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Abstract: Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic
steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths
of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there
are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various
metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates,
amino acids, and micronutrients. In recent years, the medicinal properties of natural products have
attracted widespread attention, and numerous studies have reported their efficacy in ameliorating
metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the
metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that
regulate metabolic pathways to alleviate MAFLD.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of disorders caused
by excessive accumulation of fat in the liver (defined as hepatic steatosis ≥ 5%) in the
absence of alcoholic over-consumption or other chronic liver diseases, ranging from simple
steatosis to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma [1,2]. NAFLD
is considered to be a metabolic disease caused by a complex interaction among genetic
factors, systematic metabolic disorders, and the environment, and factors such as race,
genetic susceptibility, dietary habits, metabolic conditions, immunity, and intestinal flora
are closely related to its clinical performance and disease progression [3]. Recently, the term
metabolic-associated fatty liver disease (MAFLD) has been considered to be more in line
with the characterization of the syndrome and represents more significant clinical, research
and patient benefits [4,5]. With an estimated prevalence of 39.22% globally, MAFLD has
been the most common liver disease in the world [6,7].

The liver functions as a crucial metabolic organ in the body and metabolic disorders in
the liver play a key role in the progression of various hepatic diseases. It is responsible for
synthesizing, metabolizing, storing, and redistributing carbohydrates, proteins, and lipids,
in which glucose and lipid metabolism are of paramount importance in the pathophysiology
of MAFLD [8]. Metabolic disorders, including insulin resistance, impaired glycemic control,
altered lipid metabolism, and changes in amino acid composition, are considered the main
pathogenesis of MAFLD [9]. The pathogenic role of macronutrient metabolic imbalances
in MAFLD has been well established. Additionally, micronutrients, namely, vitamins
and minerals, also play a significant role, as the liver is also highly responsible for the
metabolism of micronutrients. Specifically, metabolism imbalances of vitamins (vitamins
A, D, E, etc.) and minerals (iron, copper, zinc, etc.) have been linked to the development of
MAFLD [10]. Therefore, MAFLD involves the dysregulation of multiple nutrient metabolic
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pathways and significant etiologic heterogeneity, which poses a challenge in exploring and
understanding the pathogenesis of MAFLD.

Currently, there are no drugs approved for clinical use in MAFLD. It is shown that
an abnormal lifestyle has a strong connection with the disease’s progression. Recent
evidence further emphasized that a shift in dietary patterns, especially toward a high-fat
and/or a high-sugar diet, highly contributes to the onset of MAFLD by interfering with
the metabolic functions and homeostasis of the body [11,12]. However, maintaining an
improved lifestyle including eating habits is often challenging for patients with MAFLD,
which causes weakened clinical benefits. Hence, it is crucial to investigate the pathogenesis
of MAFLD thoroughly and identify safe and effective prevention and treatment strategies.
In recent years, natural active substances, mainly of plant origin, have attracted extensive
attention and have become an important source for developing therapies for various
diseases [13]. Numerous studies have reported promising applications of natural products
in preventing and controlling MAFLD. Therefore, this review aims to summarize the
association between nutrient metabolism disorders and MAFLD, as well as the natural
products that can potentially prevent and treat MAFLD by modulating nutrient metabolism
disorders.

2. Nutrient Metabolism and MAFLD
2.1. Macronutrient Metabolism and MAFLD
2.1.1. Lipid Metabolism and MAFLD

The liver plays a crucial role in regulating lipid metabolism via complex molecu-
lar mechanisms. It is highly involved in lipid digestion, absorption, uptake, synthesis,
secretion, and oxidation. Hepatic steatosis occurs when the pathways of lipid uptake
and synthesis are stronger than the pathways of lipid oxidation and export [14]. Lipid
metabolism disorder is the most critical pathogenesis of MAFLD.

Lipid Uptake and MAFLD

Typically, adipocytes store lipids from dietary sources to maintain normal blood lipid
levels. However, in pathological conditions such as obesity and metabolic syndrome that
lead to insulin resistance, lipolysis in adipocytes is increased, resulting in the release of
large amounts of free fatty acids into the bloodstream [15]. Hepatocytes subsequently
increase fatty acid uptake in response, which is mainly mediated by lipid transporters such
as Cluster Determinant 36 (CD36) and Fatty Acid Transporter Proteins (FATPs) (Figure 1).
CD36 is mainly located at the plasma membrane and plays important roles in hepatic lipid
transport, oxidation, and synthesis, which are regulated by various upstream factors such
as Peroxisome Proliferator-Activated Receptor γ (PPARγ) and Arylhydrocarbon Receptor
(AhR) [15,16]. After palmitoylation, CD36 is able to recognize and capture fatty acids,
followed by depalmitoylation to initiate endocytosis to transport fatty acids into cells [17].
CD36 localization to the plasma membrane increases in the steatohepatitis phase, and the
inhibition of CD36 palmitoylation promotes its translocation to the mitochondria, thereby
ameliorating hepatic lipid metabolism disorders in mice and reducing inflammatory re-
sponses [18,19]. Therefore, CD36 could be a crucial and promising therapeutic target for
MAFLD. FATPs contain six members of FATP1-6 encoded by SLC27A1-6, respectively,
which are essential for the transport of long-chain fatty acids [20]. FATP2/5 are the major
isoforms, of which FATP5 is unique in liver [20,21]. Evidence suggested that upregulated
FATP2 promoted hepatic fat accumulation and could be one of the potential therapeutic
targets for hepatic steatosis [22,23]. In addition, upregulated FATP5 was associated with
increased hepatic steatosis in male patients with MAFLD [24]. FATP5 knockdown effec-
tively alleviated obesity and hepatic steatosis in mice [25,26]. Notably, downregulated
FATP5 may be a risk factor for advanced MAFLD [27,28]. However, the dynamic regulatory
mechanisms of fatty acid transporters in the liver remain unclear, and further investigation
is needed to identify their roles in different MAFLD stages and develop the corresponding
targeted strategies.
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Figure 1. An illustration of the nutrient metabolism pathways involved in MAFLD.

De Novo Lipogenesis and MAFLD

De novo lipogenesis (DNL) is a complex metabolic pathway that converts excess carbo-
hydrates into fatty acids [29]. The liver is an important organ for carrying out DNL. Briefly,
acetyl-CoA derived from carbohydrates is converted to long-chain saturated fatty acids by
Acetyl-CoA Carboxylase (ACC) and Fatty Acid Synthase (FAS), which can be subsequently
converted to mono-unsaturated fatty acids by Stearoyl-CoA Desaturase 1 (SCD1) [30]. The
neo-synthesized fatty acids are stored in the liver as triglycerides or doped into VLDL for
extrahepatic export [30]. The DNL pathway is essential for maintaining energy homeostasis
and glucose–lipid metabolic homeostasis (Figure 1). However, over-activated hepatic DNL
pathways are important in MAFLD pathogenesis [29,30]. Carbohydrate Response Element
Binding Protein (ChREBP) is one of the key transcription factors of hepatic DNL, which
drives the transcriptional expression of crucial DNL enzymes such as ACC, FAS, and
SCD [31,32]. Numerous studies have shown that a high-sugar diet can induce MAFLD.
In particular, a high fructose diet can induce more severe steatohepatitis [33]. This is
largely due to the activation of the ChREBP pathway, which in turn enhances the hepatic
DNL pathway [34,35]. A recent study revealed the positive role of the activated NF-κB
p65/Sorcin signaling pathway in ChREBP-mediated hepatic DNL and thus MAFLD in-
duced by a high-sugar diet [36]. The degradation of key regulators of DNL such as ChREBP
via ubiquitination can inhibit hepatic steatosis [37]. However, it is noteworthy that ChREBP
knockout mice fed a high-sugar diet exhibited fructose intolerance, malabsorption, and
gastrointestinal symptoms, which may be related to the homeostasis imbalance of the in-
testinal microenvironment [38,39]. Overall, ChREBP is an important target against MAFLD.
Given its crucial physiological function, it is necessary to further consider and weigh the
pros and cons of intervention therapies targeting ChREBP.

Another key transcription factor of the DNL pathway is Sterol Regulatory Element
Binding Proteins (SREBPs). SREBPs consist of SREBP1a, SREBP1c, and SREBP2, with
SREBP1c playing a key role in the trophic regulation of fatty acids and triglycerides in
lipid-forming organs such as the liver [40]. SREBP1 is positively regulated by insulin, Liver
X Receptors (LXRs), and other signaling pathways and is subsequently cleaved by SREBP
Cleavage-Activating Protein (SCAP) in the endoplasmic reticulum membrane and translo-
cated to the Golgi apparatus for activation [41]. Activated SREBP1c then enters the nucleus
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and regulates the transcription of DNL-related genes, including ACC and FAS [42]. There-
fore, inhibition of the SCAP/SREBP1 pathway is one of the potential therapeutic strategies
for MAFLD (Figure 1). Recent studies have found that Flavin-containing Monooxygenase 2
(FMO2) competitively binds SCAP, thereby inhibiting SREBP1 activation and ameliorating
steatosis, inflammation, and fibrosis [43]. The unique role of CD36 in regulating DNL has
also been recently reported. CD36 activation by insulin disrupts the binding of SCAP to
Insulin-Induced Gene 2 (INSIG2), which activates the SREBP1 pathway [44]. In addition,
studies have also revealed that Caspase-2 activates the SREBP1/2 pathway instead of the
SCAP-dependent mechanism, thereby exacerbating MAFLD lesions [45,46]. However, it
should not be overlooked that the liver-specific knockdown of SCAP and thus inhibition
of SREBP exacerbated liver injury, fibrosis, and carcinoma in steatohepatitis mice instead,
which may be caused by the disruption of phospholipid metabolic homeostasis [47]. This
provides a new perspective for understanding the pathophysiology of SREBP. In conclusion,
the DNL pathway is an indispensable physiological function, and interventions targeting
the key regulators of the hepatic DNL pathway need to be further evaluated for their
necessity and safety, which will be significant for avoiding their risks and side effects.

Fatty Acid Oxidation and MAFLD

Fatty acids are important energy substances and can release a large amount of energy
stored in ATP via enzyme-controlled oxidation reactions. Mitochondrial β-oxidation is
the main form of fatty acid oxidation (FAO) [48]. Short-, medium-, and long-chain fatty
acids are converted to lipoacyl-CoA and then enter the mitochondria with the help of
Carnitine Palmitoyl Transferase 1 (CPT1), Carnitine Acyl Carnitine Translocase (CACT),
and Carnitine Palmitoyl Transferase 2 (CPT2) successively to generate abundant acetyl-
CoA through a series of enzymatic reactions (Figure 1) [48,49]. Ultra-long-chain fatty acids,
dihydroxy and trihydroxy cholesteric acids, long-chain dicarboxylic acids, and certain poly-
unsaturated fatty acids need to be pre-processed in peroxisome before being translocated
into the mitochondria to complete thorough β-oxidation [50]. In addition, long-chain
and ultra-long-chain fatty acids can be metabolized to dicarboxylic acids by cytochrome
P450 (CYP4A)-catalyzed ω-oxidation in the endoplasmic reticulum to provide substrates
for peroxisomal β-oxidation (Figure 1) [51]. Peroxisome proliferator-activated receptor α
(PPARα) plays a key role in the regulation of the FAO systems above [52]. The blockage of
FAO, which results in the high intracellular accumulation of fatty acids, is an important
pathogenic mechanism of MAFLD. The impaired mitochondrial function of FAO in the liver
is observed in patients with MAFLD and is positively associated with the syndrome [53].
Therefore, improving impaired hepatic FAO is significant for the treatment of MAFLD.

A number of studies have characterized and identified targets associated with abnor-
mal hepatic FAO function in MAFLD. The hepatic acetylation level of Acyl-CoA Synthetase
Long-chain family member 5 (ACSL5) and expression levels of Acyl-CoA Synthetase
Long-chain family member 4 (ACSL4) were increased in patients and mouse models
with MAFLD, and the inhibition of ACSL5 acetylation and ACSL4 expression enhanced
hepatic mitochondrial FAO and reduced lipid accumulation [54,55]. In addition, hepatic
Methylation-Controlled J protein (MCJ) levels were elevated in patients with MAFLD,
and the inhibition of MCJ enhanced mitochondrial FAO and alleviated liver injury and
fibrosis [56]. A recent study also reported that hepatic Eukaryotic Initiation Factor 5A
(EIF5A) was downregulated in patients and mice with MAFLD, and restoration of EIF5A
levels ameliorated impaired mitochondrial FAO and blocked MAFLD progression [57].
Interestingly, CD36 also plays an important role in regulating FAO. The palmitoylation level
of CD36 was upregulated in MAFLD, and the inhibition of palmitoylation increased the
distribution of CD36 across the mitochondrial membrane, which enhanced mitochondrial
FAO and alleviated MAFLD [58]. Overall, hepatic FAO is dysfunctional in MAFLD, and
the restoration of impaired FAO is one of the potential therapeutic strategies for MAFLD.
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Lipid Export and MAFLD

Another important function of the liver for regulating lipid metabolism is synthesizing
and secreting triglyceride (TG)-rich Very Low-Density Lipoprotein (VLDL), which is essen-
tial for maintaining hepatic lipid homeostasis. The first step in hepatic lipid export is the
synthesis of triglycerides. After conversion to lipoyl-CoA, exogenous or neo-synthesized
fatty acids can be used as raw materials to synthesize TG. Glycerol-3-Phosphate Acyl Trans-
ferase (GPAT) catalyzes the formation of lysophosphatidic acid (LPA) from lipoyl-CoA
and glycerol-3-phosphate (G3P), which subsequently synthesize diethylene glycol (DG) by
Acylglycerol-3-Phosphate Acyl Transferases (AGPATs), Phosphatidic Acid Phosphatases
(PAPs) and ultimately synthesize TG through diacylglycerol acyltransferase (DGAT) [59].
TGs further serve as the core lipid component of VLDL (Figure 1) [60]. DGAT may serve as
a promising therapeutic target for MAFLD [61]. The knockdown of DGAT2 significantly
reduced diet-induced hepatic TG content and improved hepatic steatosis in mice [62].
Therefore, blocking hepatic TG synthesis may contribute to alleviating MAFLD, but its
feasibility and safety remain to be further evaluated.

Disturbances in hepatic VLDL assembly and secretion lead to excessive accumula-
tion of TG and cholesterol, which drive the progression of MAFLD [63,64]. Microsomal
Triglyceride Transfer Protein (MTTP) in the endoplasmic reticulum catalyzes the lipida-
tion (i.e., incorporation of TG) of Apolipoprotein B100 (ApoB100), the precursor of VLDL,
which is subsequently translocated to the Golgi apparatus for maturation (Figure 1) [63].
Therefore, promoting VLDL assembly and secretion represents a potential therapeutic
strategy for MAFLD. Transmembrane 6 Superfamily member 2 (TM6SF2) is localized at the
smooth endoplasmic reticulum and promotes VLDL secretion by assisting in ApoB lipida-
tion [65,66]. Another recent study has identified the role of Small Leucine-Rich protein 1
(SMLR1), which is specifically expressed in the liver, in the regulation of VLDL secretion,
with SMLR1 deficiency leading to hepatic lipid accumulation [67]. In addition, intracel-
lular phospholipid metabolism has an important impact on hepatic VLDL output [68].
Recent studies have further shown that reduced hepatic phosphatidylcholine (PC) and
phosphatidylethanolamine (PE) levels are important features of lipid metabolism imbal-
ance in MAFLD, and the restoration of PC and PE levels can effectively improve impaired
hepatic VLDL secretion and alleviate lipid accumulation [69–71]. Recent studies have also
reported that mammalian Target of Rapamycin Complex 1 (mTORC1) enhanced VLDL
output via the activation of Cytidine triphosphate: phosphocholine Cytidylyltransferase-α
(CCTα) and alleviated steatohepatitis in mice [72]. Notably, extrahepatic tissues also play
an important role in regulating hepatic lipid output. Leptin secreted by adipose tissue
can stimulate hepatic VLDL output via the brain–vagus–liver axis and alleviate hepatic
steatosis [73,74]. In contrast, leptin levels are reduced in patients with MAFLD compared
with healthy populations [75]. This further suggests that MAFLD is a multi-systemic
metabolic disease and also provides a novel idea for the treatment of MAFLD. However,
over-activation of hepatic lipid output may result in other adverse consequences, including
atherosclerosis due to elevated plasma apolipoproteins [76]. This poses a new challenge for
the development of interventional approaches targeting hepatic lipid export pathways.

Lipidomic Profiling, Lipotoxicity, and MAFLD

Lipidomics studies lipid molecular networks and metabolic pathways at the cellu-
lar, tissue, and biosystem levels [77]. Differences in serum lipidomic profiles at different
MAFLD stages have provided new perspectives and evidence for the assessment and
classification of the syndrome [78]. Lipidomic analysis showed that serum free fatty acids,
TG, ceramides, and bile acid levels were significantly elevated in patients with MAFLD, and
hepatic saturated fatty acids and poly-unsaturated fatty acid levels were also significantly
higher than those in healthy people [79]. Serum acylcarnitines, sphingolipids, monoglyc-
erides, linoleic acid, and some phosphatidylcholine levels were decreased, while diglyc-
erides, other phosphatidylcholines, phosphatidylinositol, and phosphatidylethanolamine
levels were increased in female patients with obesity and MAFLD [80]. In another study, the



Metabolites 2024, 14, 218 6 of 41

relative levels of serum diglycerides, TG, phosphatidylinositol, and dihydroceramides were
significantly increased in patients with MAFLD, whereas the levels of phosphatidylglyc-
erol, phosphatidylcholine, phosphatidylserine, lysophosphatidylcholine, and cholesteryl
esters were decreased [81]. The fact that the progression of MAFLD is accompanied by
a tendentious change in serum lipidomic profiles has provided convenience for its non-
invasive and accurate diagnosis. Given the metabolic heterogeneity, further studies are
needed to determine the applicability of serum lipid metabolites as the marker at different
pathological stages.

Changes in serum lipidomic profiles reflect, in one respect, the central role of lipids
in MAFLD progression, and understanding the impact of hepatic lipids contributes to
clarifying the pathogenesis of MAFLD. In general, TGs accumulated in the liver during
the steatosis stage of MAFLD represent an inert storage form of toxic lipids, while large
amounts of free fatty acids, cholesterol, and their metabolites induce lipotoxicity [82]. Toxic
lipids are closely associated with MAFLD progression by disrupting organelle structure
and function, leading to cellular damage and even cell death [83]. The endoplasmic
reticulum, as a membrane organelle rich in lipid components, is significantly affected by
lipotoxicity. Large amounts of toxic lipids initiate the unfolded protein response pathway
through endoplasmic reticulum stress, which in turn leads to MAFLD via upregulating
the DNL pathway, activating inflammasomes, and inducing hepatocyte apoptosis [84–86].
The inhibition of over-activated endoplasmic reticulum stress in hepatocytes represents
a novel therapeutic strategy for MAFLD [87]. As mentioned above, mitochondria are the
primary place for β-oxidation of fatty acids, which is also an important target organelle of
lipotoxicity. In MAFLD, sustained fatty acid and acetyl-CoA fluxes beyond the processing
limits of mitochondria in the liver lead to the uncontrolled generation of reactive oxygen
species (ROS), which in turn leads to the reprogramming of hepatic lipid metabolism,
insulin resistance, and inflammation [88,89]. Hence, improving impaired mitochondrial
structure and function may contribute to alleviating MAFLD.

2.1.2. Carbohydrate Metabolism and MAFLD

The liver also plays a central role in carbohydrate metabolism via the uptake and
storage of elevated blood glucose after feeding and the production and release of glucose
during fasting. Carbohydrate metabolism in the liver is regulated by a variety of phys-
iological mechanisms, such as hormone (insulin, glucagon, etc.) homeostasis, allosteric
control by metabolites (acetyl coenzyme A, glucose, glucose-6-phosphate, etc.), substrate
availability, and cellular redox status [90]. Disturbed hepatic carbohydrate metabolism is
another important pathogenesis of MAFLD.

Carbohydrate Uptake and MAFLD

Carbohydrates such as glucose and fructose function as an important source of energy
for the majority of cells in the body and important substrates for metabolic pathways such
as de novo lipogenesis. Cells take up exogenous carbohydrates mainly through Glucose
Transporter proteins (GLUTs/SLC2As), of which GLUT2, GLUT5, GLUT8, etc., are highly
expressed in hepatocytes (Figure 1) [91]. GLUT2 is one of the key components for uptaking
extracellular glucose. Protease-Activated Receptor 2 (PAR2) inhibits the FoxA3-dependent
expression of GLUT2, leading to impaired hepatic glucose uptake and insulin resistance,
which drives MAFLD progression [92]. This suggests the complexity of hepatic metabolism
and MAFLD pathogenesis. In addition, a recent study reported that Sodium-dependent
Glucose Transporter protein 2 (SGLT2) was significantly upregulated in steatohepatitis,
suggesting that there is a metabolic adaptive shift in glucose transporters, and the inhibition
of SGLT2 attenuated lipid accumulation, inflammation, and fibrosis, which may be related
to reduced O-GlcNAcylation and increased autophagic flux in hepatocytes [93]. Similarly,
SGLT2 inhibitors administered in combination with PPARα regulators prevented hepatocel-
lular carcinogenesis in advanced MAFLD [94]. As mentioned above, high fructose intake
can lead to MAFLD. GLUT8 is a key component in fructose uptake in hepatocytes and plays
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a crucial role in fructose-induced steatosis [95]. A recent study reported that Transmem-
brane 4L Six Family member 5 (TM4SF5) regulated the localization and activation of GLUT8
through transient binding, resulting in fructose-driven hepatocellular lipogenesis [96]. In
contrast, upregulated TM4SF5 mediates the inflammatory response by promoting glucose
uptake, glycolysis, and glucose sensitivity leading to hepatic macrophage M1 activation in
MAFLD [97]. In conclusion, further studies are necessary to determine the pathological
roles and metabolic shifts in various glucose transporters in MAFLD progression, which is
of great significance in understanding the pathogenesis of MAFLD.

Glycogen Metabolism and MAFLD

The liver is one of the major places for glycogen synthesis and storage. Glycogen
metabolism functions as an important physiological regulatory mechanism for maintaining
carbohydrate homeostasis. Hyperglycemia damages hepatocytes and pancreatic β-cells,
leading to hepatic insulin resistance, which induces and exacerbates MAFLD [98]. Glu-
cose is transformed into glycogen through the processes of phosphorylation, metastasis,
pyrophosphorylation, polymerization, and branching sequentially catalyzed by glucok-
inase (GCK), glycogen synthase (GYS), and glycogen branching enzyme (GBE), while
synthesized glycogen is dissociated into glucose for utilization catalyzed by enzymes,
such as glycogen phosphorylase, glycogen debranching enzyme, and glucose-6-phosphate
translocase (Figure 1) [99]. Actually, disturbances in glycogen metabolism are common
in the hepatocytes of patients with MAFLD [100]. The decreased synthesis or enhanced
catabolism of glycogen indicates an increased glucose flux to other pathways including
de novo lipogenesis, thereby exacerbating hepatic steatosis. A number of studies have
identified upstream targets associated with disturbed glycogen metabolism in MAFLD.
Bone morphogenetic protein 4 (BMP4) can inhibit adipogenesis by activating the mTORC2
pathway to promote the expression of glycogen synthesis-related genes and decrease glu-
cose levels [101]. Mice with liver-specific knockdown of Hepatocyte Nuclear Factor 4α
(HNF4α) exhibited impaired glycogen synthesis and MAFLD progression [102]. Glycogen
synthase kinase 3β (GSK3β) is one of the key regulatory molecules of glycogen metabolism,
which can block glycogen synthesis through the inhibition of glycogen synthase when
activated by dephosphorylation, leading to hepatic insulin resistance [103]. Therefore,
GSK3β is a potential candidate target for the treatment of MAFLD. Glycogen metabolism
is closely related to insulin signaling [104]. Improving impaired glycogen metabolism in
hepatocytes may help alleviate insulin resistance and provide new therapeutic options for
alleviating MAFLD.

Glycolysis and MAFLD

Glycolysis is a metabolic process in which glucose is catalyzed by enzymes to produce
pyruvate and other intermediates [105]. Enhanced hepatic glycolysis is an important
metabolic shift in MAFLD progression [106]. Hexokinase 2 (HK2), phosphofructokinase 1
(PFK1), and pyruvate kinase type M2 (PKM2) play crucial roles in regulating glycolysis
(Figure 1). Glycolysis is critical for the physiological activity of hepatic macrophages.
A high-fat diet can lead to MAFLD by activating Caspase 11, which in turn enhances
glycolysis and induces pyroptosis in hepatic macrophages [107]. PKM2, the key enzyme
in glycolysis, can induce hepatic steatosis by driving hepatic metabolic reprogramming
and hepatic macrophage M1 activation [108]. Another study showed that G protein-
coupled receptor (GPCR) activation mediated PKM2 upregulation, which in turn enhanced
glycolysis in Kupffer cells and suppressed hepatic inflammation, thereby alleviating high-
fat diet-induced obesity and MAFLD [109]. The activation of hepatic stellate cells (HSCs)
is considered to be a key mechanism leading to liver fibrosis in MAFLD, and enhanced
glycolysis contributes to HSCs activation and promotes the expression of fibrosis-related
genes [110–113]. More importantly, over-enhanced glycolysis in hepatocytes predicts the
tendency toward hepatocellular carcinoma, as tumor cells prefer to break down glucose
into lactate via glycolysis to meet the energy demands for rapid proliferation, namely,
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the Warburg effect [114]. In conclusion, the pathophysiology of glycolysis in MAFLD
progression is complex because of the abundance of cell types in the liver. Targeting
glycolysis in the liver may be a potential therapeutic strategy for MAFLD and is important
for blocking MAFLD from being more malignant.

Gluconeogenesis and MAFLD

In contrast to glycolysis, gluconeogenesis is an enzyme-catalyzed metabolic process
that converts non-carbohydrate substrates, such as lactate, amino acids, and glycerol,
to glucose, which is regulated by a variety of hormones, transcription factors, and so
on [115]. Glucose-6-phosphatase (G6Pase), fructose-1,6-bisphosphatase (Fbpase), pyruvate
carboxylase (PC), and phosphoenolpyruvate carboxykinase (PEPCK) are the key metabolic
enzymes involved in gluconeogenesis (Figure 1). Mechanistically, gluconeogenesis is an
important regulatory pathway for remodeling hepatic lipid homeostasis. Glucagon is an
important hormone that promotes hepatic gluconeogenesis. In patients with MAFLD,
the effect of glucagon on the liver may be partially impaired, leading to “glucagon resis-
tance” [116]. Short-term and periodic therapy with glucagon is a promising strategy for
alleviating MAFLD [117]. Mice with inhibition of intestinal gluconeogenesis exhibited
increased hepatic lipid uptake and de novo lipogenesis, thereby increasing the risk of
MAFLD [118]. Notably, over-enhanced gluconeogenesis further contributes to hepatic
insulin resistance and promotes de novo lipogenesis, which is involved in MAFLD pro-
gression from steatosis to NASH and fibrosis, and ultimately increases the risk of cirrhosis
and hepatocellular carcinoma [119]. Recent studies have revealed the important role and
mechanism of inhibiting hepatic gluconeogenesis in ameliorating steatosis and alleviating
MAFLD [120,121]. Therefore, the role of gluconeogenesis in the pathogenesis and treatment
of MAFLD is inconclusive, and further studies are needed to determine the significance of
gluconeogenesis in MAFLD progression.

2.1.3. Amino Acid Metabolism and MAFLD

Amino acids, as some of the essential macronutrients, play a vital role in maintaining
normal physiological functions and metabolism. The liver is a key organ for protein and
amino acid biosynthesis and catabolism. Considerable evidence suggests that amino acid
metabolism disorders are another important pathogenesis leading to MAFLD.

Branched-Chain Amino Acid Metabolism and MAFLD

Branched-chain amino acids (BCAAs) contain three types of amino acids including
valine, leucine, and isoleucine, which are responsible for energy supply during fasting
and protein synthesis as substrates or signaling molecules [122,123]. BCAAs cannot be
synthesized endogenously in animals and can only be ingested through the diet. BCAA
levels in the bloodstream reflect the balance between amino acid intake and amino acid
storage (i.e., proteins), and play an important role in regulating food intake and pro-
tein metabolism [123]. BCAAs enter the tricarboxylic acid (TCA) cycle to produce ATP
after transamination and decarboxylation, in which branched-chain aminotransferases
(BCATs) and branched-chain α-ketoacid dehydrogenases (BCKDs) are necessary [124].
Disturbed BCAA metabolism is one of the important pathological features of MAFLD.
Plasma BCAA concentrations are elevated in patients with MAFLD [125,126]. Notably,
there exists a gender dependence between plasma BCAA concentration and the severity of
MAFLD [127]. Plasma BCAA levels were positively correlated with the grade of hepatic
steatosis in children and adolescents with MAFLD [128]. This may be related to the im-
paired catabolism of BCAAs. In addition, elevated plasma levels of branched-chain α-keto
acids (BCKAs), an intermediate metabolite of BCAAs, were strongly associated with more
severe MAFLD [129]. This suggests that BCAA catabolism may be enhanced in advanced
MAFLD. A recent study has shown that the enhanced valine/3-hydroxyisobutyric acid
metabolic pathway mediated by 3-hydroxyisobutyryl coenzyme A hydrolase (HIBCH) is
associated with MAFLD pathogenesis [130]. BCAA supplementation may alleviate hepatic
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steatosis and liver injury induced by a choline-deficient high-fat diet in mice by inhibiting
the FAS gene and protein expression [131]. However, there is also evidence that BCAA
supplementation promotes apoptosis and increases hepatocyte susceptibility to lipotoxicity
in high-fat diet-fed mice [132]. In conclusion, the pathophysiological roles of BCAAs in
different MAFLD stages of may differ, and the safety of preventing and controlling MAFLD
through BCAA supplementation needs to be further evaluated.

Aromatic Amino Acid Metabolism and MAFLD

Aromatic amino acids (AAAs) contain benzene rings in their side-chain and consist of
three types of amino acids including tyrosine, tryptophan, and phenylalanine. Dietary intake
of AAAs is positively correlated with hepatic lipid content and iron concentration [133]. Serum
tryptophan levels are significantly elevated in patients with steatohepatitis, and the levels of
tryptophan and tyrosine are positively correlated with the levels of serum total cholesterol and
low-density lipoprotein cholesterol [134]. Tyrosine is a necessary raw material for the synthesis
of thyroid hormones such as triiodothyronine (T3) and tetraiodothyronine (T4) that regulate
metabolism and growth [135]. Excessive tyrosine intake may lead to increased synthesis of
thyroid hormones, thereby affecting systematic metabolism. Thyroid hormone receptor β
subtype (THRβ) is the main form expressed in the liver and promotes hepatic lipid uptake and
synthesis (Figure 1) [136]. Free T3 levels have been found to be positively correlated with the
severity of MAFLD [137,138]. Tyrosine deficiency can lead to hepatic steatosis by interfering
with hepatocellular VLDL assembly and thereby contributing to hepatic steatosis [139]. In
addition, the phosphorylation of the protein tyrosine site is significant for MAFLD progression.
Therefore, molecules that regulate tyrosine phosphorylation of target proteins can be potential
therapeutic targets for MAFLD, such as receptor tyrosine kinases (RTKs) including epidermal
cell growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), and others [140].
AAA supplementation reduced serum and hepatic TG and serum LDL-cholesterol levels and
improved hepatic steatosis in mice [141]. Tryptophan can be metabolized by intestinal flora to
produce indolepropionic acid (IPA), which ameliorates hepatic inflammation and injury in
steatohepatitis rats by inhibiting endotoxin production [142]. Furthermore, tryptophan can
be transformed into nicotinamide adenine dinucleotide (NAD), which is an active form of
vitamin B3, through the kynurenine pathway that primarily occurs in the liver, thereby posing
a significant impact on hepatic vitamin metabolism [143]. Therefore, AAAs can interact with
other metabolic pathways and are crucial factors in the pathogenesis of MAFLD.

2.2. Micronutrient Metabolism and MAFLD

Micronutrients including vitamins and minerals are involved in vital biochemical re-
actions. A large amount of evidence suggests that imbalances in micronutrient metabolism
are highly associated with MAFLD.

2.2.1. Vitamin Metabolism and MAFLD

Vitamins are categorized into fat-soluble vitamins (vitamins A, D, E, and K) and
water-soluble vitamins (vitamins B, C, etc.) according to their solubility, which are essential
micronutrients for the maintenance of normal physiological functions. This section mainly
focuses on the correlation between vitamins A, B, C, D, and E and MAFLD.

Vitamin A Metabolism and MAFLD

Vitamin A (Retinoid) refers to all-trans-retinol (or structural analogs) and metabolites
such as retinyl esters, retinol, and retinoic acid, which is essential for humans [144,145].
Retinoic acid receptor (RAR), retinoid X receptor (RXR), and PPAR mediate the physiologi-
cal activity of vitamin A, of which all-trans-retinoic acid (at RA) is the main active form of
vitamin A (Figure 1) [145,146]. The liver (especially the HSCs) is the major place for vitamin
A storage and metabolism. The activation of HSCs is accompanied by the complete loss of
lipid droplets containing vitamin A and increased extracellular matrix production [144,145].
Vitamin A is stored in HSCs as retinyl esters. Mechanistically, disturbances in vitamin
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A metabolism lead to the excessive accumulation of retinyl esters in hepatocytes and a
decrease in total retinol levels in the liver, which results in hepatic steatosis [147]. Epidemi-
ologic evidence has shown that inadequate vitamin A intake is a significant risk factor for
MAFLD and that serum retinol levels are significantly lower in patients with advanced
MAFLD [148–150]. However, there is also evidence that MAFLD progression may be asso-
ciated with elevated serum vitamin A levels [151,152]. In addition, vitamin A metabolites,
especially retinoic acid, influence the development of MAFLD mainly by affecting the
regulatory network of hepatic glucose–lipid metabolism, as well as the interaction with
insulin [153,154]. Signaling pathways regulated by RAR and RXR are important molecular
mechanisms for vitamin A to work. RARβ agonists can inhibit hepatic steatosis and fibrosis
in MAFLD mice [155]. RARα in adipocytes can prevent MAFLD by inhibiting adipogenesis
and inflammation and inducing energy expenditure [156]. Overall, correcting metabolism
disorders of vitamin A is a promising therapeutic strategy for MAFLD.

Vitamin B Metabolism and MAFLD

Vitamin B contains eight types of compounds that are key cofactors in a variety of enzy-
matic reactions and are involved in catabolism and anabolism (Figure 1) [157]. Vitamin B1
(Thiamine) is an essential cofactor for α-keto acid decarboxylase and transketolase, which
has beneficial effects in regulating hepatic glucose and lipid metabolism, mitochondrial
function, and oxidative stress [158]. Vitamin B2 (flavin) exists in two active forms including
flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which interact with
flavoproteins to mediate redox reactions. Decreased FAD due to vitamin B2 deficiency in-
duces fatty liver disease, which is associated with the inhibition of the PPARα pathway [159].
Vitamin B3 contains nicotinic acid and nicotinamide, which are nutritional precursors of
bioactive molecules including NAD and nicotinamide adenine dinucleotide phosphate
(NADP) [160]. Recent epidemiologic evidence shows that high dietary niacin intake can
reduce hepatic steatosis and lower all-cause mortality in patients with MAFLD [161,162].
Mechanistically, niacin may ameliorate steatosis and steatohepatitis through the inhibition
of DGAT2, NADPH oxidase, and NLRP3 or the activation of GPCR [163–165]. Nicoti-
namide can attenuate diet-induced steatohepatitis, oxidative stress, and liver injury in
rats by decreasing the NADPH/NADP ratio and elevating glutathione levels [166,167].
Vitamin B6 includes pyridoxine, pyridoxal, and pyridoxamine. Pyridoxamine can inhibit
the activation of HSCs and hepatic lipid peroxidation to ameliorate advanced MAFLD [168].
However, epidemiologic evidence also suggests a positive correlation between vitamin
B6 intake levels and the degree of hepatic steatosis in patients with MAFLD [169]. Recent
studies revealed that elevated circulating homocysteine levels and reduced vitamin B9
levels are risk factors for MAFLD [170,171]. Vitamin B9, also known as folate, is mainly
involved in one-carbon metabolism in biochemical reactions such as nucleic acid synthesis,
methylation reactions, and sulfur-containing amino acid metabolism, and insufficient in-
take or metabolic disorders of folate may promote MAFLD progression [172,173]. Folate
and vitamin B12, also known as cobalamin, are key cofactors in one-carbon metabolic
reactions including homocysteine metabolism. Folate was superior to other donors in
ameliorating disorders of hepatic one-carbon metabolism in high-fat-fed MAFLD mice and
exhibited anti-steatosis and insulin-sensitizing effects [174–177]. In addition, folate shifted
to mitochondrial and consumed α-linolenic acid to maintain TGFβ1 signaling, thereby
promoting HSCs activation-mediated hepatic fibrosis in MAFLD [178]. Low vitamin B12
levels promote lipogenesis and inhibit mitochondrial β oxidation in HepG2 cells, leading
to lipid accumulation [179]. Dietary supplementation with folate and vitamin B12 alleviates
steatohepatitis by promoting the enzymatic conversion of homocysteine [180]. A random-
ized controlled trial also showed the beneficial effects of vitamin B12 supplementation in
patients with MAFLD [181]. However, reports about the relationship between vitamins B5
and B7 and MAFLD are very limited. Collectively, the vitamin B family interacts with other
nutrient metabolic pathways because of their crucial roles in energy metabolism and redox
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reactions. However, the pathophysiology of vitamin B remains complex and unclear, and
further studies are needed to explore their effects on MAFLD.

Vitamin C and Vitamin E Metabolism and MAFLD

Vitamin C and vitamin E, also known as ascorbic acid and tocopherol, respectively,
play significant roles in the redox system because of their excellent antioxidant activity.
Abundant epidemiologic evidence has demonstrated that a high vitamin C intake level is a
protective factor for MAFLD [182–184]. Vitamin C deficiency increases hepatic steatosis,
oxidative stress, fibrosis, and inflammation, which is an important potential pathogenic
factor of MAFLD [185]. Vitamin C intervention significantly attenuated diet-induced
MAFLD in mice, which was partly achieved by PPARα activation and the upregulated
expression of its target gene involved in β-oxidation [186–188]. Vitamin C may also
exert anti-MAFLD effects by attenuating TNFα-induced stress in hepatocytes through
the activation of the FGF21/FGFR2/adiponectin pathway [189]. However, there is also
evidence that chronic vitamin C deficiency impairs SREBP1c activation, thereby inhibiting
hepatic de novo lipogenesis and suppressing MAFLD progression [190]. Notably, vitamin
C also plays an important role in maintaining iron homeostasis and is strongly associated
with MAFLD [184]. This reflects the crosstalk between vitamins and minerals. Inadequate
vitamin E intake is also a risk factor for MAFLD [191,192]. Oxidative stress, namely,
the imbalance between ROS production and antioxidant defense, is highly correlated
with MAFLD pathogenesis and is also the main target pathway of vitamin E [193]. In
addition to its antioxidant effects, vitamin E exerts beneficial effects on MAFLD through
non-antioxidant actions such as the induction of adiponectin, inhibition of inflammatory
signals, and modulation of macrophage M1/M2 polarization [193,194]. Taken together,
the antioxidant properties of vitamins C and E have been widely noted, and their other
physiological functions are worth exploring, which will contribute to understanding the
role of micronutrients in MAFLD (Figure 1).

Vitamin D Metabolism and MAFLD

The physiological functions of vitamin D, also known as calcitriol, are not simply limited to
the well-known effects on calcium homeostasis regulation. The 1,25-dihydroxy vitamin D/vitamin
D receptor (VDR) axis can influence MAFLD progression by modulating a variety of pathways
such as hepatic insulin resistance, oxidative stress, inflammation, and fibrosis, as well as regulating
various hepatic cells such as hepatocytes, HSCs, and macrophages (Figure 1) [195,196]. In
addition, vitamin D regulates the expression of several microRNAs, which are closely related
to MAFLD pathogenesis [197]. Epidemiologic evidence has shown that an elevated level of
serum 25-hydroxy vitamin D, the major circulating form of vitamin D, is negatively related to
MAFLD and all-cause mortality [198–200]. Mechanistically, vitamin D exerts a therapeutic effect
on MAFLD by improving hepatic lipid metabolism by regulating the PPARα and SREBP1c
signaling pathways [199,201]. Recent studies have shown that VDR improves aging-related
MAFLD by positively regulating mitochondrial function [202]. Additionally, the improvement of
gut microbes is considered to be another potential mechanism by which vitamin D alleviates high-
fat diet-induced MAFLD [203]. Overall, the mechanism by which vitamin D works is inextricably
linked to other metabolic pathways, and understanding the physiopathology of vitamin D will
help unravel the mystery of MAFLD.

2.2.2. Mineral Metabolism and MAFLD

In addition to vitamins, minerals such as iron, copper, zinc, and selenium are also
essential micronutrients for humans. Similar to most vitamins, minerals serve as cofactors
for enzymes, especially those in the redox system, to carry out their physiological functions.
Specifically, iron and copper have unique regulatory effects. Disturbed mineral metabolism
in the liver is another important pathogenesis of MAFLD.
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Iron Metabolism and MAFLD

Iron is a crucial metallic element that is involved in oxygen transport, DNA synthesis,
ATP production, and other important biological processes [204]. The liver functions as
the major organ for iron metabolism, and disturbed iron homeostasis is closely related to
MAFLD. Elevated serum ferritin, iron, transferrin saturation, and hepatic iron overload are
important risk factors for MAFLD [205,206]. A high-fructose diet can induce hepatic iron
deposition in MAFLD accompanied by the upregulation of iron storage-related proteins
and downregulation of iron export proteins [207]. Increased hepatic iron levels can lead to
oxidative stress and exacerbate hepatic insulin resistance [208]. Iron overload may also lead
to chronic inflammation in the liver via the activation of the cGAS-STING pathway [209].
In addition, iron accumulation can result in the over-production of ROS, which activates
HSCs and induces a fibrotic phenotype [210]. More importantly, elevated hepatic iron and
oxidative stress even precede typical events in MAFLD such as lipid accumulation and
insulin resistance [211]. It is evident that hepatic iron homeostasis imbalance is present
throughout almost the entire progression of MAFLD.

Notably, Dixon et al. reported an iron-dependent and non-apoptosis-regulated cell
death due to lipid peroxide accumulation in 2012 and named it ferroptosis [212]. As men-
tioned before, the liver functions as a central organ for lipid metabolism. Based on the
unique physiological characteristics of the liver, ferroptosis has received much attention in
recent years as an MAFLD pathogenesis (Figure 1) [213]. Numerous studies have shown
that ferroptosis is involved in different MAFLD stages [214]. More importantly, ferroptosis
may function as a potential event triggering steatohepatitis [215]. Polyunsaturated fatty
acids (PUFAs) are the most significant substrates for lipid peroxidation during ferroptosis.
PUFAs are transformed into phospholipid hydroperoxides (PUFA-PL-OOHs) catalyzed by
enzymes such as ACSL4, which is accelerated by ferrous ions (Fe2+) through the Fenton
reaction and ultimately leads to the disruption of membrane structure [216]. However,
monounsaturated fatty acids (MUFAs) are less oxidizable than PUFAs and inhibit lipid
peroxidation and ferroptosis [217]. As mentioned above, MUFAs can be synthesized via
DNL, and inhibiting the hepatic DNL and suppressing ferroptosis appear to be innately
contradictory as therapeutic strategies for MAFLD. However, ferroptosis involves various
regulatory mechanisms such as iron homeostasis regulation, lipid metabolism, and antiox-
idant defense system, as well as multiple organelles such as the endoplasmic reticulum,
mitochondria, and peroxisomes [218]. The main antioxidant mechanisms in ferroptosis
include Xc-/GSH/GPX4 and NAD(P)H/FSP1/CoQ10, which are responsible for the scav-
enging of lipid peroxides [219]. Therefore, targeting different aspects of ferroptosis provides
diverse options for the prevention and treatment of MAFLD.

Copper Metabolism and MAFLD

Copper serves as a key component of many proteins as well as cofactors of oxidoreduc-
tase enzymes, such as ceruloplasmin (Cp), superoxide dismutase 1 (SOD1), and cytochrome
C oxidase [220]. The liver is also an important place for copper metabolism. Copper
deficiency leads to reduced hepatic antioxidant defenses and mitochondrial dysfunction,
while iron overload may be an intermediate mechanism that impairs copper load [221,222].
This suggests a metabolic association between copper and iron. Reduced hepatic copper
contents were observed in patients with MAFLD and associated with more pronounced
steatohepatitis [223]. Copper deficiency was also observed in the livers of mice and rats
with diet-induced MAFLD and exacerbated hepatic steatosis and liver injury [224–226].
Mechanistically, copper deficiency inhibits AMPK and thus leads to impaired mitochondrial
biogenesis and fatty acid oxidation, in turn resulting in MAFLD (Figure 1) [227]. Cp is a pro-
tein containing copper that is secreted by hepatocytes, and hepatocyte-specific ablation of
Cp reduces lipid accumulation, inhibits inflammation, attenuates fibrosis, and ameliorates
liver injury, which may be associated with the remodeling of bile acid metabolism [228].
Furthermore, copper overload leads to lipogenesis, oxidative stress, and mitochondrial
dysfunction, which induce hepatic steatosis and lipotoxicity [229,230]. Similarly, copper
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overload also mediates the programmed cell death known as cuproptosis, which is char-
acterized by Cu+-mediated lipoacylation and the aggregation of enzymes that regulate
the mitochondrial TCA cycle, particularly dihydrolipoamide S-acetyltransferase (DLAT),
and loss of Fe-S clusters [231,232]. Ferroptosis and cuproptosis overlap in pathways that
regulate complex metabolic processes including mitochondrial respiration, the TCA cycle,
and GSH synthesis [233]. Several studies to date have attempted to explore the potential
involvement of cuproptosis in MAFLD [234–236]. Therefore, the maintenance of copper
homeostasis is crucial for normal physiology of the liver, and regulating copper metabolism
appears to be a novel therapeutic strategy for MAFLD.

Zinc Metabolism and MAFLD

Zinc also functions as a cofactor of many enzymes and components of proteins involved
in antioxidant, anti-inflammatory, and apoptotic activities [237]. Epidemiologic evidence has
shown that reduced serum zinc levels are negatively correlated with the degree of hepatic
steatosis, insulin resistance, and fibrosis [238–240]. One of the important mechanisms by which
zinc deficiency leads to disturbed protein metabolism in patients with chronic liver disease is
diminished ammonia metabolism, which may potentially induce or exacerbate endoplasmic
reticulum stress and apoptosis, thereby triggering MAFLD [237,241]. Zinc supplementation
attenuates high-fat diet-induced hepatic steatosis and liver injury, which is achieved partly by
improving glucose–lipid metabolism disorders, but zinc intervention cannot alleviate MAFLD
caused by a high-fat diet [242,243]. Nonetheless, a randomized clinical trial observed elevated
zinc levels and reduced hepatic enzyme levels in serum after zinc supplementation in patients
with overweight/obesity and MAFLD [244]. Recent studies also excellently characterized the
roles of zinc finger proteins (ZFPs) in MAFLD. Zinc finger proteins can act as transcription
factors that regulate HSCs activation, mitochondrial autophagy, the inflammatory response,
and glucose–lipid metabolism, which influence MAFLD progression (Figure 1) [245–249]. In
addition, zinc is a key component of matrix metalloproteinases (MMPs) that degrade the
extracellular matrix, of which upregulated MMP14 and inactivated MMP11 are associated with
hepatic steatosis, while upregulated MMP2 and MMP9 are associated with hepatic fibrosis
and inflammation, respectively [250]. The coexistence of hepatic zinc deficiency and iron
accumulation contributes to the development of hepatic fibrosis, which may be related to
extracellular matrix remodeling and changes in lipid composition [251]. Notably, zinc was
shown to be involved in ferroptosis, although its role is controversial [252,253]. Overall, this
suggests a crosstalk between zinc and iron metabolism. However, the exact mechanism remains
unclear. Targeting zinc metabolism is one of the promising therapeutic strategies for MAFLD.

Selenium Metabolism and MAFLD

Selenium is another essential trace element. Selenoproteins mediate the physiological
functions of selenium, such as glutathione peroxidases (GPXs) and thioredoxin reductases
(TXNRDs), which are responsible for antioxidation, anti-inflammation, and regulating immu-
nity [254,255]. Serum levels of selenoprotein P, a selenium transporter from the liver to other
tissues, were significantly elevated in patients with MAFLD and positively correlated with
the severity of the disease [256]. Hepatic selenium deficiency causes redox imbalance and an
inflammatory response leading to MAFLD [257]. Dietary selenium supplementation is effective
against high-fat diet-induced liver injury, insulin resistance, and oxidative stress [258]. This is
associated with an improvement in lipid metabolism and an enhancement in endogenous antiox-
idant mechanisms [259]. A bioinformatics analysis showed that reduced selenoprotein levels in
MAFLD livers are accompanied by disturbed gene expression related to iron metabolism [260].
This suggests a correlation between hepatic selenium and iron metabolism. Actually, GPX4,
the crucial protein in ferroptosis for scavenging lipid peroxides, is significantly regulated by
selenium availability (Figure 1) [261]. Thus, the therapeutic effect of selenium supplementation
on MAFLD may be partly achieved by inhibiting ferroptosis. However, epidemiologic evidence
about the association between blood selenium levels and MAFLD appears to be contradic-
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tory [262–264]. Given the unique features of selenium, it is an attractive avenue to explore the
role of selenium in MAFLD pathogenesis.

3. Natural Products against MAFLD via the Modulation of Nutrient Metabolism

Despite the absence of available drugs for clinical use to date, the endeavors in
searching for therapeutic strategies for MAFLD continues unabated. In recent years, the
various biological activities of natural products and their potential in disease treatment
have attracted much attention from researchers and represent a novel strategy for drug
development. Indeed, many studies have reported the beneficial effects of natural products
in alleviating MAFLD, especially in ameliorating the disorders of nutrients metabolism.
Therefore, we summarize the natural products against MAFLD that improve the metabolic
disorders of the aforementioned nutrients in Table 1.

Table 1. Natural products against MAFLD through different metabolic pathways.

Compound Chemical Structure Potential Mechanism Potential Targets References
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Schisandrin B

Metabolites 2024, 14, x FOR PEER REVIEW 17 of 50 
 

 

Quercetin 

 

De novo lipogenesis ACC, AMPK [274] 

Caffeine 

 

De novo lipogenesis AKT, SREBP1c [275] 

Chlorogenic acid 

 

De novo lipogenesis XBP1 [276] 

Geniposide 

 

De novo lipogenesis XBP1 [276] 

Polydatin 

 

De novo lipogenesis XBP1 [276] 

Schisandrin B 

 

Fatty acid oxidation AMPK [277] Fatty acid oxidation AMPK [277]

Isosilybin

Metabolites 2024, 14, x FOR PEER REVIEW 18 of 50 

Isosilybin Fatty acid oxidation AMPK, PPARα, ACOX1, CPT1α [278]

Icariin Fatty acid oxidation PPARα, ACOX1, CYP4A3, CPT1α [279]

Ferulicacid Fatty acid oxidation CPT1α, ACOX1, HMGCS2 [280] 

Sulforaphane Fatty acid oxidation FGF21, FGFR1, p38 MAPK, 
PPARα, CPT1α [281] 

Hesperidin Fatty acid oxidation SIRT1, PGC1α [282]

Formononetin Fatty acid oxidation SIRT1, PGC1α [283]

Fatty acid oxidation AMPK, PPARα, ACOX1,
CPT1α [278]

Icariin
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Fatty acid oxidation PPARα, ACOX1, CYP4A3,
CPT1α [279]
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Sulforaphane 
 

Fatty acid oxidation FGF21, FGFR1, p38 MAPK, 
PPARα, CPT1α [281] 

Hesperidin 

 

Fatty acid oxidation SIRT1, PGC1α [282] 
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Fatty acid oxidation SIRT1, PGC1α [283] 

Fatty acid oxidation CPT1α, ACOX1, HMGCS2 [280]
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PPARα, CPT1α [281] 
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Fatty acid oxidation SIRT1, PGC1α [282] 
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Fatty acid oxidation SIRT1, PGC1α [283] 
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PPARα, CPT1α [281]
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PPARα, CPT1α [281] 
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Fatty acid oxidation SIRT1, PGC1α [283] 

Fatty acid oxidation SIRT1, PGC1α [282]
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Fatty acid oxidation CPT1α, ACOX1, HMGCS2 [280] 
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Fatty acid oxidation FGF21, FGFR1, p38 MAPK, 
PPARα, CPT1α [281] 

Hesperidin 

 

Fatty acid oxidation SIRT1, PGC1α [282] 

Formononetin 

 

Fatty acid oxidation SIRT1, PGC1α [283] Fatty acid oxidation SIRT1, PGC1α [283]

Curcumin

Metabolites 2024, 14, x FOR PEER REVIEW 19 of 50 
 

 

Curcumin 

 

Lipid output ApoB100 [284] 

Hyperoside 

 

Lipid output ApoC3, VLDL [285] 

Quercetin 

 

Lipid output IRE1, XBP1s, VLDL [286] 

Taurine 

 

Lipid output IRE1, XBP1s, ATF6, CHOP, 
MTTP, VLDL 

[287] 

Chrysin 

 

Lipid output PKC, HNF4α, VLDL [288] 

Lipid output ApoB100 [284]

Hyperoside
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Chrysin

Metabolites 2024, 14, x FOR PEER REVIEW 19 of 50 
 

 

Curcumin 

 

Lipid output ApoB100 [284] 

Hyperoside 

 

Lipid output ApoC3, VLDL [285] 

Quercetin 

 

Lipid output IRE1, XBP1s, VLDL [286] 

Taurine 

 

Lipid output IRE1, XBP1s, ATF6, CHOP, 
MTTP, VLDL 

[287] 

Chrysin 

 

Lipid output PKC, HNF4α, VLDL [288] Lipid output PKC, HNF4α, VLDL [288]

Berberrubine Carbohydrate intake GLUT2 [289]

Astragaloside IV Carbohydrate intake PTP1B, IR, IRS1 [290]

Protocatechuic Acid
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Bavachin 

 

Glycogen synthesis AKT, GSK3β [295] 
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Glycogen synthesis GSK3β [296] 
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Glycogen synthesis GSK3β [297] 

Coniferaldehyde 
 

Glycogen synthesis GK [292] 
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Glycogen synthesis AKT, GSK3β [298] 
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Glycogen synthesis GSK3β [299] 

Glycogen synthesis AMPK [294]

Bavachin
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Chlorogenic acid

Metabolites 2024, 14, x FOR PEER REVIEW 21 of 50 
 

 

Acacetin 

 

Glycogen synthesis AMPK [294] 

Bavachin 

 

Glycogen synthesis AKT, GSK3β [295] 

Genistein 

 

Glycogen synthesis GSK3β [296] 

Chlorogenic acid 

 

Glycogen synthesis GSK3β [297] 

Coniferaldehyde 
 

Glycogen synthesis GK [292] 

Icaritin 

 

Glycogen synthesis AKT, GSK3β [298] 

Glycyrrhizic acid 

 

Glycogen synthesis GSK3β [299] 

Glycogen synthesis GSK3β [297]
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Calycosin

Metabolites 2024, 14, x FOR PEER REVIEW 22 of 50 

Calycosin Glycogen synthesis GSK3β [300]

Tetrahydropalmatine Glycolysis AMPK [301]

Lapachol Glycolysis PKM2 [302]

Rotundic acid Glycolysis TLR4, AP1 [303]

costunolide Glycolysis HK2 [304]

Curcumin Glycolysis AMPK, HK, PFK2 [305]
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Glycolysis AMPK [301] 
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Glycyrrhizic acid 

 

Gluconeogenesis G6Pase, PEPCK [299] 

Berberrubine 

 

Gluconeogenesis G6Pase, PEPCK [289] 

Eriocitrin 

 

Gluconeogenesis PEPCK [306] 

Perillartine 

 

Gluconeogenesis AKT, RORγ, G6P, PEPCK [307] 

Fisetin 

 

Gluconeogenesis G6Pase, PEPCK [308] 

Gluconeogenesis G6Pase, PEPCK [299]
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Eriocitrin

Metabolites 2024, 14, x FOR PEER REVIEW 23 of 50 
 

 

Glycyrrhizic acid 

 

Gluconeogenesis G6Pase, PEPCK [299] 

Berberrubine 

 

Gluconeogenesis G6Pase, PEPCK [289] 

Eriocitrin 

 

Gluconeogenesis PEPCK [306] 

Perillartine 

 

Gluconeogenesis AKT, RORγ, G6P, PEPCK [307] 

Fisetin 

 

Gluconeogenesis G6Pase, PEPCK [308] 

Gluconeogenesis PEPCK [306]

Perillartine
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Gluconeogenesis G6Pase, PEPCK [299] 

Berberrubine 

 

Gluconeogenesis G6Pase, PEPCK [289] 
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Gluconeogenesis PEPCK [306] 

Perillartine 

 

Gluconeogenesis AKT, RORγ, G6P, PEPCK [307] 
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Diosgenin 

 

Amino acid metabolism — [309] 

Schisandrin B 

 

Amino acid metabolism — [277] 

Glycyrrhetinic acid 

 

Vitamin A metabolism AKR1B10 [310] 

β cryptoxanthin 
 

Vitamin A metabolism IRS, etc. [311] 

Tomatidine 

 

Vitamin D metabolism VDR, AMPK [312,313] 

Curcumol 

 

Iron metabolism YAP, NCOA4 [314] 

Amino acid metabolism — [309]

Schisandrin B
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Betaine 

 

Iron metabolism FPN, HAMP [315] 

Zeaxanthin 
 

Iron metabolism p53, GPX4, SLC7A11, SAT1, 
ALOX15 [316] 

Epigallocatechin gallate 

 

Iron metabolism GPX4, COX2, ACSL4 [317] 

Ginkgolide B 

 

Iron metabolism Nrf2, GPX4, HO-1, TFR1, 
FTH1 

[318] 

Dehydroabietic acid 
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3.1. Natural Products and Lipid Metabolism in MAFLD
3.1.1. Natural Products and Lipid Uptake in MAFLD

Many natural active ingredients have demonstrated potential in modulating hepatic
lipid uptake. Z-ligustilide and n-Butylidenephthalide in the aqueous extract from Angelica
tenuissima inhibited high-fat diet-induced hepatic steatosis in mice and oleic acid-induced
lipid accumulation in HepG2 cells, which were correlated with downregulated CD36 and
FATP5 and thus reduced lipid uptake [265]. Puerarin, a natural compound extracted
from the root of Pueraria lobata, possesses antioxidant, anti-inflammatory, and anti-insulin
resistance effects. Puerarin significantly reduced the fatty acid uptake rate in the liver
by inhibiting FATP5 and CD36, which in turn ameliorated hepatic lipid accumulation,
oxidative stress, and inflammatory responses in MAFLD rats [266]. The aqueous extract
from the root of Curcuma longa L. and the ethanol extract from the root of Liriope platyphylla
also alleviated hepatic steatosis in high-fat diet-induced obese mice through similar mecha-
nisms [328,329]. The polyphenolic compounds including ferulic acid and p-coumaric acid
from Setaria italica alleviated MAFLD mainly by downregulating FABP and CD36 [267].
Recent studies have also reported that diosgenin extracted from Trigonella foenum-graecum
attenuates MAFLD by regulating fatty acid uptake through the inhibition of fatty acid
transporters such as CD36, FATP2, and FABP, which is at least partly achieved by the SIRT6
and FXR pathways [268,269].

3.1.2. Natural Products and DNL in MAFLD

Natural products also play important roles in regulating enhanced DNL in MAFLD.
Naringin, present in citrus, can alleviate fructose-induced hepatic steatosis by downreg-
ulating the expression of ChREBP and SREBP-1c [270]. Total alkaloids extracted from
Corydalis saxicola Bunting can reduce DNL-induced lipid accumulation in hepatocytes by
hindering SREBP1 maturation through the activation of AMPK [330]. Diosgenin, in addi-
tion to reducing fatty acid uptake, can also inhibit hepatic DNL by activating AMPK and
downregulating SREBP1c, thereby alleviating MAFLD [269,271]. Gallic acid, an abundant
polyphenolic compound found in vegetables and fruits, can ameliorate fructose-induced
hepatic steatosis by inhibiting hepatic DNL through AMPK-dependent mechanisms [272].
A natural flavonoid, Baicalein, also alleviated MAFLD through a similar mechanism [273].
Quercetin, another natural flavonoid, can inhibit hepatic DNL by phosphorylating and
thus inactivating ACC to inhibit hepatic DNL [274]. Caffeine, a representative constituent
of coffee, alleviated steatohepatitis by inhibiting AKT as well as SREBP1c-driven hepatic
DNL [275]. The attractive health-promoting effects of Capparis spinosa such as antioxidant,
anticancer, and antimicrobial activities have been attributed to the biologically active con-
stituents it contains, such as alkaloids and polyphenols [331]. The extract from Capparis
spinosa inhibited DNL by downregulating high-fat diet-induced SREBP1c as well as ACC,
thereby ameliorating hepatic lipid accumulation and steatohepatitis [332]. In addition, it
has been reported that chlorogenic acid, geniposide, and polydatin may reduce hepatic
DNL by inhibiting unfolded protein response pathways instead of in an SREBP1- and
ChREBP-independent manner [276].

3.1.3. Natural Products and Fatty Acid Oxidation in MAFLD

The effects of natural products on ameliorating impaired FAO in MAFLD is also
attractive. Schisandrin B extracted from the fruits of Schisandra chinensis (Turcz.) Baill
can ameliorate hepatic steatosis by activating autophagy and promoting FAO through the
AMPK signaling pathway [277]. Isosilybin isolated from Silybum marianum also alleviated
MAFLD via a similar mechanism [278]. Icariin, one of the bioactive components isolated
from the medicinal plant Epimedium brevicornu Maxim, can ameliorate hepatic steatosis
in female rats with polycystic ovary syndrome by upregulating the PPARα-mediated
expression of FAO-related genes such as CPT1α [279]. Whole grain foods are rich in ferulic
acid, which can increase energy expenditure by upregulating the rate-limiting enzymes
related to FAO and ketone biosynthesis, alleviating high-fat diet-induced MAFLD [280].
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Sulforaphane, mainly derived from cruciferous vegetables, is a known natural activator of
the antioxidant factor Nrf2. Sulforaphane can enhance the PPARα-mediated expression of
FAO-related genes via the FGF21/FGFR1 pathway [281]. Hesperidin, which is abundant
in citrus, and Formononetin, an active constituent of Astragalus membranaceus and other
herbs, upregulated the SIRT1-mediated deacetylation of PGC1α, which in turn promoted
PPARα-mediated FAO-related gene expression and alleviated MAFLD [282,283].

3.1.4. Natural Products and Lipid Export in MAFLD

Several studies have reported natural products that alleviate MAFLD by regulating
lipid output. Curcumin is an important natural polyphenolic compound derived mainly
from Curcuma longa L., Curcuma wenyujin, and other turmeric plants [333]. The beneficial
effects of curcumin in alleviating MAFLD can be explained partially by the upregulation of
the VLDL precursor ApoB100, which in turn promotes hepatic lipid export [284]. Hyper-
oside, a natural flavanol glycoside, ameliorated MAFLD by upregulating apolipoprotein
C3, which in turn promoted the assembly and secretion of VLDL-TG [285]. Brown rice
refers to rice from which the bran and germ have not been removed. It was found that
brown rice can ameliorate obesity-associated hepatic steatosis by upregulating ApoB and
MTTP, which is positively associated with VLDL secretion [334]. In addition, quercetin as
well as taurine restored impaired hepatic VLDL secretion and thereby ameliorated lipid
accumulation, which is associated with alleviating endoplasmic reticulum stress [286,287].
In addition, the natural flavonoid chrysin also ameliorated hepatic lipid accumulation in
MAFLD mice by increasing VLDL secretion in an HNF4α-dependent manner [288].

3.2. Natural Products and Carbohydrate Metabolism in MAFLD
3.2.1. Natural Products and Carbohydrate Uptake in MAFLD

Many natural products may improve insulin resistance by restoring impaired glucose
uptake. Berberine, an isoquinoline alkaloid compound extracted from traditional Chinese
herbs, such as Coptis chinensis, can improve the glucose uptake rate of HepG2 cells culti-
vated in high-glucose condition [335]. Berberrubine, a major metabolite of berberine in the
liver, promoted glucose uptake and ameliorated high-fat-induced MAFLD by increasing the
expression level of GLUT2 [289]. Astragaloside IV, the main active ingredient in Astragalus
membranaceus (Fisch.) Bunge, can effectively enhance glucose uptake in insulin-resistant
HepG2 cells induced by oleic acid [290]. Triterpenoid acids-rich fractions from Cyclocarya
paliurus (Batalin) Iljinsk. significantly increased tyrosine phosphorylation levels of insulin
receptor substrates as well as 2-deoxyglucose uptake in HepG2 cells and primary hepato-
cytes cultivated in high-fat conditions [336]. Protocatechuic Acid and Epicatechin, which
are the main constituents in the aqueous extracts from cocoa shells, restored downregulated
GLUT2 levels in HepG2 cells and thus improved glucose tolerance through FGF21 signaling
transduction [291]. Coniferaldehyde can also reverse impaired glucose uptake caused by
high-fat diets by upregulating GLUT2 expression [292]. Skatole, a natural compound pro-
duced by plants and intestinal microbes, improved glucose uptake and insulin resistance
in HepG2 cells induced by lipotoxicity [293].

3.2.2. Natural Products and Glycogen Metabolism in MAFLD

Hepatic lipid accumulation is usually accompanied by a decrease in glycogen storage,
and some natural products may improve MAFLD by reversing this change. Acacetin, a
natural flavonoid, significantly increased glycogen distribution and content in the livers
of high-fat diet-induced obese mice and improved MAFLD [294]. Aqueous extracts from
Scolymus hispanicus L. (golden thistle) as well as Bee bread from Heterotrigona itama can also
elevate hepatic glycogen reserves reduced by a high-fat diet [337,338]. Bavachin, a flavonoid
isolated from the seeds and fruits of Psoralea corylifolia L., significantly increased the phos-
phorylation level of GSK3β in mouse primary hepatocytes and Huh 7 cells, which led to
an increase in glycogen synthesis and improved insulin resistance [295]. The combined
treatment of genistein, a natural phytoestrogen, or chlorogenic acid, a phenolic compound
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commonly found in many foods and herbs, with metformin, respectively, ameliorated
MAFLD, which was partially achieved by upregulating GSK-3β phosphorylation levels
and thereby enhancing glycogen synthesis [296,297]. In addition, triterpenoid acids-rich
fractions from Cyclocarya paliurus (Batalin) Iljinsk., coniferaldehyde, and icaritin can also
restore impaired glycogen synthesis and ameliorate MAFLD by upregulating the phos-
phorylation level of GSK3β [292,298,336]. The natural compounds glycyrrhizic acid and
calycosin, on the other hand, can promote glycogen synthesis by upregulating GSK3β
protein levels [299,300].

3.2.3. Natural Products and Glycolysis in MAFLD

Many studies reported natural products that improve MAFLD by modulating glycoly-
sis in the liver. Tetrahydropalmatine, an important active constituent of Corydalis yanhusuo,
can improve hepatic steatosis by restoring the balance between glycolysis and mitochon-
drial oxidation, which is achieved by activating AMPK [301]. Lapachol, a naphthoquinone
derived from teff, ameliorated the inflammatory response in MAFLD by inhibiting the
phosphorylation of PKM2, a key enzyme in glycolysis, which in turn inhibited hepatic
macrophage M1 activation [302]. Indole, a metabolite of intestinal microbes, can exert anti-
hepatic steatosis and inflammation effects through a similar mechanism, except that that
indole inhibits glycolysis via the activation of fructose-2,6-bisphosphatase 3 (PFKFB3) [339].
Rotundic acid, a natural triterpenoid and the main active ingredient in the bark of Ilex
rotunda Thunb., can inhibit the production of lactic acid from glycolysis and thereby reduce
high-fat diet-induced hepatic inflammation and excessive lipogenesis [303]. Costunolide
represents a promising compound for blocking fibrosis progression in MAFLD by suppress-
ing aerobic glycolysis through the inhibition of HK2 and thus inactivating HSCs [304]. In
addition, curcumin can inhibit glycolysis-mediated HSCs activation in an AMPK activation-
dependent manner, providing new insights into anti-hepatic fibrosis therapy [305].

3.2.4. Natural Products and Gluconeogenesis in MAFLD

Several studies also reported that some natural products could regulate gluconeoge-
nesis in MAFLD. Berberrubine and glycyrrhetinic acid can downregulate the expression
levels of key enzymes in gluconeogenesis such as G6Pase and PEPCK [289,299]. Eriocitrin,
a natural flavonoid abundant in lemons, improves insulin sensitivity by attenuating hepatic
gluconeogenesis [306]. Perillartine, a natural sweetener extracted from Perilla frutescens,
improved lipid deposition and glucose homeostasis in hepatocytes by downregulating
the expression of gluconeogenesis-related genes [307]. Fisetin, a natural flavonoid that
exists in fruits and vegetables, can downregulate the expression levels of G6Pase and
PEPCK and repair the high-fat diet-induced imbalance between hepatic glucose release
and uptake [308].

3.3. Natural Products and Amino Acid Metabolism in MAFLD

A number of natural products have also been reported in the regulation of amino acid
metabolism disorders in MAFLD, mainly affecting the composition of amino acids metabo-
lites. Diosgenin can ameliorate high-fat diet-induced disorders of amino acid metabolism
in the liver of MAFLD mice to a certain extent, especially AAAs. Diosgenin downregulated
tyrosine metabolites such as dopamine, N-acetyldopamine and norepinephrine, tryptophan
metabolites such as L-kynurenine and 5-hydroxytryptophan, and lysine metabolites such
as 5-amino-3-oxohexanoic acid and Saccharopine, while it upregulated tyrosine metabo-
lites such as tyromine [309]. Inulin, a prebiotic, was shown to attenuate hepatic steatosis
by affecting tryptophan metabolism in gut microbes [340]. Schisandrin B can downreg-
ulate elevated L-glutamate and glutamyltyrosine levels in MAFLD [277]. The aqueous
extract from the traditional Chinese medicine Polygala japonica Houtt. ameliorated steato-
hepatitis by modulating the histidine and tryptophan metabolic pathways in the liver as
well as intestinal microbes. Specifically, the levels of histidine metabolites such as his-
tamine, l-glutamate, and urocanic acid were downregulated, while the levels of tryptophan
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metabolites such as L-kynurenine and L-tryptophan were downregulated, and the levels of
3-hydroxyanthranilic acid and 5-hydroxyindole-3-acetic acid were upregulated [341].

3.4. Natural Products and Micronutrient Metabolism in MAFLD
3.4.1. Natural Products and Vitamin Metabolism in MAFLD

Limited studies reported the effects of natural products on vitamin metabolism in
MAFLD. Glycyrrhizin is a major constituent in the root of Glycyrrhiza glabra L. [342].
Glycyrrhetinic acid is a metabolite of glycyrrhizin in vivo and can elevate retinoic acid
levels in the liver of MAFLD mice, especially at RA, thereby ameliorating disturbed vitamin
A metabolism and mitigating MAFLD via downstream nuclear receptors pathways of
vitamin A [310]. β Cryptoxanthin, a pro-vitamin A that exists in vegetables and algae,
inhibited hepatic lipid accumulation, lipid peroxidation, and macrophage M1 activation,
thereby ameliorating insulin resistance and inflammatory responses in the liver [311].
In addition, the consumption of brown rice elevated retinol levels and upregulated the
expression of genes related to vitamin A signaling in mouse livers [334].

Hibiscus sabdariffa L. is rich in flavonoids, tannins, saponins, quinones, and triter-
penoids, which can inhibit elevated homocysteine levels due to vitamin B12 deficiency
and alleviate hepatic steatosis and inflammation [343]. Polyphenols in the shells of Pisum
sativum L. elevated serum and liver levels of vitamin B6, which was achieved partially by
promoting the production of vitamin B6 by gut microbes and thus ameliorated high-fat
diet-induced hepatic oxidative stress, inflammation, and fibrosis through the activation of
PPARα and the inhibition of the TLR4 inflammatory pathway [344].

The ethanolic extract from the seeds of Sesamum indicum L. elevated hepatic levels
of vitamin C as well as antioxidants such as glutathione, thereby ameliorating high-fat
diet-induced hepatic oxidative stress and inflammatory responses [345]. Similarly, hepatic
vitamin C and E levels in high-fat diet-induced obese mice were significantly elevated
after intervention with the ethyl acetate extract from Lavatera cretica L., which ameliorated
hepatic lipid accumulation and oxidative damage [346].

In addition, studies have reported that tomatidine, a steroidal alkaloid present in
Solanaceae, acts as an agonist of the vitamin D receptor to activate AMPK signaling, thereby
alleviating hepatic lipid accumulation [312,313]. The unique properties of tomatidine are
expected to attenuate the negative effects caused by vitamin D deficiency in MAFLD.

3.4.2. Natural Products and Mineral Metabolism in MAFLD

Several studies have reported the role of natural products in improving iron metabolism
in MAFLD. Curcumol is a sesquiterpenoid extracted from Curcuma longa L., Curcuma
kwangsiensis, and other turmeric plants [347]. Curcumol can alleviate hepatocyte senes-
cence and ameliorate MAFLD by blocking free iron release through the inhibition of
ferritinophagy [314]. Exocarpium Citri Grandis, the unripe or nearly ripe dried outer peri-
carp of Citrus grandis L., may inhibit iron overload and alleviate lipid accumulation and
liver injury by modulating the iron transport and storage capacity of hepatocytes, thereby
inhibiting iron overload [348]. In addition, natural compounds such as betaine, zeaxanthin,
and epigallocatechin gallate have been reported to improve MAFLD by attenuating hepatic
iron deposition [315–317]. In addition to improving iron homeostasis, many studies have
reported the inhibitory effects of natural products on ferroptosis in MAFLD. Ginkgolide
B, a terpene trilactone extracted from the leaves of Ginkgo biloba L., inhibits iron over-
load and lipid peroxidation in the liver, thereby attenuating ferroptosis and alleviating
MAFLD [318]. Additionally, dehydroabietic acid, quercetin, atractylodin, epimedium,
arbutin, and puerarin alleviate high-fat diet-induced liver injury by upregulating the ex-
pression of antioxidant-related factors in ferroptosis, especially Nrf2 and GPX4 [319–324].

Reports on natural products regulating the metabolism of other minerals are quite
limited. Oleuropein, a non-toxic cyclic enol ether terpene phenol isolated from the fruits
and leaves of Olea europaea L., is able to ameliorate MAFLD by activating AMPK-dependent
autophagy and may act as a natural chelator of copper ions to modulate hepatic copper
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homeostasis and inhibit oxidative stress [325,326]. Selenoneine, a natural organic selenium
compound mainly found in fish tissues such as tuna, significantly increased selenium levels
in mouse livers and alleviated hepatic steatosis and liver injury in mice with MAFLD [327].

4. Conclusions

Present knowledge identifies MAFLD as a hepatic disease closely related to metabolic
disorders, and homeostasis imbalances of macronutrients such as lipids, carbohydrates,
and amino acids, as well as micronutrients such as vitamins and minerals, are strongly as-
sociated with MAFLD progression. However, no drugs have been approved for the clinical
treatment of MAFLD to date, which greatly compromises the medical benefits for patients.
Indeed, there have been numerous attempts by researchers to utilize natural resources to
develop active products beneficial for MAFLD prevention and treatment, and many natural
products exhibit excellent potential to ameliorate metabolic disorders in MAFLD. How-
ever, it is significant to note that the current understanding of MAFLD pathophysiology is
far from adequate, and the complicated associations among various metabolic pathways
greatly challenge the exploration of pathogenesis as well as the development of drugs.
While natural products have shown promising pharmacological properties, it is important
to note that these findings are primarily based on animal studies and in vitro experiments.
Therefore, further research is needed before they can be applied in clinical use. In addition,
there are significant differences among natural products in their physicochemical nature,
preparation methods, and research strategies, and their active ingredients, purity, biosafety,
availability, pharmacokinetics, and efficacy must be evaluated normatively, which may be
the focus for future related research.
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Abbreviations Full names
ACC Acetyl-CoA Carboxylase
ACSL4 Acyl-CoA Synthetase Long-chain family member 4
ACSL5 Acyl-CoA Synthetase Long-chain family member 5
AGPAT Acylglycerol-3-Phosphate Acyl Transferase
AhR Arylhydrocarbon Receptor
ApoB100 Apolipoprotein B100
BCATs branched-chain aminotransferases
BCKDs branched-chain α-ketoacid dehydrogenases
BMP4 Bone morphogenetic protein 4
CACT Carnitine Acyl Carnitine Translocase
CCTα Cytidine triphosphate: phosphocholine Cytidylyltransferase-α
CD36 Cluster Determinant 36
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ChREBP Carbohydrate Response Element Binding Protein
CP ceruloplasmin
CPT1 Carnitine Palmitoyl Transferase 1
CPT2 Carnitine Palmitoyl Transferase 2
CYP4A cytochrome P450
DGAT diacylglycerol acyltransferase
DLAT dihydrolipoamide S-acetyltransferase
EGFR epidermal cell growth factor receptor
EIF5A Eukaryotic Initiation Factor 5A
FAO fatty acid oxidation
FAS Fatty Acid Synthase
FATPs Fatty Acid Transporter Proteins
Fbpase fructose-1,6-bisphosphatase
FGFR fibroblast growth factor receptor
FMO2 Flavin-containing Monooxygenase 2
G6Pase Glucose-6-phosphatase
GBE glycogen branching enzyme
GCK glucokinase
GLUTs Glucose Transporter proteins
GPAT Glycerol-3-Phosphate Acyl Transferase
GPCR G protein-coupled receptor
GPXs glutathione peroxidases
GSK3β glycogen synthase kinase 3β
GYS glycogen synthase
HIBCH 3-hydroxyisobutyryl coenzyme A hydrolase
HK2 Hexokinase 2
HNF4α Hepatocyte Nuclear Factor 4α
INSIG2 Insulin-Induced Gene 2
LXRs Liver X Receptors
MCJ Methylation-Controlled J protein
MMPs matrix metalloproteinases
mTORC1 mammalian Target of Rapamycin Complex 1
MTTP Microsomal Triglyceride Transfer Protein
PAPs Phosphatidic Acid Phosphatases
PAR2 Protease-Activated Receptor 2
PEPCK phosphoenolpyruvate carboxykinase
PFK1 phosphofructokinase 1
PFKFB3 fructose-2,6-bisphosphatase 3
PKM2 pyruvate kinase type M2
PPARα Peroxisome proliferator-activated receptor α
PPARγ Peroxisome Proliferator-Activated Receptor γ
RAR retinoic acid receptor
RTKs receptor tyrosine kinases
RXR retinoid X receptor
SCAP SREBP Cleavage-Activating Protein
SGLT2 Sodium-dependent Glucose Transporter protein 2
SMLR1 Small Leucine-Rich protein 1
SOD1 superoxide dismutase 1
SREBPs Sterol Regulatory Element Binding Proteins
THRβ Thyroid hormone receptor β subtype
TM4SF5 Transmembrane 4L Six Family member 5
TM6SF2 Transmembrane 6 Superfamily member 2
TXNRDs thioredoxin reductases
VDR vitamin D receptor
VLDL Very Low-Density Lipoprotein
ZFPs zinc finger proteins
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