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Abstract: Drug discovery was initially attributed to coincidence or experimental research. Historically,
the traditional approaches were complex, lengthy, and expensive, entailing costly random screening
of synthesized compounds or natural products coupled with in vivo validation largely depending
on the availability of appropriate animal models. Currently, in silico modeling has become a vital
tool for drug discovery and repurposing. Molecular docking and dynamic simulations are being
used to find the best match between a ligand and a molecule, an approach that could help predict the
biomolecular interactions between the drug and the target host. Beauvericin (BEA) is an emerging
mycotoxin produced by the entomopathogenic fungus Beauveria bassiana, being originally studied
for its potential use as a pesticide. BEA is now considered a molecule of interest for its possible
use in diverse biotechnological applications in the pharmaceutical industry and medicine. In this
manuscript, we provide an overview of the repurposing of BEA as a potential therapeutic agent
for multiple diseases. Furthermore, considerable emphasis is given to the fundamental role of in
silico techniques to (i) further investigate the activity spectrum of BEA, a secondary metabolite, and
(ii) elucidate its mode of action.

Keywords: mycotoxin; computer-aided drug discovery; natural compounds; beauvericin; repurposing

1. Beauvericin: A Mycotoxin

Historically, before pure chemicals were synthesized, people used natural compounds
for their useful applications in traditional medicine and pest management within a harmo-
nized ecosystem. The secondary metabolites of such natural products are predominantly
synthesized by bacteria, fungi, and plants [1]. These molecules possess low molecular
weight and exhibit a wide array of chemical structures along with diverse biological activi-
ties. Although not required for the development of organisms, they are produced to confer
a selective survival advantage [2]. Paradoxically, these compounds (or their derivatives),
over the last two decades, have constituted approximately 35% of the FDA-approved drugs
being used to control/cure diseases and/or combat microbial infectious agents (bacte-
ria/fungi/viruses) [3]. The assessment of mycotoxins for their wide span of bioactivities
has garnered considerable attention [4].
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Beauveria, a cosmopolitan anamorphic genus of soilborne necrotrophic entomopathogenic
fungi, is the most studied biological control agent. Its global distribution in addition to its
broad range of target pests have made Beauveria the most prominent entomopathogenic
fungi [5]. Its ability to cause diseases in insects was initially reported nearly 60 years
ago. Since that time, Beauveria has been the most studied alternative control agent, and,
currently, its conidia form the basis of several commercial insecticides available in the world
trade [6]. The first taxonomical characteristic for identifying the Beauveria genus was based
on the morphology of conidiogenous cells and the conidiogenesis process itself [7]. This
traditional approach, however, has always been controversial. In 2011, the first molecular
approach entailed a multi-locus phylogenetic approach based on the partial sequences of
the protein-coding genes (RPB1, RPB2, TEF), and the B locus nuclear intergenic region
(Bloc) [8]. Twelve ex-type species of Beauveria were described. Among these, B. bassiana was
found in different isolates infecting a wide variety of insects and mites including but not
limited to Acari, Lepidoptera, Coleoptera, Hymenoptera, Homoptera, Diptera, Hemiptera,
and Orthoptera [9,10]. Despite being considered a generalist fungus with no host prefer-
ence, B. bassiana virulence varies considerably among the different strains [11]. Additionally,
and in sharp contrast to other entomopathogenic agents, B. bassiana can infect its host by
ingestion or contact. The most familiar mode of infection is penetration through the host
tegument, with infections caused by conidial ingestion and penetration through natural
orifices also being reported [12]. The success of establishing a fungal infection depends
on the capability of entomopathogenic fungi to overcome the epicuticular fungistatic com-
pounds, cuticle thickness, mineralization, sclerotization, melanization, protease inhibitors,
antimicrobial peptides, and cellular/humoral responses [13]. Interestingly, some hypervir-
ulent strains of B. bassiana can evade encapsulation and nodule formation by producing
secondary metabolites that dampen the host cellular immune response [14]. BEA is the
most common secondary metabolite produced by many fungi, including Beauveria spp.,
and is a cyclic hexadepsipeptide molecule belonging to the enniatin antibiotic family [15].
It contains three D-hydroxyisovaleryl and three N-methyl phenylalanyl residues in an alter-
nating sequence (Figure 1). BEA, however, encompasses different biological activities from
enniatins produced by Fusarium spp., linked mainly to the nature of the N-methylamino
acid [16].
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2. Arthropodpathogenic Activity of Beauvericin

Numerous fungi are known to produce BEA after reaching the hemocoel of their
host. Mutant strains of B. bassiana, with a knock-out of the bbBeas gene responsible for
the expression of BEA, exhibit less virulence in their insect hosts [17]. BEA can suppress
arthropod cell defenses including those mediated by antimicrobial lipids and phenols,
enzyme inhibitors, and proteins [18]. BEA also inhibits the growth of microbial flora
in arthropods and other organisms that could compete over limited nutrients [19]. The
observations listed above are linked directly to the mechanisms and impact of BEA on the
host, which are tightly associated with its molecular characteristics. The first important
link is the ionophoric nature of BEA which was first demonstrated in a study back in the
1990s where the authors provided evidence that beauvericin can transport small ions across
cytoplasmic membranes [20]. This observation was further supported by showing that
BEA could establish a cation-selective channel after incorporating it into mammalian cell
membranes [21]. Consequently, the increased intracellular bioavailability of Ca2+ decreases
the transmembrane potential of the mitochondria, releases cytochrome c, and activates
caspase 3, a critical executioner of apoptosis [22]. Thus, BEA can initiate cell death via
calcium-dependent pathways [23]. Furthermore, the increase in BEA concentration could
breach the nucleus and alter the DNA [24]. BEA can randomly bind to DNA sequences and
damaged areas could be fragmented by nucleases.

Initially, the insecticidal activity of BEA was confirmed against Aedes aegypti, a mosquito
that can spread dengue fever, and Calliphora erythrocephala, flies that are important in foren-
sic entomology [25]. Since then, more details on the insecticidal activity of BEA have
become available. BEA can efficiently control the growth of the Colorado potato bee-
tle, Leptinotarsa decemlineata [26]. BEA also significantly reduced the fitness of Schizaphis
graminum by increasing the number of abortive embryos produced by treated females [27],
and among 16 fungal metabolites, BEA showed the highest cytotoxicity to the lepidopteran
(Spodoptera frugiperda) cell line (SF-9) [28]. Moreover, studies on the plant bug Lygus spp.
provided insight into the potential role that BEA can play against those bugs [29]. The
acaricidal activity of BEA has been explored supporting the potential usefulness of BEA as
a promising agent for pest management [30]. Under natural conditions, the application of
BEA significantly reduced Tetranychus urticae populations while showing no phytotoxicity
and ecotoxicological risk.

3. From Mycotoxin to Humanized Drug

In recent years, BEA has been exploited in the search for new therapeutic options
against human pathogens and diseases. Accumulated data from different perspectives
further revealed that BEA is being considered as a potential candidate for medicinal research
due to its broad range of biological properties. The wide spectrum of BEA biological and
biochemical activities was previously studied [15,16,18]. In this review, however, we shed
light on studies using computational methods that played a role in rediscovering novel BEA
targets. For this, a targeted literature review was conducted in three different databases—
ScienceDirect, Web of Science, and PubMed—to detect all potentially eligible peer-reviewed
articles using the terms “beauvericin”, “mycotoxin”, “computer-aided drug discovery”, “in
silico”, “molecular docking”, and “molecular dynamic simulation”. The relevant literature
was critically reviewed and categorized based on the available data.

3.1. The Role of BEA in Antimicrobial Resistance

A growing body of literature has revealed that BEA strengthens the efficacy of
chemotherapeutics against a wide span of microorganisms. The first line of evidence
came from a high-throughput synergy screening that identified BEA as the most potent
combination molecule for the treatment of fungal infections [31]. Using a checkboard
assay, BEA acted synergistically with ketoconazole, significantly enhancing the therapeutic
index against a broad range of fungal pathogens including Candida albicans, C. parapsilosis,
C. glabrata, C. krusei, C. tropicalis, Aspergillus fumigatus, A. niger, A. terreus, Saccharomyces
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cerevisiae, Cryptococcus neoformans, and Fusarium oxysporum. Given that invasive fungal
infections are considered a significant threat to immunosuppressed patients, investigating
the efficacy of the synergetic pair against an immunocompromised host was crucial. A
combinatorial dosage of BEA (0.5 mg/kg) and ketoconazole (0.5 mg/day) significantly
increased the survival of an immunocompromised mouse model infected with C. parap-
silosis. Moreover, the fixed-dose combination lowered the number of viable fungal cells in
several organs, namely, the kidneys, lungs, and brain. The most remarkable finding that
emerged from the obtained data was that the observed therapeutic effect was not attained
even with a tenfold-higher dose of ketoconazole [31]. Further tests carried out confirmed
that BEA renders fungal pathogens more responsive to treatment with fluconazole, an-
other member of the azole antifungal family [32]. Remarkably, this activity is achieved by
increasing its accumulation within the cells of S. cerevisae, C. albicans, C. neoformans, and
A. fumigatus [32]. In parallel, the fungal secondary metabolite was shown to synergize with
sub-lethal doses of different pesticides and potentiate their activity against T. urticae, the
world’s most resistant arthropod [33]. On the other hand, sub-lethal doses of BEA in com-
bination with cyflumetofen, bifenazate, or abamectin significantly suppressed populations
of the two-spotted spider mite when compared to single-pesticide treatment. The authors
also showed that BEA could not only reverse but also impair the emergence of resistance
to xenobiotics in arthropods. Up to this point, the mechanism of action of BEA was still
being investigated. Zhang et al. [31] has hinted at the possibility that an efflux pump, in
the fungal cell membrane, might be involved. However, our collective understanding of
the target protein, interacting residues, and mechanism of binding was limited. It was only
after the development and use of recent in silico approaches that the mode of action of BEA
was elucidated.

Multi-drug resistance is generating considerable interest since it is a major treatment
impediment [34]. The development of resistance is mainly driven by the misuse and
overuse of antimicrobial agents [35]. The emergence and spread of antimicrobial resistance
reduce the effectiveness of the available therapeutic arsenal against a wide range of human,
animal, and plant pathogens [36]. According to the World Health Organization (WHO)
(2020), the development of resistance is threatening global health and development; thus,
understanding the underlying resistance mechanisms is important to mitigate the growth
and dissemination of resistant populations. In addition to chromosomal mutations, the
development of resistance was mainly attributed to the xenobiotic efflux pumps from dif-
ferent families [37]. The most common group of transmembrane pumps is the ATP-binding
cassettes (ABC) transporters that are ubiquitously present in prokaryotes, archaea, and
eukaryotes [38]. The inward-facing conformation of ABC transporters, formed from two
bundles of six transmembrane helices, results in a large internal cavity that binds xenobi-
otics and chemotherapeutic drugs [39]. The switch from the inward- to the outward-facing
conformation will transport the substrate to the extracellular environment [38], reducing, as
a result, its bioavailability inside the cell. Even though modern in silico methodologies have
become a crucial part of the drug discovery process, showing that BEA can synergistically
improve treatment outcomes was a serendipitous finding. In their attempt to counteract
the multi-drug resistant phenotype of C. albicans, an opportunistic pathogenic yeast, Tong
et al. [40] aimed to neutralize the drug efflux pumps CDR-1 and CDR-2 that belong to ABC
transporters. The swift advancement of genotyping allowed researchers to sequence new
proteins in a rapid and significant manner. At a significantly lower pace, scientists are
still deciphering and revealing the 3D structure of proteins using X-ray crystallography,
solution NMR, electron microscopy, and neutron diffraction. One approach to overcome
this would be through computer-aided comparative modeling of proteins. The homology
modeling constructs the atomic resolution of a protein of interest by comparing and utiliz-
ing the amino acid sequence of its homologue [41]. To generate models of C. albicans ABC
transporters, Tong et al. [40] used the Alignment Mode algorithm of SWISS-MODEL [42],
selecting a known mouse P-glycoprotein crystal structure (PDB: 3G60) as a template. The
generated 3D models were utilized for molecular docking, a computer-assisted drug de-
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sign methodology, to predict the predominant binding mode of ligands [43]. Molecular
docking tools explore 3D contact areas between small molecules and macromolecular
structures by using a scoring function that ranks molecular binding [44]. AutoDock Vina
is one of the most cited tools for predicting protein–ligand interaction [45]. It relies on
a Monte-Carlo based iterated search method and multithreading parallelism scheme on
multicore machines to improve docking accuracy and speed [45]. Concomitantly, the tool
is fast enough to allow virtual screening of publicly available drug libraries enclosing thou-
sands of molecules [45]. Interestingly, among 950 compounds with more than 500 Daltons
found in the ZINC15 database, BEA and its analogs had the best affinity to CDR-1 and
CDR-2 of C. albicans. Of note, the secondary metabolite recoded lower binding energy
when compared to the co-crystallized inhibitors of the transmembrane proteins QZ59-RRR
(cyclic-tris-(R)-valineselenazole) and QZ59SSS (cyclic-tris-(S)-valineselenazole) [40]. The
authors here indicated that BEA, and its analogs, can block the substrate-binding cavity
of ABC transporters, therefore lowering the translocation of xenobiotics across the mem-
brane. These findings were recently corroborated using the same in silico pipeline for
fetching modulators of efflux mediated by ABC transporters [33]. Here, two and four ABC
transporters belonging to ABCB and ABCC subfamilies, respectively, were modeled using
the mouse P-glycoprotein (PDB: 4M1M) and the bovine multidrug resistance protein 1
(PDB: 6UY0) as templates. The homology models were refined using 3D-refine software by
optimizing the hydrogen bonds as well as the atomic-level energy. Molecular docking was
performed with a static target crustal structure using MolSoft ICM-pro, the most accurate
predictive tool of the binding geometry [46]. The grid was set upon the drug-binding
pocket of the ABC transporters where the hydrogen bonding potential, van der Waals
potential with carbon-, sulfur-, and hydrogen-like probes, hydrophobic potential, and
electrostatic potential were taken into consideration [33]. The internal cavity (~6000 Å3)
was docked with BEA, cyflumetofen, bifenazate, and abamectin. In addition, the following
three drugs having the potential to inhibit ABC transporters were used as positive control:
QZ59RRR (PubChem ID: 25195366), QZ59RRR (PubChem ID: 25195367), and verapamil
(PubChem ID: 2520). Interestingly, BEA showed lower affinity relative to drugs of interest
and the controls when docked against full ABC transporters of T. urticae. Accordingly,
the authors assumed that BEA might act as a competitive inhibitor of the transmembrane
pump and prevent drug transport by inhibiting drug association, increasing its intracel-
lular concentration as a result. Therefore, combinational therapy using BEA and other
drugs can be used to overcome multidrug resistance. It is noteworthy that the authors
only used molecular docking which in the absence of molecular dynamics simulation and
binding free energy will not be enough to determine the stability of the BEA with ABC
transporters. Further experimental investigations including long-timescale molecular dy-
namics are needed to check the binding stability, secondary structure, and conformational
changes in the target–drug complexes. A recent study conducted by Al Khoury et al. [47]
delved into an investigation aimed at unravelling the mechanisms underlying the action
of BEA against efflux pumps in ABC transporters, with a specific focus on ABCG6 within
Leishmania tropica. The observed upregulation of ABCG6 upon exposure to miltefosine
(ML), a known leishmanicidal, suggests its pivotal role in mediating ML resistance. Conse-
quently, the study conducted detailed molecular investigations into ABCG6 to elucidate
the precise interactions between ABC transporter substrates (ML) and inhibitors (BEA),
thereby providing invaluable insights into the drug transport process. By employing molec-
ular docking, the study identified specific residues within the transporter, particularly
in transmembrane helices 5, 6, 11, and 12, that interact with BEA, contrasting with ML’s
interactions primarily with transmembrane helices 6, 10, and 12. These distinct binding
patterns shed light on the unique mechanisms through which BEA inhibits efflux and
potentially overcomes drug resistance [47]. Furthermore, the investigation unveiled critical
conformational changes induced by both ML and BEA binding through comprehensive
MD simulations. These simulations not only validate the substantial movements of the
apo ABC transporter but also highlight significant conformational alterations triggered by
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the binding of substrates and inhibitors. The comparison of binding trajectories between
ML and BEA underscores BEA’s ability to impede the conformational changes required for
efflux initiation by hindering ML binding. Importantly, the study elucidates the underlying
factors contributing to BEA’s high affinity for ABC transporters, emphasizing the crucial
role of hydrophobic interactions in stabilizing the BEA–transporter complex. Molecular
docking analyses further corroborate these findings, suggesting that BEA effectively in-
hibits ATP hydrolysis and disrupts the conformational cycle necessary for efflux [47]. The
comprehensive in silico findings presented offer, for the first time, a deeper understanding
of the molecular mechanisms underlying BEA’s action against ABC transporters, shedding
light on its potential as a targeted therapeutic agent to combat drug resistance in protozoan
pathogens such as Leishmania tropica.

3.2. The Antiviral Activity of BEA

The first antiviral attributes for BEA were examined on the human immunodeficiency
virus type 1 (HIV-1) where the specificity and inhibitory effect of this secondary metabolite
was mapped to the integrase mediation of the integration of the virus genome [48]. BEA
inhibitory activity was comparable to that of baicalein and robinetin, which were previously
designated as being effective antiviral compounds [49]. On top of its anti-inflammatory
effects, BEA was also found to significantly inhibit the nuclear translocation of the NF-κB
pathway subunits p65 and p50 within the RAW264.7 cells without inducing cell toxicity [50].
The inhibition of the NF-κB pathway, which is involved in the upregulation of genes encod-
ing cytokines such as interleukin (IL)-1 and tumor necrosis factor (TNF)-α, chemokines,
and inflammatory mediators such as inducible nitric oxide (NO) synthase (iNOS) (involved
in NO production) and cyclooxygenase (involved in prostaglandin E2 secretion) could alle-
viate the cytokine storm. Furthermore, Severe Acute Respiratory Syndrome Coronavirus-2
(SARS-CoV-2) which caused a rapidly emerging life-threatening disease that was later
defined as COVID-19 [51] with variable clinical manifestations from asymptomatic to mild
to severe [52]. The patients suffer from influenza-like symptoms, including, but not limited
to, fever, cough, sore throat, headache, and olfactory and taste dysfunction [53]. One of the
lessons learned from the ongoing SARS-CoV-2 pandemic was the role and importance of
computer-aided drug discovery (CADD). In silico techniques have proven indispensable in
the SARS-CoV-2 pandemic, from pathogen detection to drug discovery. Whole-genome
sequencing of SARS-CoV-2 significantly contributed to characterizing the evolution of
the virus in 3D (GenBank: MN908947.3). Given the critical importance of target-based
drug discovery, a special emphasis was placed on the 3D structure of the SARS-CoV-2
proteome [54]. Numerous 3D structures of SARS-CoV-2 proteins are publicly available
at “https://sars3d.com (accessed on 24 July 2023)” and were considered potential drug
targets and candidates for vaccine development [54]. Research groups heavily depend
on computer-aided approaches for the discovery of “druggable” proteins which occupy
folds that support interactions with a small drug-like molecule. The RNA-dependent RNA
polymerase (RdRp), one of the therapeutic targets, plays a vital role in the replication and
transcription of SARS-CoV-2 [55]. The enzyme has no homolog in human cells, and so was
recognized as an outstanding target for drug development. The inhibitory effects of 99 nat-
ural medicinal compounds were computationally investigated against it [56]. To reveal
the best binding affinities of the fungal secondary metabolites, AutoDock was used in a
combination of blind and targeted molecular docking. A site mapping was first conducted,
and the ligands were docked to the whole surface of the protein without considering target
pockets. The molecules that attached to the active site with high affinity (>6 kcal/mol),
were then selected for further investigations using targeted docking [56]. Among 25 other
compounds, BEA met the set criteria and was later docked to the active site of RdRp. BEA
established a strong hydrogen bond and hydrophobic interaction with C813 and F812 of
the motif E of the palm subdomain (T582 to P620 and T680 to Q815), respectively. The
motif contains a higher number of conserved structural elements that are vital for catalytic
activity. The palm sub-domain is needed for the recognition of NTPs over deoxy NTPs

https://sars3d.com
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and catalysis of phosphorylation reaction via metal ion coordination [57]. Other residues
involved in the binding with BEA include L758, V587, L602, V588, W598, T586, G597,
G596, M601, S592, K593, S814, D865, Y689, and A688. BEA, 18-methoxy cytochalasin
J, (22E,24R)- stigmasta-5,7,22- trien-3-β-ol, dankasterone B, and pyrrocidine A showed
the lowest binding affinities and were selected for molecular dynamic (MD) studies [56].
MD is a computational technique for investigating the physical movements of molecules
over time [58]. The atoms are permitted to “act together” in a time-varying simulation,
presenting the future state of the system [59]. MD simulation can elucidate a broad range
of biomolecular processes, most importantly, protein–ligand interaction demonstrating the
conformation of all the atoms at femtosecond temporal resolution [58]. To understand how
BEA was complexed to the RdRp, the MD simulations were performed by GROningen
MAchine for Chemical Simulations (GROMACS) [60]. GROMACS is a multipurpose tool
to generate MDs by simulating Newtonian equations of motion for systems with macro-
molecules (protein) and a potential ligand [61]. The cartesian positions of each atom of
the protein–ligand complex are stated at each step of the trajectory, generating complex
data. Root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius
of gyration (Rg), and hydrogen bonding kinetics are common measures of biomolecules’
spatial variations in an MD simulation. This output is crucial for analyzing protein–ligand
interactions and ligand dynamics. The RMSD measures the average distance between the
atoms of superimposed proteins and describes the molecule’s overall discrepancy with
respect to a reference conformation. Practically, the value is used to analyze the stability
of target proteins in combination with the drug. RMSF is an analysis used to measure the
rigidity of the polypeptide chain. It calculates the deviations in C-alpha atoms’ coordinates
from their average position. The flexibility pattern reflects the location of secondary struc-
ture elements in the protein structure. The Rg provides an indication of the mean square
distance between the center of gravity and the ends of the protein. The fluctuation in Rg
provides a clear indication of the level of compaction (loosening or compression) of the
protein. The hydrogen bonding analysis reveals the dynamics of breaking and forming
hydrogen bonds between the target protein and the ligand throughout a trajectory. To
evaluate the dynamics of the BEA-RdRp complex, a 100 ns MD simulation was gener-
ated [56]. The simulation time was sufficient to interpret the protein–ligand interaction as
the system reached equilibrium after 10 ns. The RMSD diagram of BEA in complex with
RdRp was among the most stable and demonstrated a high degree of complex stability.
The BEA-RdRp complex showed elevated fluctuations in amino acids belonging to the
N-terminal domain (144–162, 150–158, and 225–237), interface domain (320–326), finger
subdomain (494–506), and palm subdomain (564–600). In contrast, reduced fluctuations
were notable in amino acids belonging to the finger subdomain (361–390 and 410–432), and
the palm subdomain (657–675 and 776–791) [56]. The anchoring of BEA might, as a result,
be involved in causing conformational changes in residues that are essential for enzyme
activity. In addition, no significant fluctuations in Rg value were detected in the BEA-RdRp
complex when compared to the unbound enzyme. Consequently, the 3D conformation of
the protein is not compressed nor loosened in the presence of BEA [56]. MD simulations
allow admittance to binding free energy changes, leading to the driving force underlying
all biological processes.

The Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA), a compro-
mise between accuracy and speed, is a widely used method for calculating the ligand-
binding free energy. This method relies on splitting the molecular mechanic terms and
solvation energy to calculate the binding free energy [62]. Fundamentally, this approach
is based on calculating the difference between the binding free energy of two solvated
molecules in the bound and free states [62]. Among all fungal secondary metabolites, the
highest interaction energy was the one with BEA where van der Waals’ forces were the
leading contributors. In parallel, hydrogen bonding was considered a minor component of
the energy in BEA-RdRp interaction [56]. In a major advance, Al Khoury et al. [63] took a
different approach to investigating the anti-viral activity of BEA. Al Khoury and colleagues
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docked BEA against several promising drug targets of SARS-CoV-2 instead of in-depth
screening of the database against a single protein. BEA, surprisingly, showed the ability to
interact simultaneously with multiple targets. The emerging idea of “one drug-multiple
targets” has the edge over the conventional “one drug-one target” approach. Of particular
interest, a higher therapeutic index could result from the cumulative effect of inhibiting
multiple proteins and pathways involved in the development of the disease [64]. Given
the fact that pharmaceutical agents acting on multiple targets cannot be easily used for
in vitro and in vivo studies, computational methods can instead help in identifying the
promiscuity of molecules [65]. It is noteworthy that BEA docked with higher affinity to the
main protease (3CLpro) and spike glycoprotein (S protein) of the SARS-CoV-2 when com-
pared to its RdRp [63]. The SARS-CoV-2 encoded 3CL-protease is a homodimeric enzyme
that processes the cleavage of polyproteins that are translated from the viral RNA [66],
including the rod-shaped S proteins that play a fundamental role in viral pathogenesis,
evolution, and transmission [67]. From this standpoint, the neutralization of these proteins
can impede the viral infection and alleviate the disease symptoms.

Additionally, using MolSoft ICM-pro revealed that BEA can strongly bind to H41
(polar interaction) and C145 (hydrophobic interaction), the catalytic dyad residues, along
with E166 (H-bond), a vital residue found on the dimerization interface [63]. BEA could
also perform allosteric regulation by strongly interacting with an allosteric site, a pocket
topographically distinct from the substrate-binding site (Figure 2). The anchoring of BEA
to the orthosteric and allosteric sites of 3CL-pro was deemed stable during a 100 ns MD
simulation generated by GROMACS [63].
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Figure 2. Molecular docking of beauvericin (BEA) with SARS-CoV-2 viral proteins. 3D surface
representations of proteins in Blue and BEA is shown in red as well as in 2D diagrams. (A) SARS-
CoV-2 spike protein. (B) Protease: orthosteric site. (C) Protease: allosteric pocket.

Remarkably, molecular docking and MD simulation techniques were integrated to find
a new approach for inhibiting 3CL-pro. Further research, however, should be undertaken
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to screen therapeutic agents against this alternative binding site, away from that of the en-
dogenous agonist. Although allosteric inhibitors have better performance than orthosteric
modulators in terms of selectivity and saturability, this approach is still under-investigated.
With the S protein, it was speculated that a pocket adjacent to the receptor-binding domain
of the spike-ACE2 could be considered an allosteric binding site. However, MD simulations
were performed for the BEA–spike complex, and post-MD analysis revealed that the bind-
ing of BEA to the pocket did not stir any changes that could render the receptor binding
unrecognizable by the substrate [63]. The authors in this study provided clear evidence
that molecular docking approaches, although fast, are not able to satisfactorily estimate
the predominant binding mode of a ligand with a target protein. Accordingly, additional
computationally demanding MD simulations are needed to predict the speed and position
of each atom of the considered complex along the sequence of events.

3.3. Pharmacokinetics and Drug-Likeness of BEA

A fundamental element moving toward using BEA as a therapeutic agent for humans is
to have an insight into its pharmacokinetic properties to elucidate its liberation, absorption,
distribution, metabolization, excretion, and toxicity (LADMET) [68]. A high potency does
not necessarily imply a good therapeutic index. Moreover, it is essential that high amounts
of the molecule reach the target tissue and for a prolonged timespan post-medication [69].
Despite the recently rising interest in determining the pharmacological properties of BEA,
the available data regarding the kinetics of the concentration-time profile are limited.
Currently, computer-aided prediction of therapeutic LADMET is of particular importance
for the development of new drug candidates as it is considered a rapid and accurate
process prior to synthesis. SwissADME “www.swissadme.ch (accessed on 13 August 2023),
on the other hand, is a freely available tool that compiles robust predictive models for
physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry
friendliness [70]. BEA was entered in the SMILES list field and submitted to SwissADME
calculations. This toolbox facilitates the evaluation of drug-likeness by providing clean
molecular and physiochemical characteristics, namely, the molecular weight (MW), number
of heavy and aromatic heavy atoms, fraction csp3, number of bonds (rotatable, H-bond
acceptor, and H-bond donors), and molar refractivity (Table 1).

Table 1. Computed physicochemical properties of BEA.

Physicochemical Properties

Formula C45H57N3O9
Molecular weight 783.95 g/mol

Num. heavy atoms 57
Num. atom. heavy atoms 18

Fraction Csp3 0.47
Num. rotatable bonds 9

Num. H-bond acceptors 9
Num. H-bond donors 0

Molar Refractivity 228.14
TPSA 139.83 Å2

The tool adapts a novel approach based on the summation of tabulated surface con-
tributions of polar fragments instead of the traditional time-consuming calculation of the
molecular polar surface area (PSA) that relies on the generation of 3D models and the sum
of the surfaces of polar atoms (usually O, N, and attached H), [71]. The in silico predictive
software allows for determining lipophilicity during the drug discovery process (Table 2).

www.swissadme.ch
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Table 2. Computed lipophilicity of BEALipophilicity.

Lipophilicity

Log Po/w (iLOGP) 5.29
Log Po/w (XLOGP3) 8.42
Log Po/w (WLOGP) 3.77
Log Po/w (MLOGP) 3.14

Log Po/w (SILICOS-IT) 5.43
Consensus Log Po/w 5.21

The affinity of a therapeutic agent for a lipid environment is pivotal to the LADMET
properties of the drug and a significant contributor to its potency and selectivity. Swis-
sADME gathers five freely available models to evaluate this physicochemical parameter
including XLOGP3 [72], WLOGP [73], MLOGP [74,75], SILICOS-IT (http://silicos-it.com,
accessed on 24 April 2022), and finally iLOGP [76]. Moreover, the tool provides the con-
sensus log Po/w (5.21) considering the arithmetic mean of the values predicted by the five
models (Table 2; Figure 3) which shows the high lipophilicity of BEA. In silico prediction of
the latter characteristic ties well with previous clinical studies wherein BEA was demon-
strated to bioaccumulate in fat-rich tissues [77,78]. These results were further supported by
Rodríguez-Carrasco et al. [79] who emphasized the pharmacological profile of BEA and its
distribution in serum, urine, muscle, colon, fat, brain, kidney, and liver extracts of mice.
The lipophilic nature of BEA is mainly due to the apolar side chains directing out from the
outer surface of the molecule [80,81].
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Figure 3. Schematic diagram of Bioavailability Radar for Drug likeness of BEA (lipophilicity: XLOGP3
between −0.7 and +5.0, size: MW between 150 and 500 g/mol, polarity: TPSA between 20 and 130 A2,
solubility: log S no higher than 6, saturation: fraction of carbons in the sp3 hybridization not less
than 0.25, and flexibility: no more than 9 rotatable bonds).

Histochemical studies have revealed that BEA can be detected in all biological samples
except in urine. It can be thus conceivably hypothesized that this secondary metabolite can
diffuse across all biological membranes. Taken together, a high pharmacological activity of
BEA might be assumed. Solubility—the dissolution ability of a xenobiotic, the solute, in
another substance, the solvent—is another vital characteristic that must be tackled in the
pursuit of new potential medicines. SwissADME relied on three different approaches to
predict the water solubility of BEA (Table 3).

http://silicos-it.com
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Table 3. Computed water solubility characteristics of BEAWater solubility.

Water Solubility

Log S (ESOL) −9.64
Solubility 1.78 × 10−07 mg/mL; 2.27 × 10−10 mol/L

Class Poorly soluble
Log S (Ali) −11.23
Solubility 4.67 × 10−09 mg/mL; 5.96 × 10−12 mol/L

Class Insoluble
Log S (SILICOS-IT) −10.22

Solubility 4.68 × 10−08 mg/mL; 5.97 × 10−11 mol/L
Class Insoluble

The first one is a topological approach considered as an implementation of ESOL
model (Solubility class: Log S Scale: Insoluble < −10 poorly < −6 moderately < −4
soluble < −2 very < 0 < highly) [82]. The second predictor is a topological method [83]
(Solubility class: Log S Scale: Insoluble < −10 poorly < −6 moderately < −4 soluble < −2
very < 0 < highly). These two approaches avoid the melting point parameter and therefore,
differ from the general solubility equation [84]. In addition, they exhibit a significant linear
correlation between predicted and experimental scores (R2 = 0.69 and 0.81, respectively) [70].
The third one is a fragmental method developed by SILICOS-IT (Solubility class: Log S
Scale: Insoluble < −10 poorly < −6 moderately < −4 soluble < −2 very < 0 < highly)
“http://silicos-it.com (accessed on 24 June 2023). The linear correlation coefficient of this
approach corrected by molecular weight is R2 = 0.75. The predicted decimal logarithm of
the molar solubility in water were −9.64 (poorly soluble), −11.23 (insoluble), and −10.22
(insoluble) for Log S (ESOL), Log S (Ali), and Log S (SILICOS-IT), respectively (Table 3;
Figure 2). Once again, this computational technique was suitable for the prediction of
another important physicochemical descriptor. The low water solubility of BEA was
first reported by Hamill et al. [85]. This correlates satisfactorily with the observations
reported later by Thakur et al. [78] and further supports the idea of the low dissolution
of BEA in water. Moreover, this low aqueous solubility was attributed to the lack of
chargeable groups [86]. Being at the center of the current drug discovery paradigm,
computer modeling is widely used to elucidate the structure–property relationship as well
as the pharmacokinetics of the molecule of interest. This computational pharmacological
approach is now allowing scientists and the pharmaceutical industry to discover shortcuts
and simulate virtually “what the biosystem does to the xenobiotic” [87]. The Brain or
IntestinaL EstimateD permeation predictive model (BOILED-Egg) is a rapid graphical
method to forecast human gastrointestinal (GI) absorption and blood–brain barrier (BBB)
permeation. The evaluation plot involves the yolk and the white, the physicochemical
spaces for high probable BBB permeation and GI absorption, respectively [70]. The oral
route is, by far, the most common, cost-effective, and easiest route for drug administration.
Therefore, assessing the drug GI absorption kinetics is of paramount importance in drug
discovery. A major drawback in enteral medication is the necessity of higher doses when
compared to other routes because of the first-pass metabolism exhibited by the liver before
reaching the systemic circulation. According to the white of the BOILED-Egg, BEA has a
low extent of absorption by the GI tract (Figure 4).

This substantiates previous in vivo findings wherein a low plasma concentration of
BEA was detected in pig blood after administration of an intra-gastric bolus [88]. Similarly,
the intestinal bioavailability of BEA was measured in Caco-2 cells, a gastrointestinal barrier
absorption in vitro model [89]. BEA bioavailability varied between 50.1% and 54.3%, with
relatively low values when compared to other structurally related cyclic hexadepsipep-
tides [90]. As expected, the hydrophilic milieu of the GI tract impedes the absorption of
lipophilic xenobiotics such as BEA. Most likely, the molecule will be directly absorbed
via the hepatic portal vein and/or the lymphatic system after oral administration. The
epithelial-like tight junctions within the brain capillary endothelium are known to inhibit

http://silicos-it.com
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the influx of most pharmaceuticals. Serving as the “strenuous janitor” of our central
nervous system, this blood–brain barrier (BBB) is considered a major drawback in brain-
targeting drugs. The in silico tool showed that BEA is not brain-penetrant (outside the
yolk) and is subject to active efflux (blue dot) (Figure 3). The in silico prediction is not in
line with previous experimental results. In fact, a study conducted by Taevernier et al. [91]
investigated the BBB transport kinetics of BEA using an in vivo mice model. Due to its
lipophilicity, the author showed that BEA can cross the BBB as it exerts a high influx rate
to the brain. Equally critical is the assessment of the pharmacodynamics of the drug with
cytochrome P450 (CYP). It was previously demonstrated that five chief isoforms of this
enzyme (CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4) can reduce the therapeutic index
of 90% of drugs through metabolic transformation [92]. The CYP family is known as a major
cause of unexpected drug–drug interaction due to shared metabolic pathways [93]. To
determine which CYP isoform is affected, SwissADME endorses a support vector machine
algorithm (SVM) for the dataset of known CYP inhibitors/non-inhibitors [70], and BEA
was shown to be a non-inhibitor of CYP important isoenzymes (Table 4).
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Figure 4. Schematic representation of perceptive evaluation of passive gastrointestinal absorption
and Bbain penetration with BEA in the WLOGP-versus-TPSA using BOILED-Egg. The white region
is for high probability of passive absorption by the gastrointestinal tract, and the yellow region (yolk)
is for high probability of brain penetration. Yolk and white areas are not mutually exclusive. In
addition, the points are colored in blue if predicted as actively effluxed by P-gp (PGP+) and in red if
predicted as non-substrate of P-gp (PGP−).

Table 4. Computed pharmacokinetics parameters of BEA.

Pharmacokinetics

GI absorption Low
BBB-permeant No
P-gp substrate Yes

CYP1A2 inhibitor No
CYP2C19 inhibitor No
CYP2C9 inhibitor No
CYP2D6 inhibitor No
CYP3A4 inhibitor No

Log Kp (skin permeation) −5.10 cm/s

Contrary to the in silico predictions, using rat and human liver microsomes, Mei
et al. [94] revealed that BEA is a potent inhibitor of the CYP isoenzymes (Table 4). The ex-
ternal barriers, including the skin, are our first line of defense which makes it mechanically
difficult for pathogens to enter the body’s tissues. Nevertheless, skin permeability for some
molecules rendered the skin barrier an interesting target in therapeutic drug delivery. This
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computational approach also proposes one linear model for skin permeation [95]; the more
negative the log Kp (with Kp in cm/s), the less skin-permeant the molecule. The in silico
approach predicted a low skin permeability of BEA (log Kp = −5.10 cm/s), whereas an
in vivo dermal kinetic study demonstrated that BEA, with high lipophilic characteristics,
could penetrate through the skin [96]. Furthermore, the detected BEA concentration in the
epidermis was 21 to 46 times higher than that observed in the dermis. Taevernier et al. [96]
noticed that the outermost layer of dead cells called stratum corneum acts as a “partial barrier”
to many potentially harmful chemicals, including the cyclic hexadepsipeptides. In addition,
the transdermal penetration was only 13 to 20 times higher in the case of skin from which
the stratum corneum was removed by tape stripping [96]. Given this transdermal behavior,
it can be suggested that dermatological formulations of BEA are more attractive than oral
administration, especially in the treatment of cutaneous diseases. For that, the development
of topical medications based on similar hexadepsipeptides to treat dermatological diseases
such as psoriasis, eczema, and skin cancer is currently being exploited [97].

The outcome of the in silico drug-likeness analysis can be governed by five rules. First,
Lipinski’s rule of five includes H-bond donors > 5; H-bond acceptors > 10; molecular weight >
500 g/mol; and LogP (lipophilicity) > 5) [98]. Second, Ghose’s rule includes 160 < molecular
weight (g/mol) < 480; −0.4 < LogP < 5.4; 20 < atom count < 70; 40 < molar refractivity < 130;
and polar surface area (Å2) < 140, [99]. Third, Veber’s rule includes rotatable bonds ≤ 10; and
topological polar surface area (Å2) ≤ 140 [100]. Fourth, Egan’s rule includes LogP ≤ 5.88; and
the total polar surface area (Å2) ≤ 131 [101]. Fifth, Muegge’s rule includes 200 ≤ molecular
weight (g/mol) ≤ 600; −2 ≤ LogP ≤ 5; total polar surface area (Å2) ≤ 150; number of rings
≤ 7; number of carbons > 4; number of heteroatoms > 1; number of rotatable bonds ≤ 15;
H-bond acceptors ≤ 10; and H-bond donors ≤ 5 [102] (Table 5).

Table 5. Computed druglikeness rule and bioavailability of BEA.

Druglikeness

Lipinski No; 2 violations: MW > 500, NorO > 10
Ghose No; 3 violations: MW > 480, MR > 130, #atoms > 70
Veber Yes
Egan No; 1 violation: TPSA > 131.6

Muegge No; 2 violations: MW > 600, XLOGP3 > 5
Bioavailability Score 0.17

These rules imply that small molecules that fulfill the criteria, within a particular
range, are “drug-like” and possess good absorption and permeation. It is noteworthy that
BEA fails to comply with Lipinski’s, Ghose’s, and Muegge’s rules (Table 5). The criterion
that was not brought to completion is the molecular weight of BEA (783.95 g/mol) and,
therefore, lower chances of bioavailability could be anticipated after oral administration. It
is important to highlight the fact that many currently available drugs or drug candidates are
administered parenterally [103]. Notably, an increasing number of therapeutics that violate
the rule of five are currently in clinical trials. Moreover, a decent number of “beyond the rule
of five” molecules are now FDA-approved and being prescribed by physicians [103,104].

4. Conclusions

In this review, we summarized how in silico strategies guided the drug repositioning
of BEA, a secondary metabolite, to a molecule that inhibits multidrug efflux by neutralizing
the activity of ABC transporters. This is considered as a powerful approach to abrogate ABC
transporter-mediated drug resistance and enhance the efficacy of existing drugs. In addition,
we provided an overview of the utility of computational tools to speed up the complex drug
discovery process and to better prepare and respond to future pandemics. The utilization
of molecular docking and MD simulations underscored BEA as a potential therapeutic
against SARS-CoV-2. Computational analyses reveal BEA’s strong affinity for key viral
proteins, including the main protease and spike glycoprotein. These findings suggest BEA’s
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potential to hinder viral infection and alleviate COVID-19 symptoms, highlighting the
importance of computational methods in identifying promising drug candidates.

Ultimately, computer-aided drug design possesses the capability to predict the physico-
chemical properties and structural features of the molecule of interest. Consequently, it plays a
pivotal role in optimizing drug design and filtering through the use of exclusionary criteria to
sift through drug candidates, especially those with undesirable pharmacokinetic properties.

Here, we demonstrated how computational techniques were crucial in understanding
the LADMET profile of BEA as well as elucidating BEA’s drug-likeness, solubility, perme-
ability, and adherence to pharmacokinetic rules, facilitating its potential as a therapeutic
agent. All things considered, using computational methods has become an invaluable tool
and should be applied at various stages of drug discovery to expedite, filter, and streamline
the drug discovery process.

In conclusion, while in silico methodologies represent invaluable assets in modern
drug discovery endeavors, their utility is complemented by a recognition of their inherent
limitations. One such limitation lies in the simplification of biological systems inherent in
computational models, which may not faithfully capture the complexities of real-world
interactions. Assumptions underlying these methods, particularly in docking simulations,
can potentially oversimplify molecular interactions, thereby compromising the accuracy of
predictions. Moreover, the reliance on existing biological knowledge introduces a degree of
bias and may hinder the discovery of novel drug–target interactions. The indispensable
need for experimental validation underscores the necessity for bridging computational
predictions with empirical data to ensure the robustness and reliability of in silico findings.
Furthermore, the computational resources and time required for certain simulations can
pose practical constraints, limiting accessibility to researchers with restricted computational
infrastructure. Additionally, the dependence on scoring functions in molecular docking
simulations introduces uncertainties regarding the accurate prediction of binding affinities
and the discrimination between active and inactive compounds. Moreover, the scope of
applicability of in silico methods may be constrained by the complexity of certain biological
systems or the nature of specific drug–target interactions. For instance, challenges arise
when dealing with highly flexible ligands or multi-protein systems where traditional com-
putational approaches may struggle to provide accurate predictions. For instance, density
gradient-based approaches offer novel avenues for studying drug–protein interactions,
presenting innovative solutions to address challenges encountered with in silico methods.
These techniques leverage the principles of density gradient centrifugation to separate and
characterize drug–protein complexes based on their buoyant densities, providing insights
into their composition, stability, and dynamics.

Despite these challenges, it is imperative to acknowledge that in silico methods remain
indispensable tools in drug discovery, offering unparalleled capabilities in screening vast
chemical libraries, predicting molecular interactions, and optimizing lead compounds.
When used judiciously and in conjunction with experimental validation, these compu-
tational techniques contribute significantly to accelerating the drug discovery process,
reducing costs, and minimizing experimental efforts. Consequently, the integration of com-
putational and experimental approaches represents a synergistic paradigm that maximizes
the efficiency and success rate of drug discovery campaigns, ultimately facilitating the
development of novel therapeutic agents to address unmet medical needs.
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