 1.
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Figure 1. The overview of Filter Pruning with Attention Mechanism (PFAM). (a) Filter selection based
on the correlation criterion. Note that the sum of the correlation values is 1 due to the output of
softmax. The filters with less correlation values will be pruned based on the pre-set pruning ratio.
(b) An example of filter pruning in convolutional layers. The pruned filters are allowed to be updated
to non-zero during each training epoch prior to the next pruning stage to maintain the model capacity.

3.2. Filter Selection with Attention-Based Correlation

Figure 2 illustrates the working flow of the proposed attention module in calculating the
correlation values between filters in one convolutional layer, which shares a similar structure as
many computer vision tasks. In particular, the filters are treated like the feature maps in the sense
that flatting one filter into a one-dimensional vector is similar to flatting one feature map into a
one-dimensional vector, but with different vector length. In our paper, instead of finding the most
attractive feature maps in previous works, we aim at selecting the least attractive filters from a certain
number of candidates and pruning those less correlated filters to create a compact model.
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Figure 2. The proposed attention module for PFAM. ⊗ denotes the matrix multiplication. The softmax
operation is performed on each row.

Without loss of generality, we first define some mathematical symbols following [32] to ease the
explanation. To be specific, the dimension of filter tensor with a k× k filter size in the i-th convolutional
layer is defined as W(i) ∈ RCi+1×Ci×k×k, where 1 ≤ i ≤ L. Ci+1 and Ci mean the number of output and
input channels separately for the i-th convolutional layer and L is the number of layers. Then, all the
filters are flattened in the i-th layer as W(i) ∈ RCi+1×V , where V denotes the shape of each filter in the
i-th convolutional layer and equals Ci × k× k. The filters in the i-th layer are first transformed into two
weight spaces F(w) = W(i)

f and G(w) = W(i)
g to calculate the attention map, which can be formulated

as below:

θj,k =
esjk

∑M
k=1 esjk

, where sjk = F(wj)G(wk)
T
. (1)

F(wj) and G(wk) represent the values of the j-th filter in W(i)
f and the k-th filter in W(i)

g weight
spaces, respectively. θj,k represents the correlative extent between the j-th and k-th filter. M is the
number of filters in the i-th convolutional layer. Therefore, the output of the attention value is
∂ = (∂1, ∂2, . . . ∂k, . . . ∂M) ∈ R1×M, where:

∂k = ∑M
j=1 θj,k. (2)

As discussed above, the attention module is used to evaluate the correlation of each filter based
on Equation (2) in the pruning stage. The filters with smaller correlation values can be pruned,
because it turns out that they have less impact on the network performance, as opposed to other highly
correlated filters.

3.3. Filter Pruning and Reconstruction

In the pruning stage, all the candidate convolution layers with the same pruning rate Pi = P
are pruned at the same time, which saves a large amount of computations, compared to the hard
pruning methods. In particular, a pruning rate Pi is set to select a total number of Ci+1Pi less correlated
filters in the i-th convolution layer [32,35]. After pruning the filters in each convolution layer, existing
methods always require extra training to converge the network [21,22]. During the training process,
these selected filters are first zeroed out, which means they have no contribution to the network output
in the current pruning stage.

In most filter pruning methods, however, the pruned filters and their associated feature maps are
removed permanently during the pruning process, which could affect the performance significantly.
To deal with this problem, these pruning methods usually are conducted based on the pretrained
model, and they also need to spend extra fine-tuning time for accuracy compensation. To get rid of the
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heavy dependences on the pretrained model and the time-consuming fine-tuning process, we follow
the same reconstruction strategy as [27] at this stage, where the pruned filters in the previous pruning
process are reconstructed during one epoch of retraining. To be specific, these pruned filter values are
updated from zero to non-zero after the backpropagation [32,35]. By doing so, the pruned model still
has the same capacity as the original model during the training process. More importantly, each of
those filters can still contribute to the final prediction. As a result, we can train our network from
either scratch or the pretrained model and obtain competitive results even without the need for the
fine-tuning stage.

3.4. Compact Network Creation

Figure 3 shows the flowchart of the proposed PFAM, where the iterative training is repeatedly
performed until the accuracy loss becomes converged after several training epochs. We can get a sparse
model with multiple zeroed filters when the model becomes converged. These selected filters will
remain unchanged because the iteration has completed. Since each filter corresponds to one feature
map, these feature maps corresponding to those zeroed filters will always be zero during the inference
procedure. Removal of these zeroed filters, as well as their related feature maps will not have any
effect. After the iteration of the previous steps, the compact model is finally created. The whole process
is briefly summarized in Algorithm 1.

Compact
network

Initialize
network

Select filters with 
small correlations

Reconstruct the 
pruned filters

Prune selected filters 
simultaneously

Figure 3. The flowchart of the proposed filter pruning. The dotted line means the iterative
training scheme.

Algorithm 1 Algorithm description of PFAM.

Input: Training data X; Pruning rate Pi; Training epoch number epoch;
Output: The compact model W∗ from W;

1: Randomly initialize the network parameters W = {W(i), 0 ≤ i ≤ L};
2: for epoch = 1; epoch ≤ epochmax; epoch ++ do

3: Update the model parameter W based on data X;
4: for i = 1; i ≤ L; i ++ do

5: Find Ni+1Pi filters that satisfy Equation (2);
6: Zeroize selected filters;
7: end for
8: end for
9: return the compact model W∗ from W.

4. Experiments and Analysis

In this section, we provide extensive experimental results and analysis to illustrate the system
performance of our algorithm on three popular remote sensing benchmarks: Remote Sensing Image
Scene Classification, created by Northwestern Polytechnical University (NWPU-RESISC45) [45], Aerial
Image Dataset (AID) [46], and RSSCN7 [47].
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4.1. Benchmark Datasets

4.1.1. NWPU-RESISC45 Dataset

NWPU-RESISC45 (http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html) [45]
is a popular public dataset for remote sensing image scene classification, which was extracted from
Google Earth by experts at Northwestern Polytechnical University (NWPU). This dataset is made up
of a total of 31,500 images, which are categorized into 45 scene classes as shown in Figure 4. Each class
includes 700 images with a size of 256× 256 pixels in the RGB color space.

         
Airplane       Airport        Baseball   Basketball Court     Beach         Bridge        Chaparral      Church    Circular Farmland 

         
Cloud    Commercial Area Dense Residential    Desert         Forest        Freeway     Golf Course  Ground Track Field   Harbor 

         
Industrial Area   Intersection      Island          Lake         Meadow     Residential    Mobile Home    Mountain      Overpass 

         
Palace       Parking Lot      Railway    Railway Station    Farmland       River      Roundabout     Runway        Sea Ice 

         
Ship        Snowberg   Parse Residential    Stadium     Storage Tank    Tennis Court     Terrace      Power Station    Wetland 

Figure 4. Example images of the Northwestern Polytechnical University (NWPU)-RESISC45 dataset.

4.1.2. RSSCN Dataset

The RSSCN7 (https://github.com/palewitout/RSSCN7) [47] dataset was released in 2015 by
Wuhan University, China, which contains 2800 remote sensing images in total from seven typical scene
categories: grasslands, forests, farmland, car parks, residential areas, industrial areas, and rivers and
lakes, as shown in Figure 5. For each category, there are 400 images with the size 400× 400 collected
from Google Earth, and these pictures are sampled at four different scales. It is also a challenging
dataset because the remote images were taken in different seasons and weather conditions with various
sampling scales.

    

             

Grass           Field          Industry       River Lake        Forest          Resident        Parking    

 
  

Figure 5. Example images of the RSSCN7dataset.

4.1.3. AID Dataset

AID (https://captain-whu.github.io/AID/) [46] is a large-scale aerial image dataset, which was
selected from Google Earth imagery. This dataset contains in total 10,000 images with a fixed size of

http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
https://github.com/palewitout/RSSCN7
https://captain-whu.github.io/AID/
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600× 600 pixels within 30 classes, as shown in Figure 6. Compared to other classic datasets, the number
of images for each category is not equal, and different scene types range from 220 to 420, which makes
it more challenging in the image classification. Although images in this dataset were acquired at
different times with different imaging conditions, some classes are quite similar and therefore make
the differences between classes smaller.

           
Airport          Bare Land       Baseball Field         Beach            Bridge           Centre 

           
Church         Commercial     Dense Residential       Desert          Farmland          Forest 

           
Industrial        Meadow      Medium Residential     Mountain           Park            Parking 

           
Playground          Pond             Port          Railway Station        Resort            River 

           
School       Sparse Residential       Square          Stadium          Storage Tanks      Viaduct 

 
 

Figure 6. Example images of the AID dataset.

4.2. Experimental Settings

4.2.1. Deep Architecture

In the experiment, we chose a popular deep model, ResNet [15], as the backbone network because
of the more complex and less redundant structure of ResNet compared to VGG models [48]. We also
conducted experiments on the VGG models to further consolidate the superiority of our method.

4.2.2. Implementation Details

In this work, the PyTorch framework was used to implement the proposed method. In the dataset
preprocessing, we followed the PyTorch guidance [49] to perform data argumentation. To be specific,
all images in the AID dataset were resized to 256× 256 pixels from the original 600× 600 pixels,
which follows the same image size in the NWPU-RESISC45 dataset. Regarding the RSSCN7 dataset,
we resized all images from 400× 400 pixels to 256× 256 pixels for the same reason.

We applied the same training ratio (80%) to make fair comparisons of the experiments, and all
three datasets were randomly divided into training and testing sets based on the pre-set ratios to
calculate the overall classification accuracy. All the experiments were conducted three times to get fair
and reliable results. The hardware configurations were the Linux Ubuntu 14.04 operating system with
i7-5960X CPU, 64GB RAMs, and one NVIDIA GTX1080Ti GPU.
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In the pruning stage, only one hyper-parameter Pi = P was set to prune all the convolutional
layers after finishing every training epoch. The pruning rate makes a trade-off between the compression
and the accuracy throughout the pruning process [32]. Notably, the projection shortcuts do not need
to be pruned for the compression because of the limited contribution to the overall costs when using
ResNet [15] in the evaluation.

In the network training, we used Stochastic Gradient Descent (SGD) as the optimizer with the
weight decay and momentum as 0.0005 and 0.9, respectively. The learning rates were set separately for
two training phases: 0.01 in the first 50 epochs and 0.002 for the last 50 epochs. The training processes
for all network models were terminated when the training losses converged. Moreover, the batch-size
was set to 64 for the NWPU-RESISC45 dataset and 32 for the AID dataset and the RSSCN7 dataset to
balance the requirements of the computer memory and the image number contained in the training
and test sets.

We tested our method on VGG-16 [48] and ResNet-18, -34, -50, and -101 [15], respectively. In order
to make fair comparisons, we used the pruning rate of 40% for the same model, while the pruning
methods for both the scratch and the pretrained model during the same training epochs were also
tested and analyzed. There is no need to conduct the fine-tuning after the scratch-wise model training
in our method when compared to many previous approaches with the hard pruning manner.

4.2.3. Evaluation Metrics

Four different evaluation metrics, Accuracy (Acc.), Accuracy Drop (Acc. Drop), FLOPs, and
pruning ratio (Pruning), were used in the experiments, where the italics denote the symbols in the
tables. Almost all model compression methods compare the performance using the pruning ratio
vs. model accuracy. We tweaked the global pruning rate (normally a parameter) of each algorithm
involved in the comparison, such that all the models pruned by different methods were more or less
identical, e.g., 40%, in terms of the size of the model. Then, we tested the pruned models on remote
sensing datasets and calculated the top 1 accuracy, given the image classification task. In particular,
Acc. measures the classification accuracy obtained by the specific method, which is expressed as
the average and the standard deviation of accuracy after running the experiments three times. Acc.
Drop is computed by the accuracy of the pruned model minus that of the baseline model, where a
negative number implies that the pruned model achieves even higher accuracy than the baseline model.
The smaller Acc. Drop is, the better performance. The pruning rate denotes the real compression
ratio of the network models. The larger the pruning rate is, the more compact model. FLOPs denotes
the total number of floating-point operations, which is used as a reference metric in evaluating the
pruning method.

Followed by [50] (Equation (3)), the top k prediction was made up of any set of labels related
to the k biggest scores and k ∈ {1, . . . , n− 1}. Concretely, we assumed that Y(k) ∈ {1, . . . , n} was the
set of k-tuples with k distinct elements in the output space. y means the set of k-tuples of the ground
truth label. s ∈ Rn and s

[k] are defined as a vector of scores per label and the k-th biggest element of s,
respectively. Next, from Equation (4), we sum up the number of Pk(s) by Equation (3) and then divide
the batch size to get the top k accuracy for one batch. Finally, we get the final average top k accuracy
for all images by averaging them from all batches.

Pk (s) ∈
{

y ∈ Y(k) : ∀i ∈ {1, . . . , k} , syi ≥ s[k]
}

(3)

Top (k) accuracy = Avg
(

sum (Pk(s))
batch size

)
(4)
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4.3. Comparisons with the State-of-the-Art

4.3.1. Results on NWPU-RESISC45

Table 1 shows the results on the NWPU-RESISC45 dataset when applying ResNet-18, -34, -50,
and -101 respectively for remote sensing image classification, where our proposed method achieved
superior performance compared to the other state-of-the-art filter pruning methods. In particular,
PFEC [29] used the hard pruning method in pruning ResNet-18 and -34 with accuracies of 89.78%
and 90.75% independently, whereas the figures from SFP [32] were 0.29% and 0.42% lower than them,
but FPGM [35] obtained better results than them. Although ThiNet [51] obtained the second highest
accuracy in pruning ResNet-18 and -50 with 92.47% and 92.60%, which outperformed the other two
soft pruning methods, our method still obtained the highest accuracy among them, where PFAM
achieved the highest accuracies (92.56% and 92.87%) with compression ratios of 42.3% and 40.6%.
Moreover, PFAM achieved the lowest accuracy drops of 0.27% on ResNet-34 with the second largest
compression ratio. FPGM [35] achieved the best accuracy (92.64%) among the five methods when
pruning ResNet-101, which was slightly better than our PFAM (92.52%). It is noted that, in this case,
the pruning ratio of our PFAM (39.6%) was larger than that of FPGM [35] (38.1%). To sum up the
above experimental results, our PFAM obtained a highly compressed network model with competitive
performance in most cases, given the NWPU-RESISC45 dataset.

Table 1. Comparison of pruning ResNet on the NWPU-RESISC45 dataset. Acc, Accuracy.

Model Method Acc. (%) Acc. Drop (%) FLOPs Pruning (%)

Baseline 93.40 (±0.32) 0 6.05× 108 0
PFEC [29] 89.78 (±0.15) 3.62 3.78× 108 37.5

18 ThiNet [51] 92.47 (±0.11) 0.93 3.79× 108 37.4
SFP [32] 89.49 (±0.27) 3.91 3.41× 108 43.6

FPGM [35] 92.28 (±0.18) 1.12 3.68× 108 39.2
PFAM (ours) 92.56 (±0.23) 0.84 3.49× 108 42.3

Baseline 93.73 (±0.11) 0 1.22× 109 0
PFEC [29] 90.75 (±0.24) 2.98 7.47× 108 38.8

34 ThiNet [51] 93.08 (±0.22) 0.65 7.46× 108 38.9
SFP [32] 90.33 (±0.17) 3.40 6.81× 108 44.2

FPGM [35] 93.24 (±0.08) 0.49 7.39× 108 39.4
PFAM (ours) 93.46 (±0.14) 0.27 7.25× 108 40.6

Baseline 93.37 (±0.21) 0 1.36× 109 0
PFEC [29] 90.65 (±0.33) 2.72 8.50× 108 37.5

50 ThiNet [51] 92.60 (±0.17) 0.77 8.67× 108 36.3
SFP [32] 91.35 (±0.23) 2.02 8.49× 108 37.6

FPGM [35] 92.57 (±0.12) 0.80 8.69× 108 36.1
PFAM (ours) 92.87 (±0.25) 0.50 8.44× 108 37.9

Baseline 93.17 (±0.13) 0 2.60× 109 0
PFEC [29] 88.49 (±0.35) 4.68 1.43× 109 45.0

101 ThiNet [51] 92.22 (±0.21) 0.95 1.59× 109 38.8
SFP [32] 91.90 (±0.28) 1.27 1.58× 109 39.2

FPGM [35] 92.64 (±0.06) 0.53 1.61× 109 38.1
PFAM (ours) 92.52 (±0.14) 0.65 1.57× 109 39.6

4.3.2. ResNet on the AID Dataset

Similarly, our proposed method consistently outperformed the other state-of-the-art methods
on the AID dataset, as shown in Table 2. Although SFP [32] achieved the largest pruning ratios on
ResNet-18, -34, -50, and -101, much higher accuracies were achieved by our proposed PFAM, where the
gaps were 4.01%, 4.26%, 3%, and 3.17%, respectively. FPGM [35] obtained the second-best results in
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these experiments, and the accuracy was at least 0.19% (on ResNet-18: 85.08% vs. 85.27%) lower than
that of PFAM. Although hard pruning methods such as PFEC [29] and ThiNet [51] obtained higher
accuracy than SFP [32], their performance was still worse than ours. It is worth mentioning that our
filter pruning method even outperformed the original model when pruning ResNet-101 in terms of
accuracy, which was 84.17% and 84.10%, respectively. That indicates the powerful ability of PFAM in
producing a highly compressed model while maintaining competitive performance.

Table 2. Comparison of pruning ResNet on the AID dataset.

Model Method Acc. (%) Acc. Drop (%) FLOPs Pruning (%)

Baseline 85.56 (±0.12) 0 6.05× 108 0
PFEC [29] 81.95 (±0.23) 3.61 3.79× 108 37.4

18 ThiNet [51] 83.76 (±0.15) 1.80 3.79× 108 37.4
SFP [32] 81.26 (±0.27) 4.30 3.38× 108 44.1

FPGM [35] 85.08 (±0.13) 0.48 3.68× 108 39.2
PFAM (ours) 85.27 (±0.11) 0.29 3.60× 108 40.5

Baseline 85.83 (±0.11) 0 1.22× 109 0
PFEC [29] 81.63 (±0.22) 4.20 7.47× 108 38.8

34 ThiNet [51] 83.34 (±0.15) 2.49 7.47× 108 38.8
SFP [32] 79.96 (±0.25) 5.87 6.78× 108 44.4

FPGM [35] 83.55 (±0.07) 2.28 7.39× 108 39.4
PFAM (ours) 84.22 (±0.16) 1.61 7.32× 108 40.0

Baseline 84.86 (±0.27) 0 1.36× 109 0
PFEC [29] 81.60 (±0.19) 3.26 8.50× 108 37.5

50 ThiNet [51] 82.34 (±0.21) 2.52 8.67× 108 36.3
SFP [32] 81.43 (±0.33) 3.43 8.44× 108 37.9

FPGM [35] 83.76 (±0.15) 1.10 8.69× 108 36.1
PFAM (ours) 84.43 (±0.22) 0.43 8.54× 108 37.2

Baseline 84.10 (±0.19) 0 2.60× 109 0
PFEC [29] 83.27 (±0.11) 0.83 1.69× 109 35.0

101 ThiNet [51] 81.25 (±0.18) 2.85 1.59× 109 38.8
SFP [32] 81.00 (±0.32) 3.10 1.57× 109 39.6

FPGM [35] 83.87 (±0.07) 0.23 1.61× 109 38.1
PFAM (ours) 84.17 (±0.13) −0.07 1.59× 109 38.8

To provide more comprehensive performance verification of our method, we also tested our
method on pruning VGG-16 with training from scratch (Table 3) and ResNet based on the pretrained
model (Table 4) on the AID dataset. The results in Table 3 describe the effectiveness of the soft
pruning methods compared to the hard ones on the VGG-16 model, where PFAM still achieved
the best accuracy (86.03%) under the same compression ratio among the four pruning methods.
The performance degradation was inevitable for the hard filter pruning methods like PFEC [29], while
the soft filter pruning methods enabled maintaining the strong network expressive ability after the
reconstruction stage on the pruned filters to obtain better performance. In Table 4, the proposed PFAM
achieves the best accuracies in pruning ResNet-18 (89.86%), -34 (89.77%), and -101 (90.57%), which
demonstrate the effectiveness of our method in pruning ResNet with the pretrained model.

Table 3. Comparison of pruning VGG-16 on the AID dataset.

Method Acc. (%) Acc. Drop (%) FLOPs Pruning (%)

Baseline 86.55 (±0.11) 0 5.12× 109 0
PFEC [29] 82.31 (±0.35) 4.24 3.26× 109 36.3
SFP [32] 85.58 (±0.23) 0.97 3.08× 109 39.8

FPGM [35] 85.88 (±0.11) 0.67 3.08× 109 39.8
PFAM (ours) 86.03 (±0.14) 0.52 3.08× 109 39.8
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Table 4. Accuracies (%) of pruning ResNet based on the pretrained model on the AID dataset.

Method ResNet-18 (%) ResNet-34 (%) ResNet-50 (%) ResNet-101 (%)

Baseline 90.07 (±0.11) 90.53 (±0.28)) 90.73 (±0.33) 90.84 (±0.27)
PFEC [29] 88.10 (±0.35) 88.34 (±0.25) 88.49 (±0.26) 89.76 (±0.15)
SFP [32] 89.03 (±0.23) 89.15 (±0.32) 89.57 (±0.44) 90.13 (±0.35)

FPGM [35] 89.44 (±0.11) 89.71 (±0.19) 90.53 (±0.21) 90.55 (±0.17)
PFAM (ours) 89.86 (±0.14) 89.77 (±0.23) 90.32 (±0.28) 90.57 (±0.29)

4.3.3. Results on RSSCN7

For the RSSCN7 dataset, we tested our PFAM on ResNet-18, -34, -50, and -101 and VGG-16 with a
40% pruning ratio to provide comprehensive insights into the performance. In Table 5, PFAM obtains
the best performance compared to the other three methods on VGG-16, which is the same as Table 3.
Although SFP [32], FPGM [35], and PFAM achieved the same compression ratio (39.8%), the accuracy
of our method was much higher than their’s. It can be seen that our proposed method also showed a
high effect on selecting and pruning redundant filters on VGGNet.

Moreover, In Table 6, unlike previous results on the NWPU-RESISC45 and AID datasets, SFP [32]
obtained the worst performances except on ResNet-101 in the experiments, even though it obtained the
highest compression ratios. However, FPGM [35] and our proposed method generally achieved better
experimental results than the norm-criterion methods like PFEC [29] and SFP [32]. The reason for the
worse performance is that the norm-criterion methods only focus on pruning each individual filter
without considering the global correlation among all filters. Therefore, this leads to the suboptimal
performance. Compared to the methods selecting filters based on the norm-based criterion and the
geometric median, the proposed attention module is utilized in PFAM to find the correlation between
filters globally, which enables yielding superior performance because of the advanced pruning strategy.

Table 5. Comparison of pruning VGG-16 on the RSSCN7 dataset.

Method Acc. (%) Acc. Drop (%) FLOPs Pruning (%)

Baseline 90.00 (±0.17) 0 5.12× 109 0
PFEC [29] 85.18 (±0.33) 4.82 3.26× 109 36.3
SFP [32] 85.18 (±0.13) 4.82 3.08× 109 39.8

FPGM [35] 87.68 (±0.21) 2.32 3.08× 109 39.8
PFAM (ours) 88.04 (±0.22) 1.96 3.08× 109 39.8

Table 6. Comparison of pruning ResNet on the RSSCN7 dataset.

Model Method Acc. (%) Acc. Drop (%) FLOPs Pruning (%)

Baseline 86.43 (±0.23) 0 6.05× 108 0
PFEC [29] 83.57 (±0.13) 2.68 3.79× 108 37.4

18 ThiNet [51] 85.18 (±0.11) 1.25 3.77× 108 37.7
SFP [32] 82.86 (±0.16) 3.57 3.68× 108 44.6

FPGM [35] 85.00 (±0.22) 1.43 6.05× 108 39.2
PFAM (ours) 85.51 (±0.17) 0.92 3.63× 108 40.0

Baseline 86.07 (±0.14) 0 1.22× 109 0
PFEC [29] 83.39 (±0.28) 2.68 7.47× 108 38.8

34 ThiNet [51] 85.63 (±0.23) 0.44 7.47× 108 38.8
SFP [32] 81.83 (±0.22) 4.24 6.66× 108 45.4

FPGM [35] 85.37 (±0.18) 0.70 7.39× 108 39.4
PFAM (ours) 85.71 (±0.25) 0.36 7.36× 108 39.7
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Table 6. Cont.

Model Method Acc. (%) Acc. Drop (%) FLOPs Pruning (%)

Baseline 85.28 (±0.21) 0 1.36× 109 0
PFEC [29] 80.71 (±0.17) 4.57 8.50× 108 37.5

50 ThiNet [51] 83.39 (±0.27) 1.89 8.66× 108 36.3
SFP [32] 80.36 (±0.31) 4.92 8.42× 108 38.1

FPGM [35] 84.64 (±0.25) 0.64 8.69× 108 36.1
PFAM (ours) 83.93 (±0.28) 1.35 8.66× 108 36.3

Baseline 85.35 (±0.15) 0 2.60× 109 0
PFEC [29] 83.39 (±0.24) 1.96 1.69× 109 35.0

101 ThiNet [51] 82.53 (±0.33) 2.82 1.59× 109 38.8
SFP [32] 82.93 (±0.41) 2.42 1.56× 109 40.0

FPGM [35] 83.92 (±0.22) 1.43 1.61× 109 38.1
PFAM (ours) 83.93 (±0.26) 1.42 1.61× 109 38.1

5. Discussion

In view of the comparison results of PEFC [29], ThiNet [51], SFP [32], and FPGM [35] on three test
datasets, it is clear that our method generally yields competitive performance throughout extensive
evaluations. We achieve the best performance in the vast majority of neural network architectures,
which can show that the way we select the to-be-pruned filters is better than the other methods.
The main advantage of the proposed method is that the overall correlation between filters in one
convolutional layer is considered in the pruning, rather than only caring about the importance of
each individual filter. In order to further investigate the performance difference of our method and
the current leading methods under different pruning rates, we conducted extensive experiments
regarding the performance variations by applying different pruning ratios on ResNet-18 and -34.
The corresponding results are shown in Figure 7a,b. Since our method belongs to the soft pruning
methods, we verified two other soft pruning methods for a fair comparison. Hence, three soft filter
pruning methods, SFP [32], FPGM [35], and PFAM (ours), were tested on the NWPU-RESISC45 and
RSSCN7 datasets, respectively. It is worth mentioning that the performance of SFP [32] became far
worse than the other two methods with the increasing pruning ratio on both the RSSCN7 dataset and
the NWPU-RESISC45 dataset.

For the RSSCN7 dataset, from Table 7, we can see that our method achieves the best performance
at most pruning ratios (20%, 40%, and 60%) in pruning ResNet-18, while the accuracy of FPGM [35] is
the highest at the extreme compression ratio of 80%, and a similar situation happened in the experiment
results of pruning ResNet-34. However, on the relatively high pruning rate 80%, our approach does
not perform as well as it did at the other pruning rate because too many filters are pruned in each
convolution layer. Given a small or moderate pruning rate, such as 20% or 40%, our proposed method
can accurately find the most redundant filters by calculating the correlation between the filters. That is
why we consistently outperform the other algorithms across different datasets. However, with the
increase of the pruning rate, our pruning method does not perform the best, because too many
filters are removed from each convolutional layer. When the pruning rate is as high as 80%, which
means nearly 80% of filters in each convolution layer need to be pruned, this greatly damages the
final prediction.

On the NWPU-RESISC45 dataset, SFP [32] continues its poor performance with the increasing
pruning ratio, as shown in Figure 7a,b. In Figure 7a, PFAM (green line) outperforms the other two
methods for all the pruning ratios, while in Figure 7b, PFAM achieves the best performance under
all settings on ResNet-34, except for FPGM [35] at the pruning rate of 60%. It seems that our method
occasionally performs worse than FPGM on one specific dataset. The reason might be that there are
so many filters with similar correlation values, which happened to confuse our selection mechanism.
In other words, our selection mechanism is not good enough, compared to FPGM, in this particular
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case. Although our approach does not perform very well at a pruning rate of 60% because of the filter
selection, we still achieve the best performance compared to the three other settings, which can show
the way that we chose the filters is better than the other comparison methods in most cases.
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Figure 7. The comparisons among the three methods on pruning ResNet-18 (a) and -34 (b) with various
pruning ratios.

Table 7. The comparisons of SFP, FPGM, and PFAM for pruning ResNet on the RSSCN7 dataset with
pruning ratios of 0.2, 0.4, 0.6, and 0.8.

Compression Rate Method ResNet-18 (%) ResNet-34 (%)

SFP [32] 85.00 (±0.14) 83.03 (±0.22)
20% FPGM [35] 85.79 (±0.21) 85.58 (±0.16)

PFAM (ours) 86.00 (±0.15) 85.76 (±0.13)

SFP [32] 82.86 (±0.16) 81.83 (±0.22)
40% FPGM [35] 85.00 (±0.22) 85.37 (±0.18)

PFAM (ours) 85.51 (±0.17) 85.71 (±0.25)

SFP [32] 80.89 (±0.33) 73.39 (±0.30)
60% FPGM [35] 84.29 (±0.21) 84.29 (±0.09)

PFAM(ours) 84.82 (±0.14) 85.17 (±0.13)

SFP [32] 74.46 (±0.27) 65.89 (±0.32)
80% FPGM [35] 83.11 (±0.05) 83.92 (±0.25)

PFAM (ours) 82.77 (±0.09) 82.80 (±0.23)

Although the experimental results on the three remote sensing datasets illustrate the effectiveness
of the proposed filter pruning method, there are still some limitations. For example, the filter selection
mechanism, given large compression ratios, does not seem optimal, though it works perfectly at
relatively small compression ratios. Besides, our method treats each convolution layer as having
equal significance during the pruning stage, which may have a huge negative impact on overall
performance if many filters need to be pruned from an important layer. Likewise, the neural network
architecture still has high redundancy if only a few filters are pruned from some layers that are not
significant. Therefore, how to prune filters in each convolution layer dynamically remains as a future
research point.

6. Conclusions and Future Work

In this paper, we present a novel method termed Pruning Filter with Attention Mechanism (PFAM)
for lightweight remote sensing image classification. In particular, a correlation-based filter pruning
criterion is applied, where the correlation between filters is determined by the attention mechanism.
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Different from previous pruning methods, we prune filters with the least correlation, which has a
small negative impact on the overall correlation among filters in one layer. These less correlated filters
are firstly pruned after the pruning stage in the current training epoch, then they are recovered and
updated during the next training epoch. In this way, the training data are processed by the original
model during the training process, while the compressed network model can be obtained in the
end without the need for the extra fine-tuning stage. The proposed method is extensively evaluated
on three public remote sensing image datasets, and the experimental results show that our method
achieves superior performance compared to the state-of-the-art methods. Notably, PFAM achieves the
best performance under all types of ResNet architectures and VGG-16 on the AID dataset, especially for
ResNet-34 and -50, which obtains 0.67% higher accuracy than the state-of-the-art at similar compression
ratios. However, we still treat each layer equally during the pruning stage, which may have a huge
negative impact on overall performance if it happens to prune many filters from an important layer.
Hence, we will design a sort of dynamic pruning strategy, which could determine the number of
to-be-pruned filters at certain layers based on their importance levels. Doing so will help reduce the
model complexity dramatically while affecting the accuracy little. Additionally, in future work, we
will use our technique to compress deep CNN architectures for various applications, such as visual
tracking [52–54], video analysis [55,56], and large-scale visual search [57,58].
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