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Abstract: Solar wind modeling is classified into two main types: empirical models and physics-based
models, each designed to forecast solar wind properties in various regions of the heliosphere. Empiri-
cal models, which are cost-effective, have demonstrated significant accuracy in predicting solar wind
at the L1 Lagrange point. On the other hand, physics-based models rely on magnetohydrodynamics
(MHD) principles and demand more computational resources. In this research paper, we build upon
our recent novel approach that merges empirical and physics-based models. Our recent proposal
involves the creation of a new physics-informed neural network that leverages time series data from
solar wind predictors to enhance solar wind prediction. This innovative method aims to combine the
strengths of both modeling approaches to achieve more accurate and efficient solar wind predictions.
In this work, we show the variability of the proposed physics-informed loss across multiple deep
learning models. We also study the effect of training the models on different solar cycles on the
model’s performance. This work represents the first effort to predict solar wind by integrating deep
learning approaches with physics constraints and analyzing the results across three solar cycles. Our
findings demonstrate the superiority of our physics-constrained model over other unconstrained
deep learning predictive models.

Keywords: solar wind prediction; neural networks; physics-based neural networks

1. Introduction

With the ever-growing interest in space exploration and the steady increase in the
frequency of commercial flights, the importance of space weather prediction is becoming
increasingly paramount. One of the recent executive orders issued by the United States
highlights the importance of space weather research and calls upon scientists to prioritize
the development of a comprehensive response plan for addressing severe space weather
events [1]. While Earth’s magnetic field serves as a protective shield, safeguarding us
against cosmic radiation and charged particles, certain particles can still penetrate our
atmosphere and pose risks to communications, satellites, and the well-being of astronauts
in space. For example, Solar Energetic Particles (SEP) can penetrate instruments on satellite
instruments and potentially cause magnetic saturation, thereby resulting in electrical
failures. Coronal Mass Ejections (CMEs) can induce currents in surface-based electronics
which can overload terrestrial power grid operations. Moreover, X-rays from the Sun heat
the Earth’s outer atmosphere, leading to its expansion, subsequently intensifying the drag
force on satellites in low orbits. Consequently, space weather will also affect individuals
dependent on technologies like satellite-based internet, the Global Positioning System
(GPS), and weather forecasting services.

Another significant space weather phenomenon is solar wind (Figure 1) which consists
of a charged matter stream originating from the sun. Accurate solar wind forecasts are
crucial for safeguarding satellite integrity and astronauts’ health. Moreover, such forecasts
can provide valuable insights into the underlying physical processes governing solar wind
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acceleration and composition. Under specific conditions, solar wind plasma behaves as an
ideal plasma, where electrostatic forces dominate plasma motion more than ordinary gas
kinetics [2]. While previous efforts mainly rely on solar condition measurements to predict
solar wind characteristics, less attention has been given to data-driven prediction methods.
The novelty of this research lies in its utilization of multivariate time series data, incorpo-
rating physics constraints suitable for ideal plasma to predict solar wind characteristics.

The rest of this paper is organized as follows: In Section 2, we discuss solar wind
prediction efforts from the literature. In Section 3, we present the dataset used in this study
and the data pre-processing pipeline. In Section 4, we defined the Ohm’s law constraint
that we use to build our methodology. Section 5 discusses the details of the deep learning
models used to predict solar wind, followed by Section 6 which lays the ground of our
experimental setup. In Section 7, we discuss our findings. Finally, in Section 8, we conclude
with a summary of our findings, highlight the contributions of our study, and we discuss
potential future research directions on SEP events prediction.

Figure 1. Solar wind traveling to Earth at the speed of 300 km per second (Image Courteousy from [3]).

2. Related Works

Since the discovery of solar wind over a century ago, a number of studies have been
conducted to predict solar wind [4]. The predictive models can be categorized into three
main categories: (1) empirical, (2) physics-based, and (3) data-driven models.

Empirical methods are based on statistical relationships derived from observational
data. They use historical solar wind measurements to establish correlations between
various solar and interplanetary parameters. Empirical models often consider factors such
as solar wind speed, density, and magnetic field strength. The Wang-Sheeley-Arge (WSA)
model is an example of a solar wind prediction model that falls under the category of
empirical models [5]. To make predictions, the WSA model utilizes measurements of the
Sun’s magnetic field at the photosphere, typically obtained from solar magnetograms.
These measurements provide information about the magnetic field’s strength and polarity.
The model then extrapolates this information to estimate the solar wind speed at 1 AU.
Empirical Solar Wind Forecast (ESWF) is another algorithm which relies on an empirical
correlation discovered between the size of solar coronal holes (CHs), observed in EUV,
and the solar wind speed measured in situ at a distance of 1 AU from the Sun [6]. The main
limitation of empirical methods is their reliance on observed data and statistical correlations
rather than underlying physical principles or fundamental equations that increase the
models’ interpretability.

Physics-based solar wind prediction models are based on fundamental physical prin-
ciples that describe the behavior of the solar wind and its interaction with the Sun’s
atmosphere (e.g., [7]). These models aim to simulate and forecast the properties and dy-
namics of the solar wind. Magnetohydrodynamic (MHD) models are highly adopted
physics-based solar wind prediction models that simulate the solar wind by solving the
MHD equations, which describe the behavior of magnetized plasmas. These models take
into account the Sun’s magnetic field, its interaction with the solar corona, and the resulting
propagation of the solar wind. MHD models can capture the large-scale structures and
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dynamics of the solar wind and provide insights into CMEs and other transient events.
The ENLIL model is a three-dimensional MHD model, developed by a team of researchers
at the NASA Goddard Space Flight Center, that simulates the propagation and evolution
of CMEs and other solar wind phenomena in the heliosphere [5]. It provides forecasts
of solar wind parameters such as speed, density, and magnetic field strength at different
locations in space [8]. Wang-Sheely-Arge Enlil (WSA-Enlil) is a hybrid model that combines
the Wang-Sheely-Arge empirical solar wind model with the Enlil three-dimensional MHD
model to simulate the propagation and evolution of the solar wind as it expands outward
from the Sun. A number of incremental works that build on the WSA-Enlil have been pro-
posed. The increment is performed either by slightly improving the accuracy of the model,
or by enhancing the efficiency of MHD equation computations for faster processing [9].
Shugai [10] proposed an improved WSA-Enlil by approximating the MHD computation
through key assumptions. The enhanced WSA-Enlil model successfully transformed a
three-dimensional problem into a one-dimensional problem, while maintaining a high
level of accuracy [9]. Shugai [10] focused their modeling only on predicting the slow solar
wind, as the fast solar wind can be more readily forecasted by examining the sizes of
its sources, specifically coronal holes. Yang and Shen [11] introduced an innovative 3D
magnetohydrodynamics (MHD) model that incorporates self-consistent boundary condi-
tions derived from multiple observations. Their results demonstrate improved agreement
with OMNI and Ulysses observations, surpassing previous MHD models relying solely
on photospheric magnetic field data. Finally, Luo et al. [12] introduced a novel forecasting
model that utilizes the presence of dark areas on the sun to generate accurate solar wind
forecasts. Although physics-based models provide provide insights into the underlying
mechanisms governing solar wind dynamics, they require accurate input data and com-
putational resources to effectively simulate the complex interactions and dynamics of the
solar wind system.

Data-driven models represent the third category of solar wind prediction, where
patterns and relationships extracted from the data are utilized instead of depending on
pre-determined rules or assumptions. Upendran et al. [13] was the first group to perform
solar wind forecasting with interpretable ML methods, quantifying the effect of source
regions. This study trains deep learning models on solar corona images to forecast solar
wind speed. The models achieve a strong correlation of 0.55 with NASA’s OMNIWEB
dataset and reveal patterns linking coronal features to wind behavior, potentially uncover-
ing novel heliophysics relationships. Another example of data-driven methods is the work
of Yang and Shen [14], who introduced neural network approaches that achieved superior
forecasting results at 2.5 solar radii. Their approach utilized a three-layer fully connected
network to establish the relationship between the polarized magnetic field, electron density,
and solar wind velocity. Subsequently, the same group enhanced their method by incor-
porating self-consistent boundary conditions. Additionally, Raju and Das [15] developed
an online model based on convolutional neural networks, trained on solar images, to gain
a comprehensive understanding of solar activity for the prediction of solar wind veloci-
ties. Furthermore, Leitner et al. [16] made an intriguing discovery, demonstrating that the
distribution of solar wind exhibits quasi-invariant characteristics. Sun et al. [17] leverage
NASA’s OMNI data and SDO satellite image data to train a two-dimensional attention
mechanism (TDAM) model for solar wind speed prediction. The primary challenge of
data-driven methods lies in their potential to overfit the training data, resulting in reduced
generalization performance [18]. Overfitting occurs when a model captures noise or ir-
relevant patterns in the training data, leading to poor performance on new, unseen data.
To address this limitation, we build upon our previous work presented in [19], where we
propose the utilization of a physics-informed neural network (PINN) [20,21] as a novel
approach for solar wind prediction. Some recent studies have explored the use of PINNs for
solar corona modeling and prediction. Zhao et al. [22] introduced the mutually embedded
perception model (MEPM), a feed-forward neural network that reconstructs the structure
of the solar corona based on observational data and by integrating the first-principle 3D
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magnetohydrodynamic governing equations of solar wind plasma. The authors first tested
MEPM on an artificial analytic solution and showed that it is able to approach the exact
situation in less than half of the modeling time. In addition, MEPM was able to provide
good approximations of the 1D steady Parker flow and of the steady corona structure (from
the CR 2068 modeling results). Jarolim et al. [23] proposed a physics-based neural network
to extrapolate the coronal magnetic field. The model integrates the physical equations of
nonlinear force-free magnetic fields as an approximation to the magnetized plasma under
coronal equilibrium conditions to solve the boundary-value problem. The results of the
model were validated through a simulation of active region NOAA 11158. In this paper, we
delve into a comprehensive analysis of the role of solar cycles on the phenomenon, as well
as an in-depth study of the Ohm’s law effect on deep learning baselines. Specifically, our
contributions are summarized as follows:

• We present a more comprehensive and in-depth analysis of the novel loss function,
derived from Ohm’s law, tailored for an ideal plasma.

• We show the superiority of our proposed loss by training five deep learning regres-
sion models.

• We explore the effect of data normalization and solar cycles on our new physics-
informed model.

• We made our source code open-source in a project website (https://sites.google.com/
view/solarwindprediction/, accessed on 22 April 2024) that meets the principles of
Findability, Accessibility, Interoperability, and Reusability (FAIR) [24].

3. Data

In this section, we describe the data used in this study and the pre-processing steps
performed prior to solar wind modeling.

In this study, we used data that originates from the NASA OMNI multi-spacecraft
dataset of near-Earth solar wind parameters [25]. Table 1 summarizes the seven OMNI
parameters that we used for the prediction. Bx, By, and Bz are the three components of the
magnetic field measured by a three-axis teslameter (Gauss meter). The velocity sensors
measure the three-dimensional velocity distribution functions of electrons and ions (vx,
vy, and vz) [26]. Lastly, the electric field parameter refers to the force experienced by
electrically charged particles due to the presence of an electric field. Our dataset contains
multivariate time series data with a 5 min time resolution. As part of our pre-processing
steps, we average the data to achieve a 1 h time resolution. We considered 12 h as the
prior, which represents the time interval in the future for which our model is expected
to predict the parameters of the ambient solar wind. In other terms, we investigated the
possibility of predicting the ambient solar wind characteristics from the electrical field,
velocity, and magnetic field characteristics 12 h before its occurrence. We considered a span
of 24 h, which corresponds to the number of hours we observe the solar wind characteristics.
Figure 2 illustrates the time series of the seven solar wind physical parameters we chose to
forecast for the year 1992.

Table 1. OMNI features and metadata.

Feature Unit Description

E mV/m Electric field

vx km/s X component of the velocity

vy km/s Y component of the velocity

vz km/s Z component of the velocity

Bx nT X component of the magnetic field

By nT Y component of the magnetic field

Bz nT Z component of the magnetic field

https://sites.google.com/view/solarwindprediction/
https://sites.google.com/view/solarwindprediction/
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Figure 2. OMNI time series data snapshot for the year 1992.

Studies have demonstrated that data-driven models, particularly neural networks,
exhibit a high degree of sensitivity to fluctuations or changes in the input data [27]. Conse-
quently, data normalization plays an important role prior to model training. We utilized
the non-normalized multivariate time series as the initial data product for training our
models to establish an initial baseline. The primary limitation of employing raw data is the
presence of input physical parameters with varying orders of magnitude. The disparity
in magnitudes between values results in a greater impact of targets with larger values on
the loss compared to targets with smaller values, even when the percent error remains
the same. The raw non-normalized data follows physics Ohm’s law (|E| = ||V × B||2)
which constrains the range of possible values (refer Equation (6)). Figure 3a shows the raw
electric field (E) data as a function of ||V × B||2. To address this problem, we considered
three data normalization techniques in addition to the raw non-normalized data: Z-Score
normalization, Min–Max normalization, and Max-normalization.

(a) Non-normalized data (b) Z-Score normalized data

(c) 100–1000 normalized data (d) Max–100 normalized data

Figure 3. Scatterplots of E as a function of ||V × B||2 under (a) no data normalization, (b) stan-
dardization, (c) min-max normalization, and (d) max-100 normalization. (The green lines show the
relationship |E| − α||V × B||2 = 0 which follows the adapted Ohm’s Law).
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3.1. Z-Score Normalization

A commonly employed normalization technique is Z-Score normalization, also known
as standardization, which involves fitting the data to a Gaussian distribution. By normaliz-
ing the values, we assign them a representation based on the number of standard deviations
they deviate from the mean, as defined in Equation (1). Standardization is achieved by
subtracting the mean of the entire dataset and dividing it by the standard deviation. Ideally,
approximately 68% of the data falls within the range of [−1, 1]. However, it should be noted
that standardization does not preserve the inter-series relationships, which is a limitation
of this method. Figure 3b show the data when normalized using Z-Score normalization.

x′ =
x − µ

σ
(1)

3.2. Min–Max Normalization

In the deep learning community, one commonly used data normalization technique is
min-max normalization, which scales the data to a range of 0 to 1. This normalization is
achieved using Equation (2). We implemented a min-max normalization with the minimum
value (xmin) set to 100 and the maximum value (xmax) set to 1000. Our rationale for selecting
this range is driven by our proposed physics loss, which incorporates a zero as a reference
point. By choosing the [100–1000] range, we ensure that the time series data values remain
non-null and align with the requirements of the physics loss function. Due to the inclusion
of an additional pre-processing step in min-max normalization, the maintenance of the
linear physics constraint is compromised. Figure 3c illustrates that although the strict
constraints in green, from the “less than” relationship, is not as apparent as depicted in
Figure 3a, the data does still demonstrate a tendency to cluster together.

x′ =
x − xmin

xmax − xmin
(2)

3.3. Max-Normalization

Max-normalization is a normalization technique where data points are expressed
as a fraction of the maximum value in the time series, as demonstrated in Equation (3).
This normalization approach preserves the relationship between data point pairs and the
reference point (zero). By establishing a common reference point, the proposed physics-
based loss ensures the invariance of data relationships. The data distribution under max-
normalization is depicted in Figure 3d. The figure shows a conservative representationof
the linear data constraints similar to Figure 3a.

x′ =
x

xmax
∗ 100 (3)

4. Ohm’s Law Constraint

In this work, we propose a guided neural network that relies on a fundamental
underlying relationship in the data, known as Ohm’s law for plasma. The law states that
the electric current density in a plasma is directly proportional to the electric field and the
conductivity of the plasma [2]. Equation (4) describes the relationship between the flow of
electric charge and the driving force (electric field) in a plasma medium.

J = σ(E + V × B), (4)

where J is the current vector field, σ is the electrical conductivity, E is the electric vector
field, V is the velocity vector field, and B is the magnetic vector field. Due to the roughly
equal distribution of electrons and protons in the solar wind, along with a few heavier ions,
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the current density is approximately zero (J ≈ 0) [28]. Therefore, we modified Equation to
reflect this property, as defined in Equation (5).

−E ≈ V × B (5)

A data-level limitation in our study is that while the velocity and magnetic field
parameters are expressed as three vector quantities, OMNI data only provides one scalar
value for the electric field. To combine all parameters into Equation (5), we relaxed the
equality into an inequality property. We based this approach on the understanding that
the magnitude norm of the product of three orthogonal component vectors is equal to or
greater than the magnitude of each individual component vector [29]. Since Equation (5) is
a vector equality, the norm of the product between the velocity field and the magnetic field
must exceed the magnitude of any individual component vector, as defined in Equation (6).

|E| − α||V × B||2 ≤ 0, (6)

where α is a unit conversion constant derived from the units of the OMNI dataset features.

5. Methodology

In this work, we aim to incorporate the physics principles and constraints into the
design and training process of our data driven model. To accomplish this, we propose
to combine the power of neural networks in learning complex patterns and relationships
with the foundational Ohm’s law for plasma. To construct a physics-constrained neural
network, we utilize a loss function that penalizes the network based on violations of the
Ohm’s law [30]. As discussed in Section 4, our data follows Ohm’s law for an ideal plasma
that we relaxed in Equation (6).

The basic building block of a neural network is an artificial neuron, which takes
multiple inputs, applies weights to each input, sums them up, and passes the result through
an activation function to produce an output. The activation function is a mathematical
function applied to the output of a neuron. It introduces non-linearity to the network,
allowing it to learn complex patterns and make non-linear transformations to the input
data [31]. Rectified Linear Unit (ReLU) is a widely used activation function that returns
the input value if it is positive and zero otherwise. ReLU is mathematically defined in
Equation (7). Since there is a negativity constraint in our modified Ohm’s law, we use a
rectified linear unit (ReLU) as defined in Equations (8) and (9).

ReLU(x) = max(0, x) (7)

As we discuss in Section 6.1, we experimented with different models trained to predict
different configurations of output variables, i.e., different combinations of the seven dataset
features in Table 1. In the following equations, we assume that the model predicts all seven
features. For other configurations, the same equations apply by replacing the non-predicted
variables with their ground truth values. For example, if only the earthbound component of
velocity vx is predicted, then V̂ = ⟨v̂x, vy, vz⟩. Predicted values are denoted by a ˆ symbol.

We define H as a physical relation of the data. The ReLU function ensures that the
predicted solar wind speed cannot have invalid values, as negative values are set to zero.

H(Ê, V̂, B̂) = |Ê| − α||V̂ × B̂||2 (8)

LPHY = ReLU(H(Ê, V̂, B̂)) (9)

We also employed the Root Mean Square Error (RMSE) as a standard loss function for
continuous values, computed as an average over all n predictions. Equation (10) shows
how we compute the final loss as an aggregate value of all predicted variables’ losses,
with Y being the set of predicted variables. For example, Y = {E, vx, vy, vz, Bx, By, Bz} if
all variables are predicted. To strike a balance between the two losses, we introduced a
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hyper-parameter denoted as λ. The resulting combined physics-constrained loss function
is presented in Equation (11).

LRMSE = ∑
y∈Y

√
1
n

n

∑
i=1

(yi − ŷi)
2 (10)

L = (1 − λ)LRMSE + λ ∗ LPHY (11)

Deep Learning Baselines

To show the superiority of our new proposed physics loss, we tested our constraint
on five deep learning baselines that we trained with our proposed combined physics-
constrained loss L. In this section, we outline the details of our baselines.

• Convolutional Neural Networks (CNNs): CNNs are designed to process sequential
data (e.g., images and maps) that have an underlying dependence between contiguous
data points [32]. Since our multivariate time series data are sequences, we used a CNN
model for the predictions. Prior to training the model, we used two types of kernels.
The first type of kernel is one-dimensional that performs operations on the univariate
time series across the time dimension. The second kernel type is two-dimensional,
which performs the operation on all the variables simultaneously. This design choice
ensures that the CNN model takes into consideration both of the temporal changes in
variables and the interrelationships among all the variables.

• Residual Neural Network model (ResNet): ResNet is a deep neural network archi-
tecture that addresses the challenge of training very deep networks by introducing
residual connections. Residual connections allow the network to skip over certain
layers, enabling the flow of information directly from earlier layers to subsequent
ones. Each residual building block consists of a set of convolutional layers followed
by a shortcut connection that skips one or more layers [33]. By adding these residual
connections, the network can learn residual mappings instead of directly learning the
desired underlying mapping. This approach helps alleviate the vanishing gradient
problem and facilitates the training of deeper networks. We used the same kernels of
the CNN for the ResNet model.

• RotateNet: RotateNet leverages the idea of using a convolutional neural network
(CNN) as a feature extractor to capture meaningful representations from a two-
dimensional matrix. It employs a combination of convolutional and fully connected
layers to process the input matrices. This equips the model with additional expertise,
enabling it to generate feature detectors that efficiently predict the subsequent time
steps. To do so, the network constructs a neural model that acquires the ability to dif-
ferentiate between distinct geometric transformations, specifically rotations, applied
to the regular multivariate time series matrix [34].

• Long Short-Term Memory (LSTM): LSTM is a type of recurrent neural network archi-
tecture designed to efficiently process and learn from sequential data. LSTM networks
incorporate memory cells and gates that allow them to selectively retain and forget
information over extended periods [35]. This capability helps address the vanishing
gradient problem and enables LSTM networks to capture and preserve relevant infor-
mation from past time steps. The memory cells in LSTM networks store and update
information over time by passing it through gates, including the input gate, forget
gate, and output gate. These gates regulate the flow of information, allowing the
network to decide which information to store, forget, or output at each time step.

• Gated Recurrent Unit (GRU): The GRU model was introduced as a variation of the
LSTM architecture with a simpler structure [36]. GRU units have a simpler structure
compared to LSTM, as they combine the memory and hidden state into a single unit.
This simplification reduces the number of parameters and computational complexity,
making GRU more computationally efficient than the LSTM. Overall, GRU provides a
balance between capturing long-term dependencies and computational efficiency.
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6. Experiments
6.1. Experimental Setup

In order to assess the performance of the baselines using our proposed loss function L,
we partitioned the data into separate training, validation, and testing sets. We then utilized
the R2 measure, as described in Equation (12), to evaluate their performance. Additionally,
we conducted a grid search over the architectures and hyperparameters of the baseline
models before training the baseline models. This search was performed on data divided
into a 60/30/10 split, with the first partition as training data, the second as validation
data, and the final partition as testing data. After seven hundred epochs of training, each
network was assessed on the testing data. To fine-tune the models’ hyperparameters, we
repeated this process three times.

R2 = 1 − ∑i(yi − ŷi)
2

∑i(yi − ȳ)2 (12)

Since R2 metric is defined on the (−∞, 1] range, there are possibilities of extremely
large negative numbers that inhibit the making of coherent linear graphs. To address this
issue, we normalized the values into a range of (−1, 1], and we introduce a transformation
equation: y = 2z − 1, where y is the new plotted height and z is the original R2 value.

To show the superiority of our proposed physics loss function, we trained the deep
learning baselines with the new L loss and the traditional LRMSE loss. We conducted ex-
periments involving various combinations of predictor and target values. We defined three
prediction groups: (1) all the seven available components in Table 1 (i.e., {Bx, By, Bz, x, v}),
(2) the 3-vector of velocity v, and (3) the 3-vector of the magnetic field B. We also selected
four categories of outputs: (1) all the seven available components in Table 1, (2) the 3-vector
of velocity v, (3) the 3-vector of the magnetic field B, and (4) the earthbound component of
velocity vx. In total, we performed a total of 1200 individual training and testing cycles,
where each of the five baselines were trained on all possible combinations of four predictors,
three targets, two loss functions, and repeated 10 times. The computations were performed
on four NVIDIA RTX A4000 GPUs.

6.2. Experimental Evaluation

Our experimental evaluation is divided in two folds. First, we assess the results on a
fixed length of the time series input data to determine the effect of our new physics loss.
Then, we perform sequence analysis experiments to understand the impact of dimensional-
ity on our prediction results.

Figure 4a shows the violin plot of the normalized R2 value of all the models when
trained with physics loss and without physics loss, with respect to the input predictor
variables. The left part of the violin plots shows the distribution of the normalized R2

achieved by all the five baseline models when trained on physics loss, and the right part of
the violin plot shows the distribution of the normalized R2 achieved by all the five baseline
models when the physics loss is not used. The first observation we note is that the models
achieve the best results when all the input variables (i.e., Bx, By, Bz, v, and x) are used for
the prediction. The second observation we note is that there is a significant discrepancy
between the two distributions of normalized R2 when the networks use the physics loss
and when they do not. This suggests that using all the OMNI predictor variables benefit
the prediction task regardless of the target variable. Figure 4b shows the violin plot of the
normalized R2 value of all the models when trained with physics loss and without physics
loss, with respect to the target variables. It is important to note that the baselines achieve
better R2 values when the target variable is vx. The baselines shows a clear improvement
when using a physics loss and predicting the x component of the solar wind velocity
(i.e., vx). This observation suggests that when the neural networks are trained to predict a
smaller set of output variables, the final linear layers of each network can capture and retain
more pertinent information related to the desired target variable. In contrast, when the
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baselines predict {Bx, By, Bz, x, v}, {Bx, By, Bz} or v, the latent space is distributed across the
seven or three regression targets, leading to a more intricate flow of relevant information.
The multi-target (i.e., {Bx, By, Bz, x, v}, {Bx, By, Bz} or v) prediction achieves lower scores.
Figure 5 shows the modified R2 values achieved by each of the five networks when trained
with the physics loss L and without physics loss LRMSE . The dashed line represents the
reference line that serves as a baseline for comparison between the same model when
trained with two different losses (i.e., L versus LRMSE ). The plots show that for all the five
baselines, the number of physics loss wins encompasses the number of losses (and ties).
This suggests that all the models benefits from the usage of physics loss regardless of the
targets and predictor variables.

(a) Modified R2 per input predictor variables (b) Modified R2 per target variables

Figure 4. Distribution of modified R2 results of the five baseline models using physics loss L and
without physics loss LRMSE (a) per input predictor variables, and (b) per target variable.

Figure 5. Modified R2 values of the five models when trained with physics loss L and without
physics loss LRMSE .



Universe 2024, 10, 191 11 of 20

Our second set of experiments aim to determine the optimal input dimensionality
prior to the prediction time for the baseline models that uses our proposed physics loss.
To achieve this, we define two variables (prior and span) that we change to monitor the
prediction impact. The prior variable signifies the number of hours prior to the solar wind
occurrence. We selected five different values of priors: 6, 12, 18, 24, and 30 h. The span
signifies the observation period, in other words, the number of hours we observe the OMNI
features (defined in Table 1). We selected five different spans: 6, 12, 24, 36 and 48 h. We
trained each baseline on all the 25 (5 × 5) possible combinations of span and prior using
three-fold cross validation and repeated the process 10 times. We report the average of
ten runs for each baseline model. Figures 6–9 show the RMSE and R2 metric values for
each baseline model. We note that for the case of GRU network (refer Figure 6), the RMSE
error decreases as the span window increases, which is intuitive. However, the relative
stability of the error shows that the priors have a low impact on the prediction accuracy.
The R2 values of the GRU network show that the baseline is estimating predictions close
to the mean solar wind speed, which results in a poor performance. It is important to
note that the variation in RMSE values across orders of magnitude is primarily attributed
to differing data normalizations adopted by distinct networks, resulting in predictions
spanning dissimilar numerical ranges.

(a) RMSE (b) R2

Figure 6. Heatmaps of GRU model performance trained with different priors and spans using (a) RMSE
and (b) R2 metrics.

(a) RMSE (b) R2

Figure 7. Heatmaps of LSTM model performance trained with different priors and spans using
(a) RMSE and (b) R2 metrics.

On the other hand, the LSTM results, shown in Figure 7, shows that the prediction
results are variant over different priors. The LSTM model achieves better results when
using shorter priors and was resilient against changes in span windows. This is due to the
design of the LSTM that memorizes information for an indeterminate amount of steps
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which makes it better equipped to adapt the predictions given different length of spans.
For the case of ResNet, RotateNet, and CNN, as shown in Figure 8, Figure 9 and Figure 10,
respectively, the models achieve optimal performance with the shortest prior and longest
span (i.e., prior = 6 h and span = 48 h).

(a) RMSE (b) R2

Figure 8. Heatmaps of ResNet model performance trained with different priors and spans using
(a) RMSE and (b) R2 metrics.

(a) RMSE (b) R2

Figure 9. Heatmaps of RotateNet model performance trained with different priors and spans using
(a) RMSE and (b) R2 metrics.

(a) RMSE (b) R2

Figure 10. Heatmaps of CNN model performance trained with different priors and spans using
(a) RMSE and (b) R2 metrics.
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7. Case Study: Solar Cycles

In this section, we study the effect of the proposed physics loss when training the deep
learning baselines on the data of solar cycles 22, 23, and 24. To achieve this, we divide the
data into separate solar cycles instead of random shuffling. We test the solar cycle effect by
training the baselines on {Bx, By, Bz, x, v} (i.e., all seven parameters) as predictors and as
target values. We then select the best normalization and loss parameters that produce the
best results. The optimal parameters are:

• LSTM: No physics loss (LRMSE ) and input data Z-normalized.
• CNN: Physics loss (L) with a weight (λ = 0.3), and input data normalized from 100

to 1000.
• ResNet: Physics loss (L) with a weight (λ = 0.0001), and input data normalized using

max-normalization.
• RotateNet: Physics loss (L) with a weight (λ = 0.003), and input data normalized from

100 to 1000.

Figures 11–15 show the baseline learning curves using the testing and training set when
trained on two solar cycles and tested on one solar cycle. An ideal neural network learning
curve demonstrates a decreasing training loss, indicating effective learning and error
reduction. The validation loss should also decrease initially, signifying good generalization
to unseen data. Also, a small gap between the training and validation loss, and consistency
across runs are characteristics of an ideal learning curve. The aforementioned criteria are
satisfied when the networks are trained on solar cycles 22 and 24 and tested on solar cycle 23.
In contrast, when the networks are trained on solar cycles 23 and 24 and tested on 22,
or trained on 22 and 23 and tested on 24, they achieve higher testing accuracies compared
to their respective training accuracies. The main reason of the abnormal convergence
comes from the inherent data characteristics. Our assumption is that solar cycles 22
and 24 have a different data distribution than the other solar cycles used for training.
Therefore, the training data, when testing on solar cycles 22 and 23, does not provide a
representative sample that ensure that the model learns from diverse and relevant examples
that accurately represent the underlying data distribution. To validate our assumption, we
plotted the kernel distribution of all the seven prediction variables across the three solar
cycles. The kernel distributions, as illustrated in Figure 16, reveal noticeable variations
throughout solar cycles. Out of the seven variables shown, solar cycle 23 has both the
maximum and the minimum values for five of the predictor variables. This suggests that
the baseline methods that are not trained on solar cycle 23 are not exposed to extreme
values, resulting in relatively low prediction accuracy. Similarly, solar cycle 22 kernel
distributions, namely the distribution of vz and By, display values that fall outside the
the normal distribution of solar cycles 23 and 24. We note that solar cycle 24 generally
follows the same patterns as solar cycle 23, and to a lesser extent 22. Therefore, training
the baselines on solar cycle 23 supported with cycle 22 data, provides a more complete
sampling of the input space than any other combination.
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(a) Testing on solar cycle 22 (b) Testing on solar cycle 23

(c) Testing on solar cycle 24 (d) Boxplot of the testing losses over ten runs.

Figure 11. Learning curve of the LSTM model when (a) trained on solar cycles 23 and 24 and tested
on 22, (b) trained on solar cycles 22 and 24 and tested on 23, (c) trained on solar cycles 22 and 23 and
tested on 24, and (d) boxplot of the losses across the 10 runs.

(a) Testing on solar cycle 22 (b) Testing on solar cycle 23

Figure 12. Cont.
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(c) Testing on solar cycle 24 (d) Boxplot of the testing losses over ten runs.

Figure 12. Learning curve of the CNN model when (a) trained on solar cycles 23 and 24 and tested
on 22, (b) trained on solar cycles 22 and 24 and tested on 23, (c) trained on solar cycles 22 and 23 and
tested on 24, and (d) boxplot of the losses across the 10 runs.

(a) Testing on solar cycle 22 (b) Testing on solar cycle 23

(c) Testing on solar cycle 24 (d) Box plot of the various final testing losses over ten
runs

Figure 13. Learning curve of the ResNet model when (a) trained on solar cycles 23 and 24 and tested
on 22, (b) trained on solar cycles 22 and 24 and tested on 23, (c) trained on solar cycles 22 and 23 and
tested on 24, and (d) boxplot of the losses across the 10 runs.
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(a) Testing on solar cycle 22 (b) Testing on solar cycle 23

(c) Testing on solar cycle 24 (d) Box plot of the various final testing losses over ten
runs

Figure 14. Learning curve of the GRU model when (a) trained on solar cycles 23 and 24 and tested on
22, (b) trained on solar cycles 22 and 24 and tested on 23, (c) trained on solar cycles 22 and 23 and
tested on 24, and (d) boxplot of the losses across the 10 runs.

(a) Testing on solar cycle 22 (b) Testing on solar cycle 23

Figure 15. Cont.
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(c) Testing on solar cycle 24 (d) Box plot of the various final testing losses over ten
runs

Figure 15. Learning curve of the RotateNet model when (a) trained on solar cycles 23 and 24 and
tested on 22, (b) trained on solar cycles 22 and 24 and tested on 23, (c) trained on solar cycles 22 and
23 and tested on 24, and (d) boxplot of the losses across the 10 runs.

(a) Kernel density of vx (b) Kernel density of vy

(c) Kernel density of vz (d) Kernel density of E

Figure 16. Cont.
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(e) Kernel density of Bx (f) Kernel density of By

(g) Kernel density of Bz

Figure 16. Kernel density plots of the seven predictor variables (solar cycles 22, 23, and 24).

8. Conclusions

In this paper, we propose an adjusted Ohm’s law inequality that we used for develop-
ing a new physics loss to guide deep learning models for the task of solar wind prediction.
We demonstrate the variability of the proposed physics-informed loss across five deep
learning baseline models. Additionally, we investigate the impact of training the models on
different solar cycles on their performance. This work represents the first effort to forecast
solar wind by integrating data-driven methods with physics constraints. Our findings
support our hypothesis that physics loss helps fine-tune model predictions by eliminating
the possibility of producing prediction that violates the Ohm’s law constraint. As a future
direction to this work, we would like to explore the inclusion of physics models (e.g.,
WSA-ENLIL) forecasts as an input to produce a hybrid physics-informed model. Finally,
we recognize the potential limitations associated with utilizing OMNI data for magnetic
field measurements, in particular as the distance between the OMNI spacecraft from the
Sun-Earth line increases [37,38]. Moving forward, we plan to explore the use of direct
measurements from the ACE satellite to further validate and enhance the robustness of
our findings.
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