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Abstract: The question of the global topology of the Universe (cosmic topology) is still open. In the
ΛCDM concordance model, it is assumed that the space of the Universe possesses the trivial topology
of R3, and thus that the Universe has an infinite volume. As an alternative, in this paper, we study
one of the simplest non-trivial topologies given by a cubic 3-torus describing a universe with a finite
volume. To probe cosmic topology, we analyze certain structure properties in the cosmic microwave
background (CMB) using Betti functionals and the Euler characteristic evaluated on excursions sets,
which possess a simple geometrical interpretation. Since the CMB temperature fluctuations δT are
observed on the sphere S2 surrounding the observer, there are only three Betti functionals βk(ν),
k = 0, 1, 2. Here, ν = δT/σ0 denotes the temperature threshold normalized by the standard deviation
σ0 of δT. The analytic approximations of the Gaussian expectations for the Betti functionals and an
exact formula for the Euler characteristic are given. It is shown that the amplitudes of β0(ν) and β1(ν)

decrease with an increasing volume V = L3 of the cubic 3-torus universe. Since the computation of
the βk’s from observational sky maps is hindered due to the presence of masks, we suggest a method
that yields lower and upper bounds for them and apply it to four Planck 2018 sky maps. It is found
that the βk’s of the Planck maps lie between those of the torus universes with side-lengths L = 2.0
and L = 3.0 in units of the Hubble length and above the infinite ΛCDM case. These results give a
further hint that the Universe has a non-trivial topology.

Keywords: cosmology; cosmic microwave background; global topology

1. Introduction

A wide range of cosmological data is well-described within the framework of the
Λ cold dark matter (ΛCDM) model, which is now established as the standard model of
cosmology. Due to the increasing level of precision in the available data, several discrep-
ancies have arisen as the Hubble tension and the S8 tension in the recent years [1–5]. In
addition, there are several strange features in the cosmic microwave background (CMB) as
summarized in [6], which also point to a modification of the standard model. A prominent
example is the suppression of the quadrupole moment in the CMB angular power spectrum,
which is also especially revealed by the 2-point angular correlation function C(ϑ) showing
almost no correlations above angles of 60◦. Models without relying on modified physics,
which can address this feature, are provided by cosmic topology [7–11], see also refer-
ences in [12]. A possible non-trivial topology for the Universe can suppress the large-scale
anisotropy due to an infrared cut-off in the wave number spectrum.

A non-trivial topology can be detected by searching for topologically matched circles
in CMB maps, the so-called circles-in-the-sky (CITS) test [13]; however, the searches were
in vain up to now [14,15]. A possibility for this negative result might be that the CITS
signature is not so clearly pronounced in the CMB sky maps, as predicted by the ΛCDM
model on which the likelihoods are based. A future resolution of the Hubble and S8
tensions might, for example, lead to a larger integrated Sachs–Wolfe contribution, which
would additionally blur the CITS signature so that the Universe might possess a non-trivial
topology despite the negative result. Another possibility for a non-trivial topology is that
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the topology produces CITS, which are far from antipodal as in the case of the Hantzsche–
Wendt topology [16], which impede the CITS search. An exhaustive analysis of the allowed
non-trivial topological models is given in [17,18].

In this paper, we analyze certain structure properties in the CMB maps of a compact
non-trivial topological space and compare them with the standard ΛCDM model, which
presuppose an infinite volume. This requires the simulation of CMB sky maps for these
topological models, as outlined in [19–21]. There, it is discussed that the CMB simulations
require the determination of the eigenvalue spectrum and the eigenmodes of the Laplace–
Beltrami operator on the topological space. The obvious restriction would be to test only
the topological spaces that are not excluded by the CITS test, but their CMB sky maps
are more difficult to simulate than the simple cubic 3-torus model whose CITS signature
could not be found. The reason is that the highest degeneracy in the eigenvalue spectrum
belongs to the cubic 3-torus topology such that the transfer function has to be computed
for a significantly smaller number of eigenvalues, which, in turn, speeds up the CMB
simulations correspondingly. For that reason, we consider here the cubic 3-torus space [12],
which should provide an idea of general properties.

In this work, we apply the Betti functionals to the CMB temperature fluctuation field
δT(n̂), which is defined on the sphere S2 that surrounds the observer. (n̂ denotes the
direction in which the temperature fluctuation δT(n̂) is observed). For the analysis of the
CMB, the temperature fluctuation field δT(n̂) is normalized

f (n̂) :=
δT(n̂) − µ

σ0
, (1)

where µ and σ0 are the mean and the standard deviation of the field δT(n̂). Therefore,
the normalized field f (n̂) has zero mean and unit variance. The topological descriptors are
then computed as a functional of the excursion set

E(ν) = { n̂ ∈ S2 | f (n̂) ≥ ν}, (2)

where ν denotes the threshold.
For our special case S2, there are only three Betti functionals (BF) βk(ν). These are the

number of components of the excursion set by the 0-th BF β0,

β0(ν) := # components of E(ν), (3)

the number of independent 1-dimensional punctures on S2, denoted by the 1-st BF β1,

β1(ν) := # topological holes of E(ν), (4)

and finally, the 2-nd BF β2, which counts the number of the internal voids of E(ν). In our
special case, this is one if the excursion set is identical to S2 being the case for ν < min( f (n̂))
and zero otherwise, i.e.,

β2(ν) := { 1 for ν < min( f (n̂))
0 otherwise

. (5)

The Betti numbers originate from the analysis of topological spaces, where they are
used to distinguish the topological spaces based on the connectivity of n-dimensional
simplicial complexes. The nth Betti number is defined by the rank of the nth homology
group [22–25]. An analysis based on relative homology with respect to cosmic topology
will be given in the companion paper [26].

Concerning the word “topological” in Equation (4), there is a remark in order. At
first, consider a pixelized version of the sphere S2 and identify it with the excursion set for
the case ν < min( f (n̂)). Then increase the threshold ν such that a single pixel is removed
from the sphere, which destroys the internal void, which, in turn, is counted by β2, but
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this does not create a 1-dimensional hole. The 1-dimensional hole is created on the sphere
after removal of another pixel not sharing a boundary with the first removed pixel. In this
case, we now have a ring that has an actual hole, which is called a topological hole. Thus,
the number of topological holes is the number of common sense holes minus one.

Let us note that the application of the Betti functionals is not restricted to a study of
cosmic topology, as illustrated in this paper. In fact, the Betti functionals can also be used to
analyze the structure properties of the CMB predicted in models with a different scenario
for dark energy or in the context of more generally modified gravity theories.

In this paper, we use for the ΛCDM concordance model the cosmological parameters,
as given by the Planck collaboration in [27] in their Table 4 in the column ‘TT+lowP+lensing’.
The main parameters are Ωbh2 = 0.02226, Ωch2 = 0.1186, and h = 0.678. Furthermore,
all sky maps are computed with the Healpix resolution Nside = 128 and, if not explicitly
stated otherwise, a Gaussian smearing of 120 arcmin is used. For the cubic 3-torus model,
1000 CMB sky maps are computed for each of the side-lengths L = 0.5, 1.0, 1.5, 2.0, and 3.0,
where L is given in units of the Hubble length LH = c/H0. This allows the computation of
ensemble averages for the β’s in order to compare them with the infinite ΛCDM standard
model and the Planck CMB maps.

2. Analytic Approximation of Betti Functionals and an Exact Gaussian Expectation for
the Euler Characteristic and the Genus

After many years of work on the Betti functionals (BF) βk(ν) (k = 0, 1, 2), there still
exist no exact predictions for the ensemble expectations assuming that the CMB anisotropy
is a homogeneous, isotropic Gaussian random field on the S2-sphere. Therefore, there
arises the question whether one can find reliable analytic approximations for the βk(ν) as a
function of ν. In the following, we propose such approximations, which agree well with
the average values obtained from simulations for a cubic 3-torus with side-length L = 2.0.

A crucial rôle is played by the asymptotic behaviour of the BFs in the limits ν → ±∞.
From the definition of the BFs, it is obvious that it holds

βk(ν) → 0 for ν → ∞, k = 0, 1, 2. (6)

The situation is, however, different in the limit ν → −∞ where the excursion set covers the
whole unit sphere S2. In this case, one obtains from the Betti numbers pk of S2 the asymptotic
behaviour for ν → −∞

β0(ν) → p0 = 1

β1(ν) → p1 = 0 (7)

β2(ν) → p2 = 1.

This is in agreement with the general relation for the Euler characteristic (EC) χ(ν),

χ(ν) =
2

∑
k=0

(−1)k βk(ν), (8)

yielding for the full sphere the correct value χ(−∞) = 2.
From (6) and (7), one infers that the apparent symmetry (see Figure 1), β0(ν) = β1(−ν),

with respect to the parity transformation ν → −ν (δT → −δT, respectively), does not hold
true but rather is violated. The degree of the breaking of parity can be described by a
function α0(ν),

β0(ν) = β1(−ν) + α0(ν) (9)

which according to the Equations (6) and (7) has to satisfy the asymptotic relations

α0(ν) → 0 for ν → ∞

α0(ν) → 1 for ν → −∞. (10)
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The relation (8) for the EC is then

χ(ν) =
(

β1(−ν)− β1(ν)
)
+ α0(ν) + β2(ν). (11)

Under very general assumptions, one can expand the expression in the brackets of (11)
into a convergent infinite series in terms of the odd Hermite functions
φ2n+1(ν) ∼ exp(−ν2/2) He2n+1(ν), where He2n+1(ν) denote the odd “probabilist’s” Her-
mite polynomials (see Appendix C in [28] for a mathematical exposition of the general
Hermite expansions). As a first approximation, let us consider the first term (n = 0) in this
expansion, which leads with He1(ν) = ν to the approximation

β1(−ν)− β1(ν) = c1 ν e−ν2/2 (12)

with a positive coefficient given below. In Figure 2 we show that (12) gives an excellent fit
to the data. Equation (12) describes a maximum at ν = 1 and a minimum at ν = −1 with
amplitude ±c1/

√
e in nice agreement with the peaks of the data very close to ±1 (see Figure 2).

Inserting relation (12) into (11), one obtains the following approximation to the EC:

χ(ν) = c1 ν e−ν2/2 +
(
α0(ν) + β2(ν)

)
. (13)

In order to determine c1 and α0(ν) we use the standard definition of the EC using the
Gauss-Bonnet theorem on the excursion set∫

E(ν)
K da +

∫
∂E(ν)

κ(s) ds = 2π χ(ν), (14)

where K = 1 denotes the Gaussian curvature of S2, da the surface element on S2, ds the
line element along ∂E(ν), and κ(s) the geodesic curvature of ∂E(ν). The integrals in (14) are
proportional to the Minkowski functionals (MFs) υ0(ν) and υ2(ν) [28], respectively, which gives

χ(ν) = 2 υ0(ν) + 4π υ2(ν). (15)

The MFs have the nice property that their exact Gaussian predictions are explicitly known
(see [28] and references therein),

υ0(ν) =
1
2

erfc
(

ν√
2

)
υ2(ν) =

ρ2

2(2π)3/2 ν exp(−ν2/2). (16)

Here, the parameter ρ := σ1/σ0 has been studied in [29], where it has been shown that
ρ does hierarchically detect the change in size of the cubic 3-torus if the volume of the
Universe is smaller than ≃2.5 × 103 Gpc3. (σ1 is the standard deviation of the gradient of
the CMB field δT(n̂), i.e., ρ is the normalized standard deviation of the CMB gradient field).
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Figure 1. The Betti functionals β0(ν) and β1(ν) are shown together with their 1σ error bands obtained
from 1000 CMB simulations based on the torus topology. In addition, the mean value of β0(ν) + β1(ν)
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is plotted as a dotted curve. The resolution parameters are set to Nside = 128, lmax = 256 and
FWHM = 120 arcmin. These parameters are used in all figures if not otherwise noted.
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Figure 2. The fit (12) is shown as a dashed curve together with the mean value of β1(−ν)− β1(ν)

obtained from 1000 CMB simulations based on the torus topology. The quality of the fit is so good
that the mean value curve is plotted with a larger line width in order to reveal the dashed curve
belonging to the one-parameter fit. The inset shows the difference between the data and the fit.

Inserting (16) into (15), the exact Gaussian expectation for the EC reads

χ(ν) =
ρ2

√
2π

ν e−ν2/2 + erfc
(

ν√
2

)
, (17)

which compared with the approximation (13) gives

c1 =
ρ2

√
2π

(18)

and

α0(ν) = erfc
(

ν√
2

)
− β2(ν). (19)

In Figure 3, we show the mean value of β2(ν) obtained from 1000 CMB simulations based
on the torus topology and compare it with the approximation

β2(ν) =
1
2

erfc
(

b(ν + a)
)

. (20)

Note that the fit parameters a, b > 0 have a simple interpretation since

β2(−a) =
1
2

and
β′

2(−a) = − b√
π

.

Inserting (20) into (19) leads to the analytic approximation

α0(ν) = erfc
(

ν√
2

)
− 1

2
erfc

(
b(ν + a)

)
, (21)

also shown in Figure 3, and thus to an explicit expression for the parity violation, see
Equation (9).
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Figure 3. The mean value of β2(ν) obtained from 1000 CMB simulations based on the torus topology
is shown together with the fit (20). Also shown is α0(ν) obtained from (21).

To the best of our knowledge, Figure 3 presents, for the first time, a computation of the
BF β2(ν) and of the function α0(ν) quantifying the breaking of parity symmetry, defined in
Equation (9). In previous papers, β2 was considered to be zero and α0(ν) was not discussed
at all. From the definition (5), it follows that β2(ν) is small since it is bounded by

0 ≤ β2(ν) ≤ 1 with β2(ν) = 0 for ν > −ν2 (ν2 > 0). (22)

Also the parity violation α0(ν) is small since it follows from (19) and (22)

α0(ν) ≤ erfc
(

ν√
2

)
≤ 2 (23)

resp.

α0(ν) = erfc
(

ν√
2

)
for ν > −ν2. (24)

In contrast, the Figures 1, 2, 4 and 5 clearly show that the β0(ν), β1(ν), and the EC χ(ν)
have very large maxima (minima), which finds a nice explanation by the large value of the
parameter ρ. Indeed, we obtain from (12) and (18) for the difference

δ1(ν) := β1(−ν)− β1(ν) (25)

at the maximum at ν = 1 (minimum at ν = −1)

δ1(±1) = ± ρ2
√

2π e
= ±0.2420 ρ2. (26)

In [29], it was shown that the mean value of < ρ(L) > can be well-approximated for tori of
the size of 1.0 ≤ L ≤ 3.0 by the linearly decreasing function

< ρ(L) > ≈ 46.122 − 3.290 L. (27)

From this, we obtain, for example, for the torus with L = 2.0, the large value< ρ(2) >≈ 39.542,
which leads to δ1(±1) ≈ ±378, which explains the large amplitudes displayed in Figure 2.
(A similar prediction follows for the BF β1(ν), see Equations (28) and (32) and Figure 1). Thus,
the BFs β0(ν) and β1(ν) can be used to detect the size of the Universe if it is modeled as a
cubic 3-torus. See also Figures 8, 11 and 12.
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Figure 4. The mean value of β1(ν) is shown together with a shifted Gaussian. The inset displays
the difference between the Gaussian fit and β1(ν) in addition to the 1σ band confirming that the
Gaussian fit describes the data better than 1σ.

The Figure 4 demonstrates that a simple shifted Gaussian

β1(ν) =
N√
2πΣ

exp
(
− (ν − ν1)

2

2Σ2

)
(28)

= β1(0) exp
(
−ν(ν − 2ν1)

2Σ2

)
fits the mean value of β1(ν) better than the 1σ width of the distribution. The normalization
N, the width Σ of the Gaussian, and the position ν1 of its maximum lead to the relations

β1(0) =
N√
2πΣ

exp

(
−

ν2
1

2Σ2

)
(29)

= β1(ν1) exp
(
− ν2

1 /(2Σ2)
)

= β1(2ν1).

Furthermore, one derives from (28)

β′
1(0) =

ν1

Σ2 β1(0), (30)

and from (12) and (18)

β′
1(0) = − ρ2

2
√

2π
. (31)

Comparing the relations (30) and (31) yields the relation

β1(0) =
Σ2

2
√

2π |ν1|
ρ2, (32)

which explains (see also (29) and Figure 4) the large amplitude of β1(ν) due to the large
value of ρ2.

Finally, Figure 5 shows the EC for 1000 simulations using the exact Gaussian expecta-
tion value (17) of the general relation (8). Equation (17) predicts two large extrema (for the
ρ-values obtained from (27)) at

ν± := ±
√

1 − 2
ρ2 ≈ ±1 (33)

with magnitude χ(ν+) ≈ 379 and χ(ν−) ≈ −377, respectively; for the torus with L = 2,
one has ν± = ±0.999. It is interesting to note that even in the case where the primordial
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initial conditions are exactly Gaussian, there is a small “parity breaking” (not visible in
Figure 5) of the antisymmetry (negative parity) of χ(ν) since it holds

χ(−ν) = −χ(ν) + 2. (34)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-400

-300

-200

-100

0

100

200

300

400

(
)

L = 2.0  and  N
side

 = 128
( )

Figure 5. The EC χ(ν), Equation (8) is shown.

Another important topological quantity is the genus g(ν) related to the EC by

g(ν) = 1 − 1
2

χ(ν). (35)

Inserting (17) into (35), one obtains for the Gaussian prediction of the genus the exact relation

g(ν) = − ρ2

2
√

2π
ν e−ν2/2 +

1
2

erf
(

ν√
2

)
+

1
2

(36)

and
g(−ν) = − g(ν) + 1 . (37)

From (36), one obtains the special values g(∞) = 1 (torus), g(0) = 1
2 , and g(−∞) = 0

(sphere).

3. Betti Functionals for the Cubic 3-Torus Topology

In this section, the properties of β0(ν) and β1(ν) are discussed for the torus simulations
with different torus side-lengths L. Since the focus is put on the simulations, one does not
have to bother about masked sky regions, which will be discussed in the next section.

The Figure 6 shows the influence of the Gaussian smearing of the sky maps on β0(ν)
and β1(ν). With increasing smearing, the excursions set has fewer structure elements,
and thus, the amplitude of β0(ν) and β1(ν) decreases with increasing smoothing. This
behaviour is nicely revealed in Figure 6 for the case L = 2.0. Since the 3-torus simulations
of the sky maps are computed up to lmax = 256, which roughly corresponds to a resolution
of 180◦/lmax ≃ 0.7◦, a Gaussian smoothing of at least 2◦ is on the safe side. As already
stated, the analysis in this paper is based on a Gaussian smoothing of 2◦.

We now compare, for this fixed Gaussian smoothing, the dependence of the number
of components and holes in dependence on the side-length L of the 3-torus in Figure 7. One
observes a nice decreasing behaviour of β0(ν) and β1(ν), with an increasing 3-torus size.
The Figure 7 also displays the corresponding result for the infinite ΛCDM model, which is
computed using CAMB for the same set of cosmological parameters as used for the 3-torus
models. This extrapolates the 3-torus size towards infinity. So this monotone dependence
on the size of the 3-torus might give a hint to the size of our Universe by studying β0(ν)
and β1(ν) in observed sky maps.
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Figure 6. The ensemble averages of β0(ν) and β1(ν) are shown for the torus side-length L = 2.0
with dependence on the Gaussian smoothing of the sky maps. The smoothing of 2◦ = 120 arcmin,
3◦ = 180 arcmin, and 4◦ = 240 arcmin are displayed.
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Figure 7. The ensemble averages of β0(ν) and β1(ν) are shown depending on the torus side-length
for L = 0.5 up to L = 3.0. In addition, the ensemble averages of β0(ν) and β1(ν) for the infinite
ΛCDM model are shown, which extrapolates the torus side-length towards infinity. A decreasing
number of structure elements with increasing side-length L are revealed. A Gaussian smoothing of
120 arcmin is used in all cases.

For a consistent comparison of the ensemble averages of the finite torus model with
the infinite ΛCDM model provided by the Planck collaboration, it is important that the
calculations are performed for both models with the same cosmological parameters. Only
then it is guaranteed that the L-dependence demonstrated in Figure 7 is an unambiguous
result, which is not caused by using different cosmological parameters.

An interesting connection of this monotonic dependence on the size of the topological
cell exists with respect to the normalized standard deviation of the CMB gradient field, i.e.,
of ρ already introduced in Section 2. Solving the relation (26) with respect to ρ yields

ρ =
√√

2π e
(

β1(−1)− β1(1)
)
. (38)

The interesting point is that this relation shows that a monotonic dependence of β1 on the
torus size leads to an analogous behaviour of ρ. While β1(±1) is computed by counting the
number of holes of the excursion set, ρ is computed by differentiating the CMB temperature
field. In [29], the behaviour of the mean value of < ρ(L) > is analyzed and a monotonic
behaviour of ρ is found, which can be approximated for tori of the size of 1.0 ≤ L ≤ 3.0 by
the already given linearly decreasing function (27). In Figure 8, the linear behaviour (27)
determined in [29] is compared with that derived from β1(±1) by using (38). A nice
agreement between both methods for the computation of ρ is observed. The Figure 8 also
shows the result by using βmin

1 (±1)/ fsky and βmax
1 (±1)/ fsky, which will be defined in the

next section.
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Figure 8. The dashed line shows the fit (27) for ρ determined in [29], while the three full curves
display the results obtained from β1(ν) using (38), where β1(ν) of the full sky simulation and
βmin

1 (ν)/ fsky and βmax
1 (ν)/ fsky are used. The latter ones are determined on the masked sky, as

explained in Section 4.

4. Betti Functionals in the Presence of Masks

The analysis of the Betti functionals in CMB observations is impeded by foregrounds
that do not allow a measurement of the genuine CMB. Furthermore, in the case of ground-
based observations one has to deal with an incomplete sky coverage. In order to estimate
the Betti functionals in the case of a mask, we propose the following procedure. At first,
for the computation of β0(ν), one counts the number of components in the unmasked sky.
Then, there arises the possibility that some or all of those components that are partially
covered by a common connected masked region, might be linked within this region, as
illustrated in Figure 9. There, three components are shown that might be connected within
the masked domain and would be counted as one component in an ideally measured sky
without a mask. Of course, a further possibility is that only two of them are connected.
Therefore, a lower bound βmin

0 (ν) is obtained by counting all components that are touched
by a common masked region as a single component. Conversely, an upper bound βmax

0 (ν) is
obtained by treating all components as separated. Note that no attempt is made to estimate
the number of components within the masked domains, since only components outside the
masked regions are considered. In order to estimate the number of components in the full
sky, βmin

0 (ν) and βmax
0 (ν) are divided by

fsky :=
Area of the unmasked sky

Area of full sky
. (39)

The same procedure applies analogously for β1.

Figure 9. The ambiguity of counting the number of structure elements in the presence of a mask is
illustrated. The mask is pictured as the dashed region, while the structure elements are shown as
blue regions. If only the parts outside the masked region are known, one cannot decide whether they
are connected within the mask or not. The two extreme cases are that they are all connected (right) or
none of them (left).

In the case of simulations, one can test this procedure. Figure 10 compares for the
case L = 2.0 the upper and lower bounds with the true full sky result. The resolution
parameters are again set to Nside = 128 and FWHM = 120 arcmin.
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In this work, we use the Planck 2018 “Component Separation Common mask in In-
tensity” [30], which can be obtained at http://pla.esac.esa.int/pla/#maps, accessed on
20 March 2024 (file name: COM_Mask_CMB-common-Mask-Int_2048_R3.00.fits). Since
our analysis is based on the Healpix resolution Nside = 128, we downgrade the above mask
from Nside = 2048 to Nside = 128. The downgraded mask no longer has only the pixel
values of 0 and 1, but also intermediate values, and we use a mask threshold of 0.9 in the
following analysis. This leads to fsky = 0.7615.

One observes from Figure 10 that the counted number of components lies nicely
between βmin

0 (ν)/ fsky and βmax
0 (ν)/ fsky, as it should be. The same is seen for β1, which

refers to the holes.
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Figure 10. The extrapolations βmin
0,1 (ν)/ fsky and βmax

0,1 (ν)/ fsky obtained from the masked CMB maps are
shown in comparison with β0,1(ν) derived from the unmasked CMB maps for the L = 2.0 ensemble.

Furthermore, for sufficiently low values of ν, βmax
0 (ν)/ fsky saturates at a non vanishing

positive value. This is due to the structure of the mask. In the case without a mask, all CMB
values are larger than ν for that sufficiently low ν, so that the full sphere S2 is obtained
as the excursion set E(ν). Applying the mask and assuming that the components are not
connected within the masked region counts them as separate items if they lie within a
“hole” of the mask. Then, each hole of the mask yields a separate component. In contrast,
βmin

0 (ν)/ fsky assumes that all components are linked within the masked domains and thus
one counts only a single component.

5. A Comparison of the Cubic 3-Torus Topology with the Planck CMB Maps

The Planck collaboration provides four CMB sky maps for a cosmological analysis.
Here, we use the Planck 2018 maps [31] called SMICA, Commander, NILC, and SEVEM,
which can be obtained at http://pla.esac.esa.int/pla/#maps, accessed on 20 March 2024.
The Healpix routine “map2alm_iterative” is used to compute the spherical expansion
coefficients for the four Planck maps by taking the mask Component Separation Common
mask in Intensity into account. Thereafter, the monopole and dipole are set to zero, and a
Gaussian smoothing of 120 arcmin is applied. These spherical expansion coefficients are
used to generate four Healpix maps with the resolution of Nside = 128, which can then be
compared with the corresponding 3-torus CMB maps. The Figures 11 and 12 display the
curves derived from these four Planck curves as solid and in the common red colour, since
they are nearly indistinguishable.

In Figure 11, βmin
0 (ν)/ fsky and βmin

1 (ν)/ fsky are plotted for the 3-torus simulations,
the infinite ΛCDM model and the four Planck maps are all subjected to the same mask.
The curves present the lower estimate of the true β’s. It is seen that the curves derived from
the Planck maps possess a significantly larger amplitude than that of the infinite ΛCDM
model. Indeed, they lie between the cubic 3-torus simulations of the side-lengths L = 2.0
and L = 3.0, whereas L = 2.0 provides the better match. A similar behaviour is seen in
Figure 12, where βmax

0 (ν)/ fsky and βmax
1 (ν)/ fsky are plotted. In this case, the Planck derived

http://pla.esac.esa.int/pla/#maps
http://pla.esac.esa.int/pla/#maps
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curves are closer to the L = 3.0 case. Thus, in both cases, there seems to be an indication of
a finite size of our Universe corresponding to a size between L = 2.0 and L = 3.0.
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Figure 11. βmin
0 (ν)/ fsky and βmin

1 (ν)/ fsky are displayed for the 3-torus simulations, the infinite
ΛCDM model and the four Planck maps, which are all subjected to the same mask.
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Figure 12. The same as in Figure 11, but for βmax
0 (ν)/ fsky and βmax

1 (ν)/ fsky.

6. Discussion and Summary

In the quest for the global topology of the Universe, there have been several methods
suggested to unveil the spatial structure on its very largest scales. In this paper, we focus
on the Betti functionals applied to the excursion sets E(ν), Equation (2), of the CMB, which
possess, in this case, a simple geometrical interpretation. With the CMB observed on
a sphere S2, the excursion set decomposes this sphere with respect to the normalized
temperature threshold ν into components and holes. There are three Betti functionals in this
case. The first one, β0, counts the number of connected components, the second one, β1, the
number of topological holes, and finally, β2, the number of two-dimensional cavities. The
latter takes the value of one if the excursion set is the complete sphere; that is, if the threshold
ν is smaller than the lowest normalized temperature on the CMB sphere, otherwise β2 is
zero. Since the Betti functionals focus only on the number of structure elements, they are
even simpler than the Minkowski functionals. This is because the Minkowski functionals
require the computation of the area, the circumference, and a curvature measure of the
boundary of the components [28]. As discussed in Section 2, the Minkowski functionals
allow a derivation of a relation connecting the average of the normalized standard deviation
of the CMB gradient field called ρ with β1, see Equations (26) and (38), if the CMB is
assumed to be a homogeneous, isotropic Gaussian random field. Thus, the properties of ρ
and the Betti numbers are not independent.

The common lore is that a spatially finite universe is betrayed by the large scale
behaviour of the CMB, for example, the suppression of the quadrupole moment C2 or the
low power in the 2-point angular correlation function C(ϑ) above sufficiently large angles
on the sky, typically above 60◦. Often overlooked, a suppression at significantly smaller
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angles of the angular correlation function C(ϑ) is additionally seen such that the amplitude
of C(ϑ) for the 3-torus models is below that of the infinite ΛCDM model, see [12]. It should
be emphasized that this small angle suppression is also visible in C(ϑ) obtained from the
observed sky.

The definition of ρ as a differential measure reveals its obvious local nature, so that a
topological signature on small scales exists also for this quantity, since a dependence of ρ
on the volume of the cubic 3-torus was demonstrated in [29], see also Figure 8. In Section 3,
it is shown that β0(ν) and β1(ν) display a hierarchical dependence of their amplitudes
with respect to the side-length L of the cubic 3-torus, see Figure 7, such that the amplitudes
increase with decreasing volume V = L3. This behaviour is in nice agreement with the
normalized standard deviation ρ of the CMB gradient field. It reveals the local structure in
the excursion set via β1(ν) at ν = ±1, see (38). However, since β0 and β1 are, of course, not
restricted to the thresholds ν = ±1, they provide a more comprehensive tool than ρ.

The computation of βk(ν) from observational sky maps is hindered due to the presence
of masks. The number of connected components and holes is then ambiguous since it is
not discernible whether they are connected within the not measured parts, i. e. within the
mask. In Section 4, a method is suggested, which gives, for their number, a lower and
an upper bound within the observed sky. Finally, Section 5 applies this method to four
sky maps released by the Planck collaboration in 2018, called SMICA, Commander, NILC,
and SEVEM. The comparison with the cubic 3-torus simulations shows that the curves
derived from the four Planck maps lie between the 3-torus models with side-length L = 2.0
and L = 3.0, see Figures 11 and 12. So this measure gives a further hint that our Universe
has a non-trivial topology.
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