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Abstract: Metabolomics profiles from blood, urine, or other body fluids have the potential to assess
intakes of foods and nutrients objectively, thereby strengthening nutritional epidemiology research.
Metabolomics platforms may include targeted components that estimate the relative concentrations
for individual metabolites in a predetermined set, or global components, typically involving mass
spectrometry, that estimate relative concentrations more broadly. While a specific metabolite con-
centration usually correlates with the intake of a single food or food group, multiple metabolites
may be correlated with the intake of certain foods or with specific nutrient intakes, each of which
may be expressed in absolute terms or relative to total energy intake. Here, I briefly review the
progress over the past 20 years on the development and application intake biomarkers for foods/food
groups, nutrients, and dietary patterns, primarily by drawing from several recent reviews. In doing
so, I emphasize the criteria and study designs for candidate biomarker identification, biomarker
validation, and intake biomarker application. The use of intake biomarkers for diet and chronic
disease association studies is still infrequent in nutritional epidemiology research. My comments
here will derive primarily from our research group’s recent contributions to the Women’s Health
Initiative cohorts. I will complete the contribution by describing some opportunities to build on the
collective 20 years of effort, including opportunities related to the metabolomics profiling of blood
and urine specimens from human feeding studies that approximate habitual diets.

Keywords: biomarker; chronic disease; dietary assessment; hazard ratio; metabolomics; mortality;
blood metabolomics; regression calibration; urine metabolomics

1. Introduction

Following some decades of having only a handful of dietary intake biomarkers, for
example, for total energy [1] and total protein [2], metabolite profiling in specimens from
the blood, urine, and other body fluids has come to be regarded as a potential major
source for objective intake assessments for many other dietary variables. The use of
metabolomics profiles in body fluids for the identification of biomarkers for foods, nutrients,
or dietary patterns has been the subject of considerable research for the past two decades.
Progress in using the concentrations of small molecules, with molecular weights typically
below 1500 Daltons (i.e., the metabolome), for intake biomarker identification has been
considerable. Several author groups have reviewed this progress [3–8]. For example,
Scalbert and colleagues described metabolomics, in a 2014 review, as providing a ‘window
over dietary intake’ and they noted that the food metabolome, the subset of the metabolome
that derives from diet, includes more than 25,000 compounds, most of which are further
metabolized in the human body, and is extraordinarily complex [3]. These authors also
noted that dietary exposures have traditionally been measured using self-report methods,
and that ‘a number of random and systematic errors are inherent in such methods’ [3].
This and the other cited reviews [3–8] echo and elaborate the need for objective measures
of dietary intake, whether for foods, nutrients, or dietary patterns, and emphasize the
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substantial assessment opportunity afforded by variability in the food metabolome. For
example, Brennan, Hu, and Sun in a 2021 review concluded that ‘Metabolomics has great
potential in nutritional epidemiology’ and that ‘Harnessing this potential will help address
some of the shortcomings of the field. Specifically, the use of food intake biomarkers can
help address measurement error in self-reported dietary intake data. . .’ [8].

While the reader may expect a review article on ‘Intake Biomarkers for Nutrition
and Health’ to summarize the detailed contributions to intake biomarker identification,
validation, and applications that were previously reviewed, while bringing in additional
recent contributions, I have chosen to perform otherwise for this contribution. Specifically, it
seems timely to present and discuss the criteria needed for the development and application
of dietary intake biomarkers, with the hope of facilitating a research agenda for yielding
intake biomarkers that strongly contribute to nutritional epidemiology association studies.
In doing so, I apologize to the authors whose relevant work may not be specifically cited,
and I further apologize that the focus I have chosen results in a rather detailed emphasis on
the work of our own Women’s Health Initiative (WHI) research group.

2. Dietary Intake Biomarkers: Preamble
2.1. Are Dietary Intake Biomarkers Strongly Needed for Reliable Nutritional Epidemiology
Association Analyses?

Surprisingly, the fundamental question given above does not yet have a clear answer.
For example, in their 2018 review of the potential of metabolomics-based biomarkers to
improve dietary assessment, Gausch-Ferre, Bhupathiraju, and Hu [7] wrote that ‘Still, this
technology is intended to be complementary, rather than a replacement, to traditional
well-validated dietary assessment methods such as food frequency questionnaires that can
measure usual diet, the most relevant exposure in nutritional epidemiologic studies’. If it
is true that self-reported dietary data, such as food frequency questionnaire (FFQ) assess-
ments, are ‘well-validated’ and can lead to reliable nutritional epidemiology associations
universally, then the role of dietary biomarkers would evidently be limited to replication
studies and studies of diet and disease mechanisms. On the other hand, if the available
self-report assessments do not have such strong validity, then intake biomarkers could
have a fundamental role in the investigation of primary diet and disease associations.

One can organize dietary intake at a specific time in a study participant’s lifetime into
total energy (calories) intake as reflective of intake quantity, and ratios of the intake of foods
and nutrients to total energy as reflective of dietary composition. Let us first consider the
properties of the available dietary assessment methodologies for total energy intake.

2.2. Objective Measurement of Total Energy Intake

Assessment of the properties of self-reported dietary data requires objective intake
measures for comparison. Using replicates of the same or another self-report assessment
for this purpose is suspect, since the multiple self-report assessments may share systematic
biases and therefore have correlated measurement errors. However, it is usually not
sensible to expect objective measures to be available that accurately and precisely measure
absolute or relative (to energy) intakes, even for short-term intakes. For example, in
a controlled human feeding study, there will typically be some uncertainty concerning
individual food and beverage intakes (hereafter, ‘food’ intakes). In addition, for total energy
and other nutrient intakes, one expects some uncertainty in the nutrient databases that
support the conversion of food intakes into nutrient intakes. Accordingly, for objective
intake assessments, the best version that may be achievable for free-living individuals will
incorporate a random error component.

For short-term energy expenditure (TEE), such an objective measure can be constructed
via the doubly labeled water (DLW) method [1]. This impressive method involves the
provision of a drink, e.g., 8 oz., that includes deuterium and oxygen-18 labeled H2O at
the beginning of a protocol period, typically a duration of 2 weeks. Deuterium leaves
the body as water (HDO), while oxygen-18 leaves the body as water plus carbon dioxide,
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so that the production of carbon dioxide, the end product of energy metabolism, can be
accurately assessed over the protocol period. Moreover, the DLW measure of (daily) TEE
provides an accurate TEE assessment in humans not only during times of weight stability,
but also during times of weight loss or weight gain [9,10]. Under the assumption that
the DLW-TEE measures the total (daily) energy intake over the protocol period, several
research groups, including our own, have compared TEE values to the (daily) self-reported
total energy intake over a similarly short time period. Some of these studies have been
large enough to evaluate properties in relation to participant characteristics, e.g., [11–15].
These studies, in various populations using various self-report dietary tools, have found
strong energy underestimation among study participants with a high body mass index
(BMI) and/or body fatness. For example, in the Women’s Health Initiative (WHI) cohorts
of postmenopausal US women, energy intake was evidently underestimated by 30–40%
among the overweight and obese participants when using food frequency questionnaires
(FFQs) for dietary assessment [14,15]. Comparable results were also obtained when using
4 day food records or three 24 h dietary recalls for the intake assessments. Furthermore, the
underestimation was greater among the younger than the older postmenopausal women,
and among certain racial or ethnic minority populations. This type of systematic bias,
if uncorrected, thoroughly invalidates corresponding studies of the association between
energy intake and clinical outcomes, implying a strong need for alternative assessment
approaches. One such approach uses the TEE assessments in biomarker sub-cohorts of
an overall study cohort to correct, or calibrate, self-report assessments and then relates
the calibrated energy intake to disease risk outcomes. Using this approach, we estimated
associations between FFQ-calibrated energy intake and major disease outcomes (i.e., total
and specific cancers; total and specific cardiovascular diseases (CVDs); and type 2 diabetes)
in WHI cohorts. These analyses yielded associations that were mostly strong and positive
when using calibrated energy but were also mostly null if self-reported energy intake
assessments were used instead [16–18]. A possible limitation of this approach, however, is
that the calibrated energy intake depends only weakly on the self-reported energy intake
and more strongly on BMI and other sources of systematic bias, raising the possibility
that the positive disease associations were attributable to overweight/obesity rather than
energy intake per se. Even so, the state of overweight or obesity can be expected to reflect
energy overconsumption and energy imbalance over preceding years, and a long-term high
energy intake may be the more fundamental chronic disease risk factor. However, analyses
relating short-term energy intake to major disease outcomes would be strengthened if TEE
measurements were available on a study cohort of a sufficient size and follow-up duration
for direct association analyses, thereby avoiding any use of self-reported dietary data.

We have recently reported [19] on an all-cause mortality analysis of this type among
1131 WHI participants with about 14 years of post-DLW assessment follow-up. TEE was
not significantly related to mortality overall, but there was a substantial age interaction,
with younger (e.g., age 60) postmenopausal women having higher mortality at higher
TEE, whereas the opposite was true among the older postmenopausal women (e.g., age 80).
This study used TEE as a proxy for energy intake. The two will only be equivalent if
the energy stores, and hence body weight, are constant over the two-week DLW protocol
period. We followed the TEE paper just described with a recent paper [20] in this same
‘DLW cohort’ that uses both TEE and changes in body weight over the protocol period to
define an empirical energy intake biomarker, using a regression model building approach.
Prospective analyses of this biomarker in relation to mortality similarly show a strong
age interaction. These analyses also show the mortality association with energy intake to
be strong and positive among younger postmenopausal women who have had stable or
increasing weight during the preceding decade, but the inverse was observed among the
older postmenopausal women who instead had a history of weight loss. The magnitudes of
these associations suggest important relationships between energy intake and health, with
benefits for lower energy intake, except at older ages where the avoidance of nutritional
deficiency may be a more important dietary factor for health maintenance.
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Note that these are studies are only in one population of older US women, and only for
total mortality. I strongly encourage further study of the associations of total energy intake
with disease incidence and mortality outcomes. Since self-reported energy intake is not
useable for total energy intake assessment, this further work needs to build upon objective
estimates of energy intake. Our WHI research group also considered the possibility of an
energy intake biomarker based on metabolomics profiles in serum and 24 h urine. However,
an agnostic approach to biomarker development using high dimensional metabolite profiles
(~1000, mostly targeted metabolites) did not yield a biomarker that could explain more
than a few percent of the variation in energy intake in a WHI feeding study among
153 participants [21]. It follows then that DLW-TEE is required for epidemiologic studies
of energy intake and health at this time, in spite of the considerable costs and complex
logistics of the DLW method.

3. Objective Assessment of Food Intake
3.1. Introduction

As already noted, for self-report intake assessment methods such as FFQs to be
well-validated requires objective intake measures for comparison. However, objective
intake measures for the absolute or relative (to energy) intake of most foods, nutrients
or dietary patterns are not yet available for use in nutritional epidemiology applications
among free-living persons. One might hope that absolute intake underestimation would be
proportional to that of total energy, resulting in intake density measures from self-report
assessments that have little systematic bias. On the contrary, several groups have reported
a greater underreporting of certain foods, especially foods high in (self-reported) fat and
sweets [22–27]. Despite these concerns, Subar et al. [28], in their thoughtful defense of ‘the
value of self-report dietary data’, effectively argued that self-reported dietary ratio measures
are useful for some purposes, while also asserting that they ‘do not use self-reported energy
as a measure of true energy intake’. For density measures, these authors noted that
underreporting may be small for some nutrients, such as protein and potassium. They also
indicated, more generally, that the influences of systematic assessment biases on nutritional
epidemiology association estimates may be mitigated to some extent by using other self-
report assessments as reference tools for statistical correction procedures that address
measurement error. For example, food records or dietary recalls could be considered as
reference instruments for FFQs [29]. However, at least one such assessment instrument
that avoids systematic bias is needed for this approach to yield disease association analyses
without bias from FFQ systematic error. This is certainly not the case for total energy
intake if food records or 24 h recalls are used as a reference instrument [15]. For some
nutrient density variables, self-reported dietary data may turn out to incorporate only
a little systematic bias; however, an assumption that systematic bias can be ignored for
related disease association estimation would seem ill-advised at this time, unless supported
in advance by objective dietary intake data.

Intake biomarkers based on metabolomic measurements have the potential to lead to
the required objective measures for many dietary variables. To date, most of the published
work on intake biomarker identification targets absolute intakes of foods or food groups.
This seems paradoxical since densities relative to total energy may be the more important
target for biomarker development for nutritional epidemiology purposes. For example,
prominent dietary pattern scores are based exclusively on densities for food groups and
nutrients. For instance, the Healthy Eating Index 2010 [30] is calculated by combining
points related to the intake of total fruit, whole fruit, total vegetables, greens and beans,
whole grains, dairy, total protein foods, seafood and plant proteins, polyunsaturated fatty
acids, monounsaturated fatty acids, saturated fatty acids, refined grains, sodium, and
‘empty calories (solid fats, alcohol, added sugars)’, each relative to total calories.
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3.2. Metabolomics Biomarkers for Foods and Food Groups: Two-Step Development Process

Much of the dietary biomarker development literature for food intake involves a
two-step process. The first step aims to identify candidate biomarkers for a list of foods
or food groups, while the second aims to establish biomarker validity through small-scale
human feeding studies involving varying levels of foods under study.

Gonzalez-Pena and Brennan [7] provide a nice introduction to the metabolomics plat-
forms used in the search for, and in the application of, metabolomics-based (absolute) intake
biomarkers. These include nuclear magnetic resonance (NMR) spectrometry platforms
having ‘high reproducibility’ and mass spectrometry (MS)-based platforms having ‘great
sensitivity’. In either case, the approach may be targeted to a specified set of metabolites, or
untargeted with the potential to assess hundreds or thousands of metabolites. Metabolite
concentrations in the samples processed, relative to that for the average for other measured
small molecules, are typically recorded. These authors [7] also cite several detailed reviews
of metabolomics platforms used in this research.

Most of the extensive related literature is devoted to the first step in the biomarker
identification process, and typically focuses on the estimation of the correlations between
metabolite measurements from blood or urine with corresponding measures of food/food
group intakes, and with due account for multiple testing. This work has generated hun-
dreds of potential biomarkers for a wide range of foods and beverages. For example,
Gonzales-Pena and Brennan [7], in their 2019 review of metabolomics-based advances for
nutrition and health, provided a list of reports supporting one or more candidate biomark-
ers. These included 13 such reports proposing candidates for vegetables, 19 for fruits,
2 for legumes, 2 for soy products, 5 for grains, 15 for meats, 5 for dairy products, 19 for
beverages, 4 for cocoa/chocolate, and 4 for nuts, that collectively proposed several hundred
candidate intake biomarkers for foods or food groups. Much of this work, as well as more
recent related work, has taken place in sub-studies with a moderate number of participants
(e.g., a few hundred) in large epidemiologic cohorts. Several such reports have arisen from
FoodBall, a collaboration among 13 primarily European countries [31]. Studies drawing
participants from several other, primarily American, cohort studies, e.g., [4,32–35] have
also contributed to this effort. In fact, the candidate biomarker identification research has
exploded to such a degree that Gao and colleagues [36] have found it useful to propose
a special classification scheme for dietary and health biomarkers, and Pratico et al. [37]
proposed guidelines for the review of potential biomarkers for specific foods, including
both metabolomic and non-metabolomic candidates.

Nearly all of these reports use some form of self-reported dietary data as the com-
parator to identify metabolomics correlates of food intake. This seems surprising as a
research strategy since the need for intake biomarkers in nutritional epidemiology arises
primarily from uncertainty concerning the magnitude of random and systematic measure-
ment errors in self-reported dietary data. Accordingly, there is an associated strong need
to validate all such candidate biomarkers for them to become established as providing
objective assessments of food intake.

The second step in the biomarker development process aims to filter candidate
biomarkers to identify those meeting pertinent validation criteria. Dragsted et al. [38]
have proposed eight criteria for dietary intake biomarker validation, namely plausi-
bility, dose–response, time–response, robustness, reliability, stability, analytical perfor-
mance, and inter-laboratory reproducibility. The first criterion (plausibility) focuses on
biomarker specificity, with attention given to whether the putative biomarkers are de-
rived from the food/food group under study, either directly or following metabolism.
The second (dose–response) is concerned with sensitivity and examines the quantitative
biomarker response to differing sources and differing intake levels of study foods. The
third (time–response) deals with the temporal relationship between food intake and candi-
date biomarker concentrations and may influence the type of specimen needed for useful
biomarker identification. The fourth (robustness) concerns the suitability of the biomarker
among free-living persons in study populations, and the authors recommended the conduct
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of a controlled feeding study using habitual diet to evaluate satisfaction of this criterion.
The fifth (reliability) asserts the need for high-quality reference intakes as a key component
of validation. The other three criteria (stability, analytical performance, inter-laboratory
reproducibility) are, respectively, concerned with the collection, processing, and storage
of specimens, the quality of the metabolomics platforms, and the agreement between
laboratories in biomarker assessments.

Studies aiming to validate candidate biomarkers have mostly involved human feeding
studies of a modest size using a small number of levels of the food group or dietary
pattern of interest. Gonzales-Pena and Brennan [7] summarized the results of 46 nutrition
intervention studies ranging in size from 10 to 300, among healthy or diseased persons over
various life stages, and that applied targeted or untargeted metabolomics. While not all of
these aimed to validate candidate metabolomics biomarkers for specific food groups, the
authors summarize that few metabolomics biomarkers had been established by this work
by the date of their review. They list tartaric acid for grape intake and betaine proline for
citrus intake as examples of the potential of urine-based metabolomics markers to estimate
food intake, while expressing enthusiasm for the likelihood of many further developments.

3.3. Metabolomic Biomarkers for Foods and Food Groups: Human Feeding Study Using Habitual Diets

Human feeding studies where participants are provided an approximation to their
habitual diets have some advantages for biomarker development, and potentially also for
nutritional epidemiology application. As already noted, studies of this type are recom-
mended by Dragstad et al. [38] for establishing biomarker robustness, and they can also
provide the needed quality reference measures for the biomarker reliability assessment
component of biomarker validation. Our research group conducted such a study [39]
among 153 WHI participants in the Seattle area from 2011 to 2014. We assessed the usual
diets by starting with 4 days of food records, with further evaluation through participant
interviews by a nutritionist, and with adjustments for known food record biases. The
resulting intakes provided a key input for the development of an individualized 3 day
rotating menu over a two-week intervention period, over which DLW assessments of
total energy expenditure were conducted. Participants were free-living and came to our
facility for meals to be eaten on-site and to take home for later use. To support the study
of nutrient biomarkers, we chose foods that had well-characterized nutrient contents to
a practical extent. Departures from the provided intakes were self-reported and feeding
study intakes were adjusted accordingly. These intake values provided reference intake
data for biomarker development. Most of our reported biomarker development activities to
date have focused on nutrient intakes, and they use metabolomic profiles in serum and 24 h
urine as developed in the Northwest Metabolomics Laboratory, headed by collaborator Dr.
Dan Raftery.

As an exception to the nutrient focus, the recent report by Playdon et al. [35] from
this study focuses on foods and food groups using the Metabolon liquid chromatog-
raphy/tandem mass spectrometry platform as applied to serum and 24 h urine spec-
imens. Biomarker identification was considered for 56 food groups derived from the
USDA Guidelines for Americans food groups, based on 1293 relative metabolite concen-
trations in urine and 1113 in serum. Data analysis of the log-transformed intakes and the
log-transformed metabolite concentrations identified Bonferroni-corrected significant corre-
lations for 23 foods (including beverages) and dietary supplements involving 171 distinct
metabolites. For foods, estimated correlations > 0.6 resulted for citrus, broccoli, and dairy,
while estimated correlations > 0.5 also for avocado, fish, garlic, grains, onion, and poultry.
Importantly, correlations for the 15 highest ranked food groups were markedly higher (dif-
ference of 0.27 on average) than the corresponding correlations from the combination of four
other U.S. cohorts [32–35] also using the Metabolon platform, but with self-reported dietary
data as comparators. These recent analyses suggest that urine and serum metabolomics
may be rather universally applicable for biomarker identification and also suggest that the
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use of self-reported intakes as comparators for the identification of candidate biomarkers
may be quite inefficient.

3.4. Metabolomics Biomarkers for Nutrients and Nutrient Densities

Even though there are many epidemiologic studies reporting associations between
nutrient intakes and chronic disease using self-reported dietary data, there is little literature
on the development or application of metabolomics-based nutrient intake biomarkers.
Much of the nutritional epidemiology literature over the past 50 years has focused on
nutrient densities, especially for macronutrients and their components, for which observed
associations can be viewed as complementary to those for total energy intake. For example,
Willett [40], p. 269 wrote that ‘. . .from an individual or population standpoint, nutrient
intake in relation to total caloric intake (i.e., the composition of diet) is most relevant. For
this reason, nutrient intakes adjusted for total energy intake, rather than absolute nutrient
intakes, are of primary interest in relation to disease risk in epidemiologic studies’. A
feeding study with habitual diets, as described above, provides a context for the study
of biomarker-based nutrient intakes in relation to chronic disease risk, for both absolute
intakes and for intakes relative to total energy.

Before further describing the recent work by our WHI research group, it is instructive
to comment on the possibility that this study design can simultaneously lead to candidate
biomarker identification as well as useful validation assessments for candidate biomarkers.
To amplify on this point, I will introduce some measurement error modeling considerations
as follows: a principal goal of a feeding study with habitual (short-term) dietary intakes is
to yield feeding study intakes that satisfy the following:

log-actual intake = log-feeding study intake + error1

where the presumably small error1 is independent of the feeding study intake and is
independent of participant characteristics or exposures that may be risk factors for the
clinical outcome under study. This modeling assumption will be quite plausible in well-
conducted human feeding studies within the targeted study population. For nutritional
epidemiology purposes, one may seek intake biomarkers for which:

log-feeding study intake = log-biomarker intake + error2 A

where error2 is independent of the biomarker intake and is independent of participant
characteristics that may be risk factors for the clinical outcome under study. These equations
combine to give the following:

log-actual intake = log-biomarker intake + error B

where error = error1 + error2 is independent of the biomarker intake and of risk factors for
the study outcome. Now, consider B in conjunction with a (Cox) hazard ratio model [41] of
the form:

exp (zb + wa) C

where z is log-actual intake, w is a vector of potential confounding factors, and ‘b’ and
‘a’ are corresponding hazard ratio parameters to be estimated, with primary interest in
the estimation of ‘b’. Under A–C and a rare disease assumption, the parameter b can
be estimated for rare outcomes simply by replacing z in C by log-biomarker intake [42],
with the ‘noise’ (error) component of B, only reducing the precision of estimates of the
association between actual intake and hazard ratio for the study outcome [43,44].

In the metabolomics-based biomarker development for foods, overviewed above,
e.g., [35], candidate metabolite biomarkers were mostly correlated with a single food group,
though specific food groups often had multiple corresponding candidate metabolites. For
nutrients, such as macronutrients or their components there may be a lengthy list of foods
contributing to intake, with a corresponding potentially large number of related metabolites.
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Linear regression of the feeding study intake on metabolites provides a convenient means
for the identification of potential biomarkers adhering to A. Such an approach, regressing
feeding study (n = 153) log-intakes on log-metabolite concentrations and participant char-
acteristics, was used by our group [45] to propose candidate (multi-metabolite) biomarkers
for total protein and total carbohydrate and their densities. The linear regression analy-
sis has the potential to yield a candidate metabolite-based biomarker with an error term
that is uncorrelated with biomarker intake and with modeled participant characteristics,
thereby adhering to A under normality assumptions (which may be facilitated by these log
transformations). The analysis in [45] used targeted LC-MS/MS in serum with 819 metabo-
lites (including 664 lipids), and both NMR spectroscopy (57 metabolites), and GC-MS
(275 metabolites) in 24 h urine, with all metabolites considered for inclusion in biomarker
model building.

Because of the dimensionality of the metabolites, a LASSO procedure [46] was used for
metabolite selection, and cross-validation was used to reduce overfitting in assessing (log-
transformed) biomarker correlations with log-feeding study intakes. To avoid confounding
bias in associated nutrient intake and disease risk analyses, there is an obligation to consider
whether disease risk factors need to be included for the biomarker specifications to adhere
to A. Biomarker development exercises of this type are reported in [45]. The proposed
biomarker equations each involve several metabolites, with DLW assessments of total
energy and urinary nitrogen assessments of total protein contributing strongly to proposed
biomarker equations for absolute carbohydrate and protein intake, respectively, but not to
proposed carbohydrate and protein density biomarkers. The resulting biomarker equations
give biomarker values in other WHI biomarker studies that were used [45] to calibrate the
corresponding FFQ assessments for measurement errors. The calibrated intakes were then
related to incidence rates for cancers, cardiovascular diseases, and diabetes in the WHI
cohorts. Several strong associations were identified with HRs considerably further from the
null than the corresponding HRs were, based on FFQ data without measurement error cor-
rection [45]. Subsequent reports used this same metabolite-based biomarker development
and application process for major carbohydrate and protein components [47], for total fat
intake defined as total energy minus carbohydrate, protein, and alcohol energy [48], and
for major fatty acids categories [49], with multiple strong disease associations reported
using biomarker-calibrated intakes, for both absolute intakes and for nutrient densities.

The suitability of the intake biomarkers used in this work, developed using linear
regression (with model form A considered for log-transformed feeding study intakes), can
be viewed in relation to the Dragsted et al. [38] validation criteria mentioned above. The
study of habitual diets in the study population of interest with its various characteristics
supports the satisfaction of the robustness criterion. The use of quality feeding study intakes
to approximate habitual diets attends to the reliability criterion. The metabolites appearing
in proposed biomarker equations derive from specimens obtained during the feeding
period, supporting the time–response requirement. Stability of the stored specimens and
analytic performance of the metabolomic profiles have been documented using various
quality control activities, e.g., [21]. An initial study of inter-laboratory reproducibility is
underway comparing Raftery and Metabolon metabolomics profiles in serum and 24 h
urine. This leaves the plausibility (specificity) and dose–response (sensitivity) criteria
for consideration.

A major requirement in our proposals of metabolite-based biomarker equations for
nutrient intakes, from the linear regression of log-feeding study intakes on log-metabolite
concentrations, is a cross-validated percentage of feeding study log-intake variation ex-
plained (R2) of at least 36% (cross validated correlation of at least 60%). It is natural to seek
a biomarker so that error2 in A is small, compared to variation in the potential biomarker.
Variations in log-feeding study intake that are not reflected in the biomarker equation de-
fined by the regression analysis give error2 values that depend on feeding study intake and
hence, lead to a lack of biomarker sensitivity, while variations in biomarker equation values
that do not correspond to feeding study intake variations imply a noisy biomarker and
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lack of specificity. Our arguments for plausibility and dose–response in the macronutrient
papers mentioned above considered these issues only informally.

Some of the metabolites in the biomarker equations just alluded to were plausible
through known food chemistry, in support of specificity. However, with high-dimensional
data, there may be multiple metabolite combinations having similar R2-values. The re-
gression modeling provides dose–response information toward establishing sensitivity,
but complex nutritional variables may require a large number of metabolites in biomarker
equations to be fully sensitive. Consider dietary fat density to illustrate this last point: An
agnostic approach to biomarker regression model building did not come close to yield-
ing a biomarker meeting a 36% R2 criterion in the WHI feeding study [21]. This occurs,
presumably, because many more metabolites than were selected by LASSO model fitting
would be needed for adequate sensitivity to a broad range of fatty acid intakes. In contrast,
writing total fat density as one minus carbohydrate, protein, and alcohol densities gave
biomarker values explaining much more of the feeding study fat density variation [48].
Our R2 criterion could be met using an agnostic biomarker development process for the
more specific intakes of saturated, monounsaturated, and poly-unsaturated fat density
components of total fat density [49]. However, as explained in the Discussion section
of that paper, there is reason to be concerned that the related biomarkers may still lack
needed sensitivity for reliable disease association analyses, presumably again because of
the limited number of metabolites selected for proposed biomarkers. Additional analyses
are underway using even more specific fatty acids intake classes to pursue this topic further.
More generally, however, a feeding study design with habitual diets has the potential for
both the identification and the nutritional epidemiology application of intake biomarkers
for various foods and nutrients, both for absolute and for relative intakes.

3.5. Metabolomics Biomarkers for Dietary Patterns

There has been comparatively little research to date on the development and use of
metabolite-based biomarkers for dietary patterns—quite an important nutritional epidemi-
ology research area. A noteworthy exception is the study by Playdon et al. [50] showing
correlations between diet quality scores based on self-reported diets and serum metabolite
profiles (1316 serum metabolites) among 1336 participants in the ATBC Cancer Prevention
Study cohort of Finnish smokers, for each of four healthy diet scores (Healthy Eating Index
2010; the alternative Mediterranean Diet, WHO Healthy Diet Indicator, and Baltic Sea
Diet). Correlations, however, tended to be small (<0.3 in absolute value). Another inter-
esting exception is provided by Garcia-Perez et al. [51] who used a 4 period randomized
cross-over design (n = 26) to show that diets having contrasting WHO Healthy Eating
Guideline scores could be distinguished based on high-dimensional plasma NMR spec-
troscopy metabolite profiles. Similarly, a cross-over trial by Esko et al. [52] showed that
three dietary patterns having different macronutrient compositions could be clearly distin-
guished based on 333 plasma metabolites. These authors note that metabolite profiles can
provide useful markers additionally for intervention adherence assessment. These papers
collectively show the potential of metabolomics assessments for the objective assessment of
dietary pattern scores, but research to replace self-reported diet quality scores by objectively
measured metabolite combinations is still at an early stage of development.

4. Review of the Application of Intake Biomarkers in Clinical Outcome Association Studies

It is still early days for the application of intake biomarkers for dietary exposure
assessment in nutritional epidemiology disease association studies. With intake biomarkers
defined, that satisfy the criteria of Dragsted et al. [38], and that have a strong correlation
with provided intake in relevant feeding study contexts, one can consider applications that
measure the intake biomarkers for each participant in a cohort having sufficient size and
follow-up duration for precise disease association estimation. We illustrated this approach
above for the study of mortality associations with (short-term) total energy intake [20]. For
another WHI application, consider the association between the carotenoid and tocopherol
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intakes, with related biomarkers built from serum micronutrient concentrations using the
WHI feeding study mentioned above [39]. The resulting biomarker equations [53] were
used to estimate (absolute) intake of these micronutrients in a sub-cohort of 5488 WHI
enrollees where serum concentrations had been used for cohort dietary monitoring. Several
chronic disease associations between the biomarker-assessed intakes and disease incidence
were estimated; for example, lower risks of cardiovascular disease, breast cancer, and
diabetes were estimated with higher intakes of alpha and beta carotene.

Studies using metabolomics intake biomarkers from stored specimens can use a nested
case-control rather than cohort study design to study disease associations with much re-
duced costs for assembling the needed metabolomics data. For example, Playdon et al. [54]
considered serum metabolites proposed as candidate intake biomarkers for various foods
and contrasted these 113 potentially diet-related metabolites concentrations between breast
cancer cases and controls. While there were only three significant associations for over-
all breast cancer, there were 19 for the estrogen-receptor positive breast cancers. Also,
metabolite panels mentioned above for discrimination among healthy eating patterns were
studied [50,51] and found to be associated with disease risk in the hypothesized manner.

Another approach to using intake biomarkers for nutritional epidemiology association
studies uses biomarkers to adjust self-reported intakes for measurement error in cohort sub-
studies of moderate size, and then use resulting calibration equations to calculate ‘calibrated
intakes’ in the larger epidemiologic cohorts. This approach was considered for carotenoid
and tocopherol intakes in large WHI cohorts. The results were compared with those based
on the smaller sub-cohort (n = 5488) with measured serum micronutrient concentrations [55].
While there was considerable commonality in the two sets of results for cardiovascular
diseases, cancers, and diabetes, the correspondence was less than perfect, motivating
further study of the properties of the two approaches, especially for the approach involving
calibration of self-reported dietary data. Also, D’Angelo et al. [56] posited an alternate
approach to calibration equation development, with application to a urinary proline betaine
biomarker for citrus intake.

As mentioned above, our research group has used a regression calibration approach in
reports of macronutrient and chronic disease associations [45,47–49] with many estimated
associations much stronger than corresponding associations based on self-reported dietary
data, as well as in a chronic disease association study for red and processed meat [57]. In
these reports, intake biomarkers relied primarily on metabolite concentrations in serum
and 24 h urine. The biomarker-calibrated approach is well motivated since a calibration
approach, if well substantiated, can be carried out for a broad range of dietary variables
including foods, nutrients, and dietary patterns, based on a feeding study of moderate
size (n = 153 in WHI) using habitual diets in conjunction with a biomarker sub-study of
moderate size (n = 450 in WHI) having metabolite profiles. However, additional work is
needed to more explicitly develop criteria to ensure adequate sensitivity and specificity in
biomarker development with high-dimensional metabolite data, and to develop criteria
more explicitly for calibration equations, including criteria for contributions to calibration
equations from self-reported dietary measures, to ensure reliable corresponding disease
association results.

5. Summary and Conclusions

Findings and perspectives from this review will be summarized in three tables. Table 1
summarizes and compares some properties for two study designs for candidate biomarker
identification for foods, nutrients, or dietary pattern scores. Since biomarker studies
within the established well-characterized epidemiologic cohorts have relevance for the
cohort target population, we restricted the attention to cohort subsample designs that
either use self-reported diet for comparator, or that use an embedded feeding study with
diets that aim to approximate habitual diets. Both study designs have the potential for
plausibility/specificity by examining the chemistry related to metabolites that surface as
individual candidate intake biomarkers, or as one of multiple metabolites that combine to
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define candidate intake biomarkers. Similarly, both designs have the potential to evaluate
dose–response and sensitivity to various sources, and quantities of the dietary variable
under study, in an observational fashion. The dietary comparator data typically cover a
few weeks or months with the first design, whereas the embedded feeding study may
provide food and drink for only days or a few weeks. Repeated study design applications
over time could identify candidate biomarkers for long-term intake, with either design. By
carrying out candidate biomarker development in representative cohort subsamples, either
study design can deliver results that are robust for the target population. The design using
self-reported diet as the comparator has an uncertain reliability due to measurement errors
in the dietary assessments. In contrast, the use of recorded food intakes in the habitual
diets feeding study design yields good reliability. Accordingly, even though feeding studies
with habitual diets may be considerably more expensive for a given study size, this cost
may be more than offset by the higher correlations of metabolites with actual intake and
streamlined biomarker validation procedures, e.g., [54]. A strong argument in favor of
the efficient habitual diet feeding study design for intake biomarker development is its
potential for valuable progress toward assessing candidate biomarker validity within the
same study context.

Table 1. Qualitative assessment of candidate intake biomarkers identified under two study designs.

Candidate Biomarker Criterion Ability to Satisfy Criterion Study Design

Cohort subsample,
self-reported
dietary data

Cohort subsample,
feeding study,
habitual diet

Correlation > 0.6 with comparator Modest Good

Dragsted et al. [38] validation criteria:

Plausibility (specificity) Good potential Good potential

Dose–response (sensitivity) Good potential Good potential

Time–response (dietary data time period) Good
(weeks/months)

Good
(days/weeks)

Robustness (relevance to target population) Good Good

Reliability (quality of comparator) Uncertain Good

Acceptable study cost Good Uncertain

Acceptable study efficiency Uncertain Good

Candidate intake biomarker may be for food/food groups, for nutrients, or for calculation of dietary
pattern scores.

Table 2 gives an assessment of the merits of a small-scale randomized trial design
in a convenience sample of participants, as well as of a cohort subsample habitual diet
feeding study design, for examining the potential biomarker satisfaction of validation study
requirements. Much of the focus of candidate biomarker identification has considered the
certainty and magnitude of correlation between candidate biomarkers and their dietary
intake comparators, sometimes following log-transformations of both variables. A random-
ized trial of sufficient size with varying levels of a dietary variable of interest should have
good potential to evaluate plausibility and dose–response, with good reliability, and to
elucidate a strong relationship between intake and biomarker, for a well-selected candidate
biomarker. Unless it is large and of a complex design, however, such a trial likely lacks
robustness relative to any larger target population. The habitual diet feeding study, on the
other hand, also has the potential for a strong correlation (e.g., >0.6) between the provided
intake and a well-selected candidate biomarker, as demonstrated in recent applications
in the WHI cohorts. With sufficient effort, this design also has a good potential to assess
plausibility and dose–response, though an observational rather than a randomized fashion,
while also being able to assess candidate biomarkers with robustness and reliability. Both
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study designs are likely to be expensive if they include sample sizes in the >100 range,
but the habitual diet feeding study has evidently enhanced efficiency since it can be used
for candidate biomarker identification and validity assessment for a range of dietary vari-
ables, rather than just for the dietary variable used to define groups to be compared in the
randomized trial setting.

Table 2. Qualitative assessment of ability of candidate biomarkers to satisfy validation criteria under
two study designs.

Biomarker Validation Criterion Ability to Satisfy Criterion Study Design

Randomized feeding trial,
convenience sample

Cohort subsample,
feeding study,
habitual diet

Correlation > 0.6 with provided intake Uncertain Good

Dragsted et al. [38] validation criteria:

Plausibility (specificity) Good Good potential

Dose–response (sensitivity) Good Good potential

Time–response (time period for provided diet) Good
(days/weeks)

Good
(days/weeks)

Robustness (relevance to target population) Poor Good

Reliability (quality of comparator) Good Good

Acceptable study cost Uncertain Uncertain

Acceptable study efficiency Uncertain Good

Intake biomarker under evaluation may be for food/food groups, for nutrients, or for calculation of dietary
pattern scores.

Table 3 summarizes the merits for two study designs for relating a validated intake
biomarker to clinical outcomes. As noted above, biomarker–based dietary pattern score
categories have shown the ability to distinguish groups with differing risk for cardio-
vascular and other chronic diseases (e.g., [52,53]). For disease association studies in a
large epidemiologic cohort, one can consider the direct use of a validated biomarker in a
sub-cohort of sufficient size and duration for precise association estimation. Or one can
consider a two-stage procedure that uses the biomarker to estimate a calibration equation
for dietary variables of interest by adjusting self-report intake estimates (e.g., FFQs) for
measurement error in biomarker sub-studies of moderate size, and then relate calibrated
intakes to disease risk in the larger cohorts having the self-reported data. The latter ap-
proach is cost-efficient in that validated biomarker values are needed only in sub-studies
of moderate size, but an additional set of measurement error modeling criteria need to be
satisfied for the calibrated intake estimate, and these require the self-report to explain a
substantial fraction of the biomarker variation in the sub-study. In the absence of criteria
like those of Dragsted et al. [38], the resulting disease association estimates will incorporate
uncertainty beyond that for the direct biomarker application design. The direct application
design may be horribly expensive, however, for large cohorts, and a nested case-control
study approach may be needed to control biomarker assessment costs. As discussed above,
however, a biomarker approach to total energy intake is presently not available using stored
specimens, but metabolomics-based biomarkers for dietary density variables considered
to date [45,47–49] do not depend materially on the DLW-based assessment of total energy
intake, so energy intake may not be crucial for the conduct of case-control studies of dietary
composition variables in relation to specific clinical outcomes.
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Table 3. Qualitative assessment of the ability to satisfy the requirements for Reliable Nutritional
Epidemiology Disease Association Results, using intake biomarkers satisfying the Dragsted et al. [38]
Validation Criteria under two Study Designs.

Disease Association Requirements Ability to Satisfy Requirements of Study Design

Cohort study using biomarker-calibrated
dietary self-reports

Cohort study with direct use of
biomarker intakes

Satisfy associated measurement error
modeling assumptions Uncertain Good

Acceptable study cost Good Uncertain

Acceptable study efficiency Good Good

Reliable disease association estimates
assuming adequate confounding control Uncertain Good

Dietary biomarkers may be for food/food groups, for nutrients, or for calculation of dietary pattern scores.

In view of these summaries, I strongly recommend the conduct of further sizeable
habitual diet feeding studies in other target populations, to facilitate the harnessing of the
enormous potential of metabolomics in nutritional epidemiology [8], for foods, nutrients,
and dietary patterns, for both absolute and relative (to energy) intakes. Intake biomarker
developments using this, or other, study designs may also have valuable applications in
assessing adherence to dietary interventions in randomized trials. The research summa-
rized here has mostly focused on short-term dietary intakes, as befits the current stage of
development of this large research area. However, biomarkers will be needed that appropri-
ately assess intakes over more lengthy segments of the lifespan, with serial feeding studies
having metabolomics assessments offering a viable approach. And finally, in addition
to their potential to strengthen the findings of primary disease associations, metabolite
profiling has the potential to provide valuable insights into the mechanisms underlying
observed disease associations, especially through interactions with genotype and with the
gut microbiome, e.g., [58–61]. Although it is important and interesting, this topic is beyond
the scope of the current review.
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