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Abstract: The theory of heavy ion double charge exchange (DCE) reactions proceeding by effective
rank-2 isotensor interactions is presented. Virtual pion–nucleon charge exchange interactions are
investigated as the source for induced isotensor interactions, giving rise to the Majorana DCE (MDCE)
reaction mechanism. MDCE is of a generic character, proceeding through pairs of complementary
(π±, π∓) reactions in the projectile and target nucleus. The dynamics of the elementary processes is
discussed, where the excitation of pion–nucleon resonances are of central importance. Investigations
of initial and final state ion–ion interactions show that these effects are acting as vertex renormaliza-
tions. In closure approximation, well justified by the finite pion mass, the second-order transition
matrix elements reduce to pion potentials and effective two-body isotensor DCE interactions, giving
rise also to two-body correlations in either of the participating nuclei. Connections to neutrinoless
Majorana double beta decay (MDBD) are elucidated at various levels of the dynamics, from the under-
lying fundamental electro-weak and QCD scales to the physical scales of nuclear MDBD and MDCE
physics. It is pointed out that heavy ion MDCE reactions may also proceed by competing electro-weak
charge exchange processes, leading to lepton MDCE by electrons, positrons, and neutrinos.

Keywords: double charge exchange reactions; reaction theory; nuclear structure theory; double beta
decay; induced interactions; nuclear matrix elements

1. Introduction

Heavy ion double charge exchange (DCE) reactions are unique as a new tool for
investigations of the rather unexplored sector of higher-order nuclear dynamics. DCE
research is of generic interest for nuclear reaction and nuclear structure physics because
of its large potential for high-precision investigations of nuclear modes, which otherwise
are almost impossible to access. A central topic of this article is to show that DCE physics
is going significantly beyond the standard approach to peripheral heavy ion reactions
as dominated by mean-field dynamics. DCE research is located at the intersection of
nuclear and hadron physics, thus broadening the view on the dynamics of nuclear many-
body systems.

In a previous paper [1], the emergence of an effective isotensor interaction and the
role of ion–ion elastic interactions in second-order double single charge exchange (DSCE)
reactions were investigated. DSCE reactions proceed by acting twice with the nucleon–
nucleon (NN) isovector T matrix, where each of the actions generates a single charge
exchange (SCE) transition. It was shown that by proper transformations of the operator
structures, defined by central spin–scalar, spin–vector and rank-2 spin tensor interactions,
effective operators are obtained, acting as rank-2 isotensor operators intrinsically in each
nucleus. In addition, in [1], the role of initial state (ISI) and final state (FSI) ion–ion elastic
interactions was investigated. The DSCE investigations led to three significant and far-
reaching results:
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• ISI and FSI interactions lead to distortion coefficients, which act as quenching factors.
As a result, the DSCE reaction amplitude and consequently the observed DSCE nuclear
matrix elements are strongly suppressed by orders of magnitudes compared to the
results expected without ISI/FSI.

• The relative motion degree of freedom induces in DSCE reactions in each nucleus a
correlation between the pair of SCE vertices, where the correlation length is determined
by the kinematical conditions of the reaction.

• The pair of NN T matrices can be recast into a set of spin–scalar and spin–vector rank-2
isotensor interactions, acting in each nucleus as effective two-body interactions and
forming together a four-body ion–ion interaction.

In this work, we investigate the competing Majorana DCE (MDCE) scenario. While
DSCE theory is the second-order extension of the conventional direct reaction single charge
exchange (SCE) theory [2,3], MDCE theory takes a completely different view by describing
a heavy ion DCE reaction as a combination of pion–nucleon DCE reactions in projectile
and target nucleus. A consequence of such an approach is that the second-order aspects
inherent to a DCE reaction are treated on the level of isovector pion–nucleon scattering,
giving rise to dynamically created effective rank-2 isotensor interactions in the projectile
and target nucleus.

By definition, a heavy ion DCE reaction relies finally on an interaction of rank-2
isotensor character. Hitherto, searches for such a kind of nuclear interaction of generic
character have been unsuccessful. To date, the existence of neither elementary isotensor
mesons [4–6] nor signatures of interactions of that kind in single, isolated nuclei [7] could
be confirmed with convincing certainty. Most likely, rank-2 isotensor interactions do not
exist as an elementary mode of their own right. The conditions, however, might change
if two nuclei are in close contact as in a peripheral ion–ion collision. In such a situation,
an effective isotensor interaction can be generated dynamically as a transient phenomenon.
MDCE reactions proceed by virtual pion–nucleon double charge exchange scattering,
involving sequences of π±, π0 and π0, π± pion–nucleon SCE reactions. Their proper
combination leads finally to virtual (π±, π∓) pion–nucleon DCE reactions in the reacting
nuclei. Under nuclear structure aspects, a DCE reaction is determined by excitations of
n2 p−2 and p2n−2 two particle–two hole configurations in the interacting nuclei.

In the past, pion beams were used extensively for DCE research on nuclei at the
Los Alamos Meson Physics Facility (LAMPF) [8]. LAMPF was shut down a long time
ago, but the physics issues studied there have become of renewed interest for heavy ion
DCE research. The theoretical understanding achieved at that time for pion–nucleon
isovector dynamics [9–14] and DCE nuclear structure theory [15–19] are worth being
rediscovered because they are of high value for research on the MDCE mechanism of heavy
DCE reactions.

In [1,20], the similarity of DSCE and two–neutrino DBD was emphasized. A special
aspect of the pionic MDCE scenario is the striking similarity to the heavily discussed
neutrinoless Majorana DBD (MDBD). That similarity is illustrated in Figure 1 on the ele-
mentary level of virtual weak W± gauge bosons and highly virtual strong quark–antiquark
qq̄ modes, the former materializing into a lepton pair on the mass shell, the latter into a
pair of mesons off the mass shell. MDBD is searched for as a possible signature for Beyond
the Standard Model (BSM) physics because MDBD relies on the still hypothetical Majorana
neutrinos with the claimed property νM ≡ ν̄M, see e.g., [21,22]. MDBD would lead to the
spontaneous creation of matter in the form of lepton pairs, thus violating lepton number
conservation. As will be seen, the MDCE mechanism is described by graphs resembling
those of neutrinoless DBD. However, MDCE is determined finally by strong hadronic inter-
actions of a quite different range and strength. Spectroscopically, the same nuclear states
as in MDBD are involved, and the transitions are induced by the same kind of isovector
multipole operators, exciting spin–scalar and spin–vector modes.
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Figure 1. Comparison of the elementary mechanisms underlying weak neutrinoless Majorana double
beta decay (MDBD) (left), leading to the creation of a lepton pair on the mass shell [21,22], and strong
Majorana double charge exchange (MDCE) leading to the emission of a pair of virtual mesons off the
mass shell. See text for further discussions.

In the forthcoming sections, we present a concise, unified picture of the physics of
MDCE dynamics and the relation to neutrinoless Majorana double beta decay (MDBD).
The theoretical foundations and methods are discussed much beyond the level presented
in previous publications [3,23]. The overall aspects, the essential features, and theoretical
principles of MDCE reaction physics are presented in Section 2. As mentioned before,
the MDCE reaction amplitude is formally given by one-step distorted wave matrix element.
The quenching of reaction yields caused by the strongly absorptive ion–ion optical potential
discussed in [1] for the DSCE amplitude is less pronounced but still a highly important
effect of significant strength. Therefore, the role of ISI and FSI is elucidated in Section 3. A
different view on ISI and FSI as vertex renormalization is presented in Section 4, where we
point to the formal similarity of ISI/FSI with the treatment of short-range correlations in
nuclear structure calculations, especially also used in DBD theory. The MDCE transition
form factors and nuclear matrix elements are investigated in Section 5. There, we also
address in some detail the essential features of the box diagram, introduce the closure
approximation, which allows to define second-order pion potentials as effective two-body
DCE interactions. Pion–nucleon scattering and the construction of the pion–nucleon T
matrix, used to describe the excitation of np−1 and pn−1 states, are the subjects of Section 6.
Illustrating numerical results are presented in Section 7. The connections of DCE reactions
to DBD are discussed in Section 8. A summary and an outlook are found in Section 9.
Additional material on distortion amplitudes, details of the box diagram, the pion–nucleon
T matrix, and more on the theoretical background of the pion potentials is presented in
several appendices.

2. Theory of Heavy Ion MDCE Reactions

The MDCE interaction process for a reaction A(Z, N) + A′(Z′, N′)→ B(Z± 2, N ∓ 2)
+ B′(Z′ ∓ 2, N′ ± 2) is illustrated graphically in Figure 2. Formally, the MDCE scenario is
described in box diagrams, where the dynamical key elements are pion–nucleon isovector
interactions. The reaction is described by a first-order distorted wave (DW) reaction
amplitude M(1)

αβ . The differential cross section for an unpolarized beam and target nuclei is
defined as

dσ
(1)
αβ =

mαmβ

(2πh̄2)2

kβ

kα

1
(2Ja + 1)(2JA + 1) ∑

Ma ,MA∈α;Mb ,MB∈β

∣∣∣M(1)
αβ (kα, kβ)

∣∣∣2dΩαβ, (1)

The cross section is averaged over the initial nuclear spin states (Ja,A, Ma,A) and summed
over the final nuclear spin states (Jb,B, Mb,B), respectively. Reduced masses in the incident
and exit channels, respectively, are denoted by mα,β. kα and kβ are the (Lorentz-invariant)
momenta in the incident and exit channels, respectively.
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Figure 2. The MDCE diagram for the reaction A(Z, N) + A′(Z′, N′)→ B(Z± 2, N ∓ 2) + B′(Z′ ∓ 2,
N′ ± 2). The isovector pion–nucleon T matrices are denoted by filled gray boxes. The intermediate
neutral pions induce a correlation between the SCE events, thus making MDCE a two-nucleon process.
The co-propagating core states are denoted by C = C(Z ± 1, N ∓ 1) and C′ = C′(Z ∓ 1, N ± 1).
Charged pions πq and πq′ , q, q′ = ±1 are exchanged with four-momenta p1,2 between the nuclei. The
four momenta in the incident (kA,A′ ), the intermediate (k1,2), and the exit channel (kB,B′ ) are indicated.

Formally, the reaction amplitude has the structure of a first-order distorted wave
matrix element:

M(1)
αβ (kα, kβ) = ⟨χ

(−)
β |⟨B|TπNGπCTπN |A⟩Dπcπc′ ⟨B′|TπNGπ′C′TπN |A′⟩|χ

(+)
α ⟩. (2)

The charged pions, described by the propagator D
πcπc′ , connect the nuclear transition

matrix elements (TMEs). Since they describe the intranuclear DCE transitions, they are the
key elements for spectroscopic investigations. We introduce the pion and nucleon isospin
operators T and τ and rewrite the T matrices as

TπN(i, i′) = TπN(i, i′)T(i′) · τ(i) (3)

Since in a DCE transition only the ladder parts T±τ∓ are relevant and pion and
nucleon operators commute, we rearrange the ladder operators to pion and nucleon rank-2
isotensor operators of complementary charge-lowering and charge-raising properties:

I (π)
2±2(i

′, j′) = T±(i′)T±(j′) (4)

I (N)
2∓2(i, j) = τ∓(i)τ∓(j). (5)

In r–space formulation, the MDCE amplitude is given by

M(1)
αβ (kα, kβ) = ⟨χ

(−)
β |Rαβ|χ

(+)
α ⟩ =

∫
d3rα

∫
d3rβχ

(−)∗
β (rβ)Rαβ(rα, rβ)χ

(+)
α (rα). (6)

The distorted waves χ
(±)
α,β with asymptotically outgoing and incoming spherical waves,

respectively, depend on the invariant channel momenta kα,β and the channel coordinates
rα,β, the latter describing the relative distance between the initial nuclei A, A′ and the final
nuclei B, B′, respectively. The reaction is described in the ion–ion rest frame.

The distorted waves are of central importance for the quantitative description of direct
nuclear reactions like heavy ion SCE and DCE scattering. They account for diffractive and
dispersive initial state and final state elastic ion–ion interactions. In direct reaction (DR)
theory, they are described globally by complex-valued optical model potentials including
the long-range Coulomb potential and real and imaginary nuclear potentials of ranges
which are defined by the sizes of the density distribution of the colliding nuclei. A key role
is played by the strong imaginary parts. They describe the absorption of the probability
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flux by the coupling to the multitude of non-elastic channels and as such are essential for a
realistic description of the magnitudes of SCE and DCE cross sections and shapes of the
related angular distributions; see [24]. As stated in [25], a proper treatment of distortion
effects was badly missed in the theory of pion–DCE, leaving many open questions for a
realistic description of pion–DCE data.

The spectroscopic content of the DCE reaction is contained in the transition kernel
Rαβ. An instructive and successful approach is to use the momentum representation:

Rαβ(rα, rβ) =
∫ d3 p1

(2π)3

∫ d3 p2

(2π)3 ei(−p1·rα+p2·rβ)Fαβ(p1, p2). (7)

As a remarkable first achievement, we have succeeded in separating the nuclear and relative
motion degrees of freedom. The latter are represented by the plane waves depending on
the relative ion–ion coordinates in the incident and the exit channels, denoted by rα and rβ,
respectively. The MDCE transition form factor

Fαβ(p1, p2) =WAB(p1, p2)D
πqπq′ (p1, p2)WA′B′(p1, p2), (8)

defined by the diagram of Figure 2 contains as key elements the nuclear transition matrix
elements (TMEs)

WAB(p1, p2) = ⟨B|TπN(p2, k|σ3)GA(k1)TπN(p1, k|σ1)|A⟩, (9)

WA′B′(p1, p2) = ⟨B′|TπN(p2, k′|σ4)GA′(k2)TπN(p1, k′|σ2)|A′⟩. (10)

The TMEs are of central interest for DCE research because they account for the spectroscopy
of the reaction. For example, the transition A→ B is induced by two consecutive actions of
the pion–nucleon isovector T matrices TπN , each giving rise to a SCE transition, A→ C and
C → B, respectively. The vertices are connected by the Green’s function GA(k1), describing
the s-channel propagation, i.e., in the direction of the left and right vertical branches of
Figure 2, of the intermediate π0 + C system. The transition A′ → B′ follows the same rules.
The TMEs will be investigated in more detail in a later section.

The DCE process is driven by the t-channel exchange of charged pions between the
projectile and the target nucleus as indicated by the lower and upper horizontal branches
in Figure 2. In lowest order, the exchange is described by the the symmetrized product
propagator

D
πqπq′ (p1, p2) ≈

1
2

(
Dπq(p1)D

πq′ (p2) + Dπq(p2)D
πq′ (p1)

)
. (11)

Possible pion–pion and pion–matter interactions are neglected.
As discussed in Appendix B, in the ion–ion rest frame, the four-momentum p1 =

(0, p1)
T , p2

1 = −p2
1 is purely space-like, while p2 = (EA − EB, p2)

T includes the reaction Q
value. For |EA − EB| ≪ mπ , we may safely neglect the Q-value dependence and describe
the exchange of both mesons by static pion propagators

Dπq(p) = − mπ

p2 + m2
πq

. (12)

In the ion-ion rest frame and at the energies relevant for heavy ion MDCE reactions,
the isovector pion–nucleon T-matrix TπN is described adequately by the operator struc-
ture [26,27]

TπN(p, p′|σ) =
[

T0(Sπn) +
1

m2
π

(
T1(sπn)p · p′ + iT2(sπN)σ · (p× p′)

)]
Tπ · τN . (13)
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Nucleon spin degrees of freedom are involved via the spin operators σ. The form factors
T0,1,2 depend on the invariant pion–nucleon energy sπN = (kπ + kN)

2. They are playing
the role of energy-dependent coupling constants.

3. Initial State and Final State Interactions

Before further investigating MDCE interactions and form factors, we must understand
first the contributions of ISI and FSI to the reaction process. In momentum representation,
the MDCE reaction amplitude attains an intriguing form:

M(1)
αβ (kα, kβ) =

∫
d3 p1

∫
d3 p2D(−)∗

β (p2)Fαβ(p1, p2)D(+)
α (p1). (14)

The ion–ion ISI/FSI parts are contained in the distortion coefficients D(±)
αβ . The dis-

tortion coefficients are 3D Fourier transforms of the incoming and outgoing distorted
waves

D(+)
α (p1) =

∫ d3rα

(2π)3 eip1·rα χ
(+)
α (kα, rα), (15)

D(−)∗
β (p2) =

∫ d3rβ

(2π)3 eip2·rβ χ
(−)∗
β (kβ, rβ). (16)

In Appendix A, the properties of distorted wave, derived from an optical model wave
equation, are investigated in detail. On general theoretical grounds, two important results
are obtained, namely, that formally the distorted waves are factorizable into plane waves
and residual amplitudes hα,β, which are determined essentially by the half off-shell optical
model elastic scattering amplitudes. As the central result, the distortion coefficients are
derived in closed form.

Anticipating the results of Appendix A, we write

χ
(+)
α (kα, rα) = eikα ·rα(1− hα(rα)), (17)

χ
(−)∗
β (kβ, rβ) = e−ikβ ·rβ

(
1− hβ(rβ)

)
. (18)

In the second equation, the well-known relation χ(−)∗(k, r) = χ(+)(−k, r) is exploited;
see [24,28,29].

By defining the 3D Fourier transforms

fα(p) =
∫ d3r

(2π)3 ei(p−kα)·rhα(r), (19)

fβ(p) =
∫ d3r

(2π)3 e−i(p−kβ)·rhβ(r), (20)

the distortion amplitudes become

D(+)
α (p1) = D(DW)

α (p1)− fα(p1) (21)

D(−)∗
β (p2) = D(DW)

β (p2)− fβ(p2). (22)

For vanishing elastic interactions, also the residual amplitudes vanish, and the distortion
coefficients approach the plane distribution

D(±)
α,β (pi) 7→ D(PW)

α,β (pi) = δ(pi − kα,β). (23)

For realistic optical potentials, accurately describing ion–ion elastic angular distribu-
tions and total reaction cross sections, the residual amplitudes attain values of order unity
| fα,β| → 1, resulting in |D(±)

α,β | ≪ 1. These results explain the pronounced quenching of the
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cross sections of heavy ion reactions by orders of magnitudes compared to the yields ob-
served in reactions with particles not suffering from the strong absorption of the incoming
probability flux.

As implied by Equation (14), the MDCE reaction amplitude is determined by the
product of the initial and final state distortion coefficients. Together, they form the reac-
tion kernel

Kαβ(p1, p2) = D(−)∗
β (p2)D(+)

α (p1). (24)

From Equation (23), we find that the total kernel is a superposition of two kernels of
the diagonal products of plane wave (PW) and DW distributions and two mixed PW/DW
kernels. Combining the latter two into a single term, the MDCE kernel becomes a sum of
three distinct terms

Kαβ(p1, p2) =
2

∑
n=0

K(n)
αβ (p1, p2). (25)

The product of plane wave coefficients defines the reaction kernel

K(0)
αβ (p1, p2) = D(PW)

α (p1)D(PW)
β (p2) (26)

= δ(p2 − kβ)δ(p1 − kα). (27)

By exploiting the properties of the Dirac delta distributions, we find the on-shell
relations

K(0)
αβ (p1, p2) = δ(

1
2
(p1 + p2)− Pαβ)δ(p1 − p2 − qαβ). (28)

where Pαβ = 1
2 (kα + kβ) and qαβ = kα − kβ denote the average channel three momentum

and the three-momentum transfer of the reaction, respectively.
Thus, in the plane wave limit, the momenta p1,2 are fixed unambiguously by the

(invariant) momenta in the initial and the final channels as derived in Appendix B.
The ISI/FSI contributions are contained in the remaining two terms, which are de-

termined by the amplitudes of Equation (19). Two types of ISI/FSI distortion kernels
are found:

K(1)
αβ (p1, p2) = −

(
δ(p1 − kα) fβ(p2) + δ(p2 − kβ) fα(p1)

)
, (29)

K(2)
αβ (p1, p2) = fα(p1) fβ(p2). (30)

The kernel K(1)
αβ describes the distortion effects exerted on the reaction by one of

channels, while the other channel is in the PW mode, i.e., ISI and FSI act separately. K(s)
αβ

accounts for the combined action of ISI and FSI. In the momentum space approach, the
MDCE reaction amplitude is understood as a superposition of essentially three interfering
contributions of different origin and structure but of comparable magnitude:

M(1)
αβ (kα, kβ) = Fαβ(kα, kβ) (31)

−
∫

d3 p
(

fβ(p)Fαβ(kα, p) + fα(p)Fαβ(p, kβ)
)

+
∫

d3 p1

∫
d3 p2 fα(p1)Fαβ(p1, p2) fβ(p2).

The PW contribution reflects the bare nuclear transition matrix element before ISI/FSI
renormalization. The contributions in the second line introduce ISI in the initial channel while
the exit channel is in PW mode, and FSI in the exit channel while the initial channel remains
in PW mode. In the term of the last line, ISI and FSI act in both channels simultaneously.
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4. A Different View: ISI and FSI as Vertex Renormalizations

A standard problem of nuclear many-body theory is to incorporate interactions from
outside of the model space into the operators acting between the states in the limited
model space. Formally, the projection techniques going back to Feshbach [30] provide
first insight into the problem of induced interactions. Over the years, nuclear many-body
theory has developed powerful techniques on how to incorporate induced interactions as
consistently as possible into all parts of the theory. Examples are many-body shell model
studies of double beta decay as, for example, in [31–37] and under slightly different aspects
also in [38–40], regarding even neutrino effective masses by induced interaction from the
coupling to axions [41]. For example, a widely used approach, introduced into DBD theory
by Šimkovic et al., is the Jastrow method which implements short-range correlations into
matrix elements by a function, acting repulsively at small distances.

The considerations which led to Equation (31) are in fact following the same theoretical
rationality as in nuclear structure theory, however, as will be seen, in a complementary
manner. In order to recognize the relationship, we recall that the model space of MDCE
reactions includes the incoming and outgoing channel configurations, where the incoming
nuclei are assumed to be in their ground states and the outgoing nuclei are assumed to be
again in their ground states or in a well-identified excited state. In addition, the spectrum
of intermediate SCE configurations will contribute. However, the intermediate states
are acting mainly as a reservoir of unresolved spectroscopic strength, being responsible
in the first place for generating the effective two-body interactions for transitions from
the incoming nuclei to the emerging ejectiles. Thus, the explicitly treated model space
contains only an extremely small subset of states of the total {A} ⊗ {A′} configuration
space. In nuclear reaction theory, the respective optical potentials account for the induced
interaction as far as they affect elastic scattering. Hence, to a large extent, ISI and FSI
correspond to induced interactions from the vast background of non-elastic channels.
As known from nuclear many-body theory, once effective interactions are important in
one sector, they also affect all other sectors of the theory. In particular, transition operators
have to be renormalized in accordance with the renormalization scheme. In the above cited
works, the proper implementation of renormalization into all parts of the theory is a topic
of central importance.

Reconsidering under these aspects the MDCE reaction amplitude, we arrive at the
conclusion that in Equation (31), the distortion amplitudes fα,β are playing exactly that role,
namely, to renormalize the SCE vertices in agreement and consistently with the induced
ion–ion initial and final state interactions. This is performed in a systematic manner starting
from the bare matrix element, represented by the PW amplitude, then renormalizing one of
the vertices but retaining the second vertex as a bare vertex, and finally renormalizing both
vertices simultaneously. Hence, ISI and FSI account for the proper renormalization of the
DCE–nuclear matrix element (NME) under the conditions of a heavy ion nuclear reaction.

While in the nuclear structure context, renormalizations typically refer to short-range
effects, ISI/FSI renormalization, however, accounts for scales defined by the ion–ion self-
energies, subsumed in the respective optical potentials. A decisive role is played by elastic
scattering amplitude as discussed in Appendix A. The most relevant observable, however,
is the total reaction cross section as the measure for the amount of probability flux leaving
the elastic channel. The redirected flux is absorbed into channels ranging from transfer
channels, which are dominated by mean-field dynamics, and channels where the nuclei
are excited inelastically by soft vibrational excitations and giant resonances, eventually
leading to fission or fusion, to hard central collisions, possibly upending in the complete
fragmentation of the incoming nuclei. Thus, renormalization by optical model interaction
is of a genuine character by covering a broad range of nuclear modes and interactions from
the soft to the hard scale. That mechanism is not specific for first-order DW reactions as
considered here. As discussed in [1], a similar renormalization scheme is also present in the
second-order reactions double single charge exchange (DSCE) reaction. In DSCE reactions,
the matrix elements, however, are renormalized by second-order distortion amplitudes.
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5. Transition Form Factors and Nuclear Matrix Elements
5.1. The MDCE Box Diagram

Diagrams of the topology of the MDCE graph in Figure 2 may be rare in nuclear
physics. However, such planar box diagrams are encountered frequently in other fields of
physics, from electro-weak theory, e.g., [42], to QCD and hadron phenomenology, e.g., [43].
The physics behind the diagram of Figure 2 has, however, several peculiarities: we have to
treat a process which extends over two complex nuclei in a state of relative motion, the par-
ticles involved are of a complex many-body structure, and, as an additional challenge, we
have to account for strong initial and final state interactions.

An important aspect of ISI and FSI is that the incoming and outgoing waves become
(stationary) wave packets, as is emphasized in Section 3 and in Appendix A. The momentum
distributions are centered at the respective physical on-shell momentum. The width and
shape of the distribution are governed by the properties of the elastic ion–ion self-energies,
described by optical potentials. The depth of the imaginary potential plays a special role
due to controlling the amount of flux absorption into other reaction channels in a never-
come-back manner. The wave packet properties of the distorted waves induce a certain
amount of off-shellness, described by the ISI and FSI distortion coefficients. As a result,
the ISI/FSI momentum distributions will be imprinted on the MDCE form factors, reaction
amplitudes, and cross sections.

Following Appendix B, the reaction will be described in the rest frame of the collid-
ing nuclei. In that frame, the incoming and outgoing ions carry, under on-shell condi-
tions, asymptotically the four-momenta kA,A′ = (EA,A′ ,∓kα)T and kB,B′ = (EB,B′ ,∓kβ)

T ,

with the on-shell energies EA,A′ =
√

M2
A,A′ + k2

α and EB,B′ =
√

M2
B,B′ + k2

α, respectively.
At the mass shell, the charged pions are described by four-momenta p1,2, which in the rest
frame are p1 = (0, kα)T , p2 = (EA − EB, kβ)

T . Hence, p2
1 = −k2

α ≤ 0 is a purely space-like
four-vector. This is also the case for p2

2 = Q2
αβ − k2

β, provided that the reaction Q-value
Qαβ = EA − EB is not of an extraordinary large value.

ISI and FSI introduce off-shell three-momentum distributions for the three-momenta p1,2
appearing as variables in the MDCE reaction amplitude in Equation (14). Their origin and the
properties are discussed in Section 3. A significant consequence for the box diagram is that it
has be to evaluated for whole set of momenta allowed by ISI/FSI. Since the uncertainty in
momentum is a purely virtual effect as further elucidated in Appendix C, the nuclear four-
momenta are to be evaluated for p1,2 kA,A′ = (EA,A′(p1),∓p1)

T, kB,B′ = (EB,B′(p2),±p2)
T

but still obey mass-shell conditions k2
A,A′ = M2

A,A′ and k2
B,B′ = M2

B,B′ , respectively. Hence,
scanning through the ISI/FSI-induced momentum distributions, the nuclear four-momenta
are kept on the mass shell. The charged pions are described by four-momenta p1 = (0, p1)

T

and p2 = (Qαβ, p2)
T . While p1 remains space-like also in the off-shell region, p2 is time-like

for Q2
αβ ≥ p2

2 and changes back to being space-like for larger values of |p2|.
Obviously, the role of p1 and p2 may be exchanged. Thus, the box diagram displayed

in Figure 2 is of a generic character. When evaluating the transition form factor, this
particular symmetry is taken into account by a multiplicity factor 2.

5.2. Pion–Nucleus and Pion–Nucleon Kinematics and Interactions

The intermediate π0 + C and π0 + C′ systems are populated with the time-like four-
momenta k1 = p1 + kA = (EA(p1), 0)T)T and k2 = p1 − kA = (−EA′(p1), 0)T , respectively.
Thus, sγ,γ′(p1) = E2

A,A′(p1) are the energies available for the intermediate systems. The cor-
responding on-shell relative momenta are

k2
γ =

1
4sγ

(
(sγ − (M∗C + mπ)

2)(sγ − (M∗C −mπ)
2)
)

k2
γ′ =

1
4sγ′

(
(sγ′ − (M∗C′ + mπ)

2)(sγ′ − (M∗C′ −mπ)
2)
)

,
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respectively. At the on-shell points, we find k1 = kπ + kC leading to kπ + kC = 0 and
accordingly k2 = k′π + k′C with k′π + kC′ = 0.

As it is evident from Equation (13), the longitudinal and the transversal operators
depend on the three-momenta of the incoming and outgoing pions. For the A→ C vertex,
these are p1 and kπ , while at the C → B vertex, these are kπ and p2. The A′ → C′ vertex
is determined by −p1 and −k′π , and at the C′ → B′ vertex, these are −kπ and −p2. Since
the momenta occur always in binomials, the minus signs are irrelevant. The deeper reason
for this ambiguity is the symmetry of the box diagram under the exchange {k1, p1} ↔
{−k2,−p2}.

The strength of the form factors T0,1,2, acting as effective coupling constants, are
determined by the energy available in the pion–nucleon systems. In Appendix D, this
is accomplished by the mean energy approach which allows to derive the pion–nucleon
(pseudo) kinematics from the intermediate channels, containing explicitly a pion in the s
channel. The proper energy per nucleon

√
sπN =

√sγ/A2 is used to define the invariant
relative momentum and the energies in the pion–nucleon system. By Equation (A15) in
Appendix B, we obtain the equivalent energy in the laboratory frame, which is used in
some of the figures shown below.

5.3. The Intermediate Propagator

The intermediate channels deserve closer considerations because of their internal struc-
ture given by a π0 and a SCE-excited nucleus. As an example, we investigate the π0 + C
systems. The intermediate propagator is expanded into |γ = [π0 ⊗ C] configurations:

GA(k1) = ∑
γ

∫ d3k
(2π)3 |γ, ϕ

(+)
k ⟩g(+)

γ (k|k1)⟨ϕ̃
(+)
k , γ|, (32)

where the relative motion of the pion–nucleus system is described by the wave functions
ϕ
(+)
k and the dual state ϕ̃

(+)
k , obeying ⟨ϕ̃(+)

q |ϕ(+)
k ⟩ = (2π)3δ(k− q).

In the intermediate channels, the neutral pions will interact with the co-propagating nu-
clei by their own version of optical potentials. Pion optical potentials are discussed and ap-
plied widely in the literature, e.g., [44–48]. For our purpose, we neglect those interaction and
replace the pion–nucleus wave functions by plane waves, ⟨r|φ(+)

γ (k)⟩ = φ
(+)
γ (k, r) ≈ eik·r

and correspondingly φ̃
(+)
γ (k, r) ≈ e−ik·r.

The on-shell energy for the π + C system sπC = k2
1 = M2

A + p2
1 is defined by k1.

The related invariant on-shell three-momentum is k2
γ = (sπC − (mπ + M∗C)

2)(sπC − (mπ −
M∗C)

2)/(4sπC). The reduced retarded channel propagator becomes

g(+)
γ (k|p1) =

1
EA(p1)− Eπ(k)− EC(k) + iη

+
1

EA(p1) + Eπ(k) + EC(k) + iη
, (33)

and we note that in the ion–ion rest frame, the k1 dependence is in fact a dependence on
the three-momentum p2

1.
The Cauchy formula allows to decompose the propagator into a principal value part

P and a pole term:

g(+)
γ (k|p1) = 2EA(p1)

P
E2

A(p1)− (Eπ(k) + EC(k))2
− iπµπC(kγ)

1
kγ

δ(k− kγ) (34)

where µπC(kγ) = Eπ(kγ)EC(kγ)/(Eπ(kγ) + EC(kγ)) ∼ Eπ(kγ) is the reduced energy of
the π + C system at the pole position k = kγ.

The delta distribution of the pole part contributes only if kγ is real valued, i.e., k2
γ > 0 is

positive. From the definition of kγ, we find that the latter condition is fulfilled if the external
momentum obeys p2

1 > (mπ + M∗C)
2 −M2

A ∼ 2MA(mπ + εC), where εC = M∗C −MA is
the excitation energy of the SCE daughter nucleus C. The three-momentum |p|1 must be
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large enough to compensate for the pion rest mass appearing in the intermediate channel
and the nuclear excitation energies. This constraint establishes an important difference
from on-shell pion–DCE reactions, which obviously contain an incoming charged pion
on the mass shell. In MDCE reactions, however, the charged pions are in purely virtual
states, thus not contributing with their rest mass to the energy balance of the reaction. That
missing energy—plus the excitation energy contained in M∗C—must be compensated for
solely by the momenta exchanged between the ions. The same rues apply to the reaction
A′ → B′ under the proper conditions and constraints belonging to the A′ system.

5.4. The Nuclear Transition Matrix Elements

In channel representation, the MDCE transition form factor is given by

WAB(p1, p2) = −∑
C

∫ d3k
(2π)3MBC(p2, k)g(+)

γ (k|p1)MCA(p1, k). (35)

The summation extends over the ground state and the excited states of the C(Z± 1, N ∓ 1)
SCE daughter nucleus, underlining again that in a DCE reaction, the charge number
partition is changed, but the nucleon number partition is conserved.

The two charge-converting processes are described by SCE-type nuclear matrix ele-
ments,

MCA(p1, k) = ⟨C|ei(p1−k)·r1TπN(k, p1|σ1)|A⟩, (36)

MBC(p2, k) = ⟨B|e−i(p2−k)·r2TπN(k, p2|σ3)|C⟩. (37)

According to Equation (13), these matrix elements are given by a superposition of three
terms. We denote the isospin wave functions of the pions by their charge states, {π0, π±}
and introduce the isospin matrix elements I(0,±) = ⟨π0|T∓|π±⟩ = I†(∓, 0) =

√
2.

With the spin–scalar (S = 0) and the spin–vector (S = 1) nuclear matrix elements

M(0)
CA(p1, k) = ⟨C|ei(p1−k)·r1 τ±|A⟩ ; M(1)

CA(p1, k) = ⟨C|ei(p1−k)·r1 στ±|A⟩ (38)

and considering that the form factors depend on the invariant pion–nucleon energy
sπN = (pπ + pN)

2, we find

MCA(p1, k) = I(0,±) (39)

×
((

T0(sπN) + T1(sπN)
k · p1

m2
π

)
M(0)

CA(p1, k) + T2(sπN)
k× p1

m2
π
·M(1)

CA(p1, k)
)

.

Correspondingly, the second SCE matrix element is

MBC(p2, k) = I(±, 0) (40)

×
((

T0(sπN) + T1(sπN)
p2 · k
m2

π

)
M(0)

BC(p2, k) + T2(sπN)
p2 × k

m2
π
·M(1)

BC(p2, k)
)

.

The matrix elements MC′A′ and MB′C′ are defined accordingly. As mentioned before,
pion–nucleus elastic interactions are neglected.

5.5. Pion Mass as a Scale Separator and Closure Approximation

The principal value part of the propagator, Equation (34), is worth considering in more
detail. Obviously, the theoretical and numerical efforts will be reduced drastically if the
propagator is independent of the quantum numbers of the intermediate states C and C′,
respectively. Under such conditions, the summation over the spectrum of intermediate
SCE configurations could be performed by exploiting the completeness relations for each
multipolarity, thus applying closure. This can be achieved in two ways.
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First, we can approach the problem as in [1], namely, we replace the excitation energies
of C and C′ by an auxiliary state-independent average excitation energy εC,C′ 7→ ωγ,γ′ . As a
result, we obtain that only the ground state masses MC,C′ in the SCE channels are left as
channel indicators, which are uncritical because the (Z± 1, N ∓ 1) nuclei are unique and
well defined. In that approximation, the propagator, for example, in the A system, becomes

g(+)
γ (k|p1) ≈ ḡ(+)

γ (k|p1) = (41)
1

EA(p1)− E(0)
C (k)− Eπ(k)−ωγ + iη

+
1

EA(p1) + E(0)
C (k) + Eπ(k) + ωγ + iη

where E(0)
C (k =

√
k2 + M2

C). A meaningful criterion for the choice of the auxiliary energy
is the pion energy, which serves as a scale separator. Thus, for excitation energies less than
the pion rest mass, we may safely replace εC,C′ by an average value ωγ. The first neglected,
next-to-leading-order terms are at least of the order O((εC,C′ − ωγ,γ′)/mπ). ωγ and ωγ′

may be chosen separately in each nucleus and for each multipolarity J±, which allows
well-adopted adjustments to the spectral properties of the nuclei. Assuming that ωγ is
chosen as a global parameter which is not dependent on the multipolarity, we find the
pion potential

Uπ(x|p1,2σ1,3) =
∫ d3k

(2π)3 TπN(p2, k|σ3)ḡ(+)
γ (k|p1)eik·xTπN(p1, k|σ1). (42)

where x = r1 − r2 is the distance between the two protons or neutrons, respectively,
participating in the MDCE transition. The integrals define, in fact, monadic and dyadic
tensors, which is seen by expressing the momentum vectors in the basis of spherical unit
vectors. Details and the resulting formalism are discussed in Appendix E.

Second, we may use even a more drastic simplification. From the energies involved,
it is found that the nuclear energies may indeed be replaced in first approximation by
the rest masses EA ∼ MA, EC ∼ MC + εC. Using in addition MA + MC + εC ∼ 2MA and
neglecting terms of order Eπ/(2MA), we obtain

g(+)
γ (k|p1) ≈ −

mπ − εC

m2
π + k2 − ε2

C
∼ mπ

m2
π + k2

. (43)

Thus, for not-too-large momenta and moderate excitation energies, εC ≪ mπ , in leading
order, the propagator becomes independent of all quantum numbers of the intermediate
systems, which allows to evaluate the transition form factors in closure approximation.
Under those conditions, we obtain an effective isotensor two-body interaction of the second
order in TπN :

Uπ(x|p1,2σ1,3) = −mπ

∫ d3k
(2π)3 TπN(p2, k|σ3)

eik·x

m2
π + k2

TπN(p1, k|σ1). (44)

Equation (44) also shows that the s-channel π0 exchange induces a dynamical short range
correlation between two nucleons of the same kind, connecting a pair of particle–hole SCE
transitions, either of np−1 or pn−1 type. The same scenario is found in the A′ system.

In the closure approximation of the second kind, the TME is obtained as

WAB(p1, p2) = ⟨I
(π)
2,∓2⟩⟨B|e

−ip2·r2Uπ(x|p1,2σ1,3)eip1·r1I (N)
2±2|A⟩, (45)

including the (expectation value of the) pionic and the nucleonic rank-2 isotensors I (N)
2±2 =

[τ1 ⊗ τ2]2±2 and I (π)
2∓2 = [T1 ⊗ T2]2∓2, respectively. In this form, it is recognized imme-

diately that the MDCE pion potentials are two-body operators enforcing complemen-
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tary n∓2 p±2 transitions in the interacting nuclei, while conserving the total charge of the
projectile–target system.

6. The Pion–Nucleon Partial Wave Amplitudes and the Isovector T Matrix
6.1. Pion–Nucleon Interactions and Scattering Amplitudes

As depicted in Figure 3, pion–nucleon scattering is determined by the formation of N∗

resonances in the s-channel and t-channel meson exchange. Meson exchange will contribute
to all pion–nucleon partial waves as an omnipresent, smooth background contribution.
The formation of elastic resonances, however, is an interaction mode which depends
critically on the partial wave. The most prominent example of a N∗ state is the ∆(1232)
resonance at centroid energy M = 1232 MeV and with Γ = 120 MeV. In spectroscopic
notation, L2I2J(M), with orbital angular momentum L = S, P, D . . . in the πN system,
isospin I = 1

2 , 3
2 , and total angular momentum J = 1

2 , 3
2 , 5

2 . . ., the Delta resonance is denoted
by P33(1232), hence indicating a P-wave resonance with stretched isospin and spin–orbital
coupling. The next higher resonance is the Roper resonance, P11(1440). At higher energies,
up to about 2.5 GeV S-, D-, and F-wave resonances have been confirmed as being listed
and regularly updated by the Particle Data Group [49]. Meson–nucleon spectroscopy is an
intensively studied field. Among several other approaches, the Giessen coupled channels
model was successfully used in the past to describe the photo production of mesons on the
nucleon and meson–nucleon dynamics, see [50] for an overview.

Figure 3. Pion–nucleon isovector interactions either by the formation of N∗ resonances in elastic
s-channel scattering (upper row, left) or by t-channel exchange (upper row, right) and t-channel
vector–isovector ρ meson (lower row, left) and scalar–isovector δ/a0(980) meson exchange (lower
row, right).

The diagrams of Figure 3 together with a few other graphs and appropriately cho-
sen form factors, see [50], define the bare pion–nucleon πN interactions VπN . Since we
are dealing with nuclear interactions of considerable strength and additional resonant
enhancements, the scattering series must be summed to all orders. This is achieved by
the Lippmann–Schwinger integral equation [28] for the T matrix, which in non-relativistic
notation is:

TπN(k, k′) = VπN(k, k′) +
∫ d3q

(2π)3VπN(k, q)GπN(s|q)TπN(q, k′), (46)

to be solved numerically as a set of coupled integral equations. The essence of the T-matrix
formalism is to shift dynamics from wave functions to the interaction operator [28,29] such
that TπN(k, k′) is defined as the plane wave matrix element of the correlated pion–nucleon
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scattering operator. Thus, in matrix elements, TπN(k, k′) always has to be combined with
the incoming and outgoing pion–nucleon plane waves eik′ ·x and e−ik·x, respectively, where
x = rN − rπ . It is worth mentioning that the earlier pion–DCE studies tried to describe
pion–nucleon interactions in the isovector channel in a perturbative approach, focusing
on the ∆(1232) resonance. Such a reductive approach is not supported by our results.
An alternative approach utilizing an effective potential is presented in the next section.

For pionic SCE and DCE reactions, the focus is on the interactions of mesons with
nucleons immersed in matter. As a result, N∗N−1 particle–hole configurations are excited
as depicted in Figure 4. In a different context, such a scenario is discussed in detail in [51].
Since the N∗ particle state is unstable and finally decaying by strong interactions into
N′N−1 states under emission of a meson, in our case, the decay leads to an outgoing
neutral or charged pion.

While pion–nucleon scattering trivially proceeds on the basis of the definite partial of
well-defined orbital and total angular momenta, N∗N−1 dynamics is determined by the
full pion–nucleon scattering amplitude, summed over partial waves. Hence, the vertices of
Figure 3 being active in πN scattering and the ones of Figure 4 describing πc′N∗N−1πc,
c, c′ = 0,±1 processes, are quite different as will be seen in the following.

Figure 4. Excitation of np−1 or pn−1 SCE particle–hole configurations by pion–nucleon isovector
interactions through meson exchange (left,center) and formation and decay of N∗ resonances (right).
The π± → η conversion via delta–meson exchange shown in the center indicates that the intermediate
meson could also be an η(540) meson.

6.2. Pion–Nucleon Potential Model for the Scattering Amplitudes

For the present purpose, a full-scale coupled channels calculation as in the Giessen
model and comparable approaches is of little sense. Here, we are not interested in a
detailed spectroscopic study of N∗ states and their excitation and decay by coupled meson–
nucleon channels. Rather, our interest is specifically focused on the isovector pion–nucleon
T matrix as an effective t-channel pion–N′N−1 interaction. A meaningful approach is
to use an effective optical potential (OP) model, where the self-energies from coupled
channels dynamics are treated by complex dispersive optical potentials. Pion–nucleon
potential models have been used before with surprising success in reproducing the spectral
distributions, see [52,53]. We account for the opening of nucleon–multipion decay channels
by partial wave-dependent pion–nucleon optical potentials (OPs). The imaginary parts
are modeled according to the opening of nucleon–multimeson decay channels, which
finally are the observable configurations. In our r-space approach, the best results were
obtained by using Wood–Saxon form factors with very small diffusivities which are well
approximated by step functions. The parameters were adjusted to the partial wave cross
sections of full-scale coupled channels (CC) calculations, where the latter were fitted to the
available meson–nucleon data.

7. Numerical Studies
7.1. Pion–Nucleon Partial Wave Cross Sections

Representative results illustrating the quality of the description for P- and S-wave total
cross sections are shown in Figure 5. The reference data from explicit coupled channels
calculations are surprisingly well described, especially in view of the simplicity of the
potential approach. In detail, the Delta and the Roper resonances are well reproduced
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as is the case for the I = 1
2 and I = 3

2 S-wave sector. In the S-wave spectra, the highly
disputed S11(1520) resonance is most prominently visible as a rather narrow structure
on a non-resonant background. Interestingly, the S11(1520) peak is largely the result of
interferences of a virtual s-channel state with the smooth t-channel background. A long
tome ago, the same explanation was already obtained in coupled channels calculations [54],
and more recent studies have come to similar conclusions. The present potentials model
results may be taken as an interesting independent confirmation of the earlier CC results.
Overall, the agreement of the present results with the CC-generated reference data is
surprisingly good in view of the extremely simplified model. Larger deviations occur in the
S-wave spectra. Close to the threshold, the S-wave cross sections show some deficiencies,
and deviations are seen in the S31 channel also towards the highest considered energies.
They are, however, of minor importance for the present use in MDCE studies because TπN
is dominated by P-wave interactions.

Partial wave total cross sections are defined by the imaginary parts of the scattering
amplitudes, σ

L2I2J
T ∼ Im(TL2I2J ). Thus, a first important test of the reliability of the model

calculations is to compare real and imaginary parts of scattering amplitudes. The agreement
between OP and CC scattering amplitudes is very satisfying. An example is shown in
Figure 6, where the P33 and the S31 partial waves scattering amplitudes are compared to
the corresponding CC amplitudes.

The P-wave cross sections and scattering amplitudes are slightly better reproduced
than the corresponding S-wave quantities. The CC calculations show that the S-wave
components, which are generally located at higher energies, are strongly affected by
coupled channel dynamics. Physically, an important source of CC effects are multimeson
decay channels, either by direct N∗ → nπ decay, possibly passing through intermediate
heavy mesons, or sequentially by decay chains passing through lower lying resonances,
e.g., N∗ → ∆(1232) + π → N + 2π. Such details, of course, have not been resolved in the
present approach but are taken into account globally by the dispersive parts of the partial
wave potentials.

Figure 5. Total π− + p partial wave cross sections for P waves and S waves. Cross sections obtained
with the pion–nucleon optical potential model (OP) are compared to coupled channel results (CC).
In the upper row, P33 (left), P11 (center), and P31 (right) are shown, and in the lower row, P13, S11,
and S31 cross sections are displayed as functions of the pion energy in the laboratory frame. The
P33(1232) Delta resonance at Tlab ∼ 190 MeV and the P11(1440) Roper resonance at Tlab ∼ 484 MeV
are well reproduced. The low-energy tail of the P13(1710) resonance is visible at the end of the
displayed P13 cross section. The S11(1520) resonance sticks out as a rather narrow structure at
Tlab ∼ 620 MeV. Note the differences in scales.
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Figure 6. P33 (left) and S31 (right) partial wave scattering amplitudes. Real and imaginary parts
from the potential model (OP) are compared to coupled channels (CC) results. Note that the OP
parameters are fitted to total cross sections, defined by the imaginary part of the scattering amplitude,
σtot ∼ Im(T).

7.2. Construction of the Pion–Nucleon T Matrix

In order to construct the pion–nucleon T matrix, Equation (13), we need to determine
the three vertex form factors T0,1,2. That goal is achieved by considering the partial wave
structure of the T matrix and collecting terms of the proper multipolarity and dependencies
on the nucleon spin. That task is well documented in the literature, e.g., [55] and reviewed
briefly in Appendix D.

In the energy region of our interest, the vertex form factors are obtained with sufficient
accuracy by the two S-wave amplitudes S11 and S31 and the three P-wave contributions,
P11, P31, and P33, respectively. Within this basis, the form factors are

T0(kπN) =
1
3

F(kπN)(US11(sπN)−US31(kγ)) (47)

T1(kπN) =
1
3

F(kπN)(UP11(kπN) + 2UP13(kπN)−UP31(kπN)− 2UP33(kπN)) (48)

T2(kπN) =
1
3

F(kπN)(UP13(kπN)−UP11(kπN)−UP33(kπN) + UP31(kπN)) (49)

where kπN = kπN(sπN) is the invariant pion–nucleon three momentum.
The partial wave-scattering amplitudes are normalized to units of 1/MeV. By means

of the kinematical factor F(k) = −4π/(2mπNk), the T-matrix amplitudes are normalized
to units of 1/MeV2. mπN is the pion–nucleon reduced mass and k = k(sπN) denotes the
invariant relative pion–nucleon momentum. For the numerical results displayed below,
we follow, however, the widely used practice to present the form factors as function of the
pion kinetic energy in the laboratory frame, which is obtained by Tlab = (sπN)− (mπ +
MN)

2)/(2MN).
Although each of the (complex-valued) partial wave-scattering amplitudes varies

considerably with energy as seen in Figure 6, their superpositions are much smoother
functions as Figures 7 and 8 confirm. By multiplication with (h̄c)3, the units may be
changed to MeVfm3, which is a typical unit for volume integrals and momentum space
form factors of NN interactions.

7.3. Extrapolation into the Subthreshold Region

The most important advantage of the OP approach for MDCE theory, however, is to
have at hand a method which allows to extrapolate reliably and easily into the subthreshold
region. As illustrated in Figure 7 for the P33 partial wave, three different sheets are covered
kinematically. The sheets are distinguished by the values of the invariant relative pion–
nucleon momentum kπ :

• In the physical region, sπN > (mπ + mN)
2 and the invariant momentum k2

π > 0 and
TLab > 0 are positive.
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• In the interval (mπ −mN)
2 < sπN < (mπ + mN)

2, one finds k2
πN < 0 and TLab < 0.

• If also sπN < (mπ − mN)
2, positive values of k2

πN > 0 are recovered but TLab < 0
remains negative.

In Figure 7, it is seen that the T matrix changes in a characteristic manner: real and imaginary
parts are non-vanishing in the physical region while in the first subthreshold sheet, the
imaginary parts vanish but recover as soon as the second subthreshold sheet is entered.

Figure 7. The P33 T-matrix in the kinematical regions relevant for MDCE reactions. Real and imaginary
parts from the potential model (OP) are shown for energies above threshold, sπN > 0, TLab > 0,
and the two subthreshold regions sπN < 0, TLab < 0 and, sπN > 0, TLab < 0.

Because of the intrinsic momentum spread introduced by ISI and FSI, in a heavy ion
MDCE reaction, in principle, all three kinematical sheets will be visited while propagating
through the intermediate s-channel pion–nucleon systems. In other words, ISI and FSI
lead effectively to a sampling over the distribution of MDCE box diagrams of different
kinematical and dynamical content.

The vertex form factors T0,1,2 are shown as functions of the pion energy in the labora-
tory system in Figure 8. When traversing the boundaries between the kinematical sheets,
the amplitudes develop cusps. In the T0 amplitude, defined by the S-wave scattering
amplitudes, the cusps are most pronounced, while they are washed out in the P-wave
amplitudes T1,2. A closer inspection shows that the P-wave amplitudes are, in magnitude,
about a factor of 1.5 to 2 times larger than T0. That difference will be enhanced further in
matrix elements by the fact that in TπN , the P-wave terms scale by p2 for SCE transitions
and even by p4 in DCE transitions. Thus, already from these considerations, we expect a
prevalence of the momentum-dependent P-wave terms in a DCE reaction.

Figure 8. The pion-nucleon vertex form factors T0 (left), T1 (center), and T2 (right) are shown as
functions of the pion energy in the laboratory frame. The imaginary parts of Tk vanish in the physically
inaccessible region, where the invariant Mandelstam energy (mπ −MN)2 < sπN < (mπ + MN)2 as
demanded by the analytic properties of the T matrix.

7.4. Form Factors of the Pion Potentials

Since the pion–nucleon T matrix, Equation (13), consists of three terms, the pion
potential Uπ , Equation (42) or Equation (44), respectively, is in general, in either version, a
superposition of nine terms Uij(x|p1, p2), i, j = 0, 1, 2, which depend on the three-momenta
p1 and p2. Likewise, because of p1 − p2 = qαβ, we may choose one of the momenta and
the three-momentum transfer qαβ of the reaction and momentum variables.
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A simplification is obtained for vanishing total momentum transfer |qαβ| = 0, which
implies the collinearity of the momenta, p1||p2 and |p1| = |p2| = p. Then, the number of
elements reduces to six independent scalar form factors Uij(x|p), i ≤ j = 0, 1, 2. Under these
conditions, we find the diagonal potentials

U00(x|p) = U2
0(kπN)

∫ d3k
(2π)3 g(+)

γ (k|p1)eik·x (50)

U11(x|p) = U2
1(kπN)

p2

3m4
π

∫ d3k
(2π)3 g(+)

γ (k|p1)k2 cos2(θ)eik·x (51)

U22(x|p) = U2
2(kπN)

p2

3m4
π

∫ d3k
(2π)3 g(+)

γ (k|p1)k2 sin2(θ)eik·x (52)

and three non-diagonal potentials

U01(x|p) = 2U2
0(kπN)

∫ d3k
(2π)3 g(+)

γ (k|p1)eik·x (53)

U02(x|p) = 2U2
1(kπN)

p2

3m2
π

∫ d3k
(2π)3 g(+)

γ (k|p1)k2 cos2(θ)eik·x (54)

U12(x|p) = 2U2
2(kπN)

p2

3m4
π

∫ d3k
(2π)3 g(+)

γ (k|p1)k2 sin(θ) cos(θ)eik·x. (55)

For simplicity, the potentials are evaluated numerically for the special case that x and
p are collinear as well, and x||p implies k · x = kx cos (θ).

By expressing the sine and cosine functions in terms of Legendre polynomials or Legen-
dre functions, respectively, the angle integrations can be performed in closed form. The mo-
mentum integrals are regularized by dipole form factors with cut-off Λ = 1000 MeV/c.
The resulting k integrals, given by products of ordinary or spherical Bessel functions and
Legendre functions of the second kind, all combined with powers of k, have to be evaluated
numerically. The full propagator, Equation (33), is used. Excitation energies, however, are
neglected, which is justified in view of the rather weak dependence on energies well below
the pion rest mass.

Typical results for the pion potentials Uij for the reaction 18O+40Ca at Tlab = 270 MeV
are shown in Figure 9 and in Figure 10, respectively. As discussed above, ISI and FSI favor
momenta p1,2 which are centered around the on-shell momenta of the entrance and exit
channels, kα ∼ kβ ∼ 2100 MeV/c. Accordingly, the potentials are displayed at p ∼ kα

and p = 1
3 kα. In magnitude, the potentials increase with momentum, which seems to

be especially pronounced for the P-wave parts T1,2. However, as a look to Equation (50)
and Equation (53), respectively, reveals, the enhancement is largely due to the explicit
dependence of the P-wave potentials on powers of p. Compared to that dependence,
the S-wave form factors U00 remain in small-to-moderate magnitude. For p ≪ kα, the
enhancement effect decreases, and the S-wave potentials become relatively more important.
Comparing the oxygen and calcium potentials, one observes a rather mild dependence on
the nuclear system as is expected for a short-range phenomenon.

The s-channel π0 exchange establishes in fact a rather tight two–nucleon correlation.
Overall, the range of the potentials rarely reaches 40% of the range of pion exchange
rπ ∼ 1/mπ ∼ 1.4 fm. Hence, the MDCE process is of a pronounced short-range character.
The correlated pair of SCE vertices acts as a virtual, polarized pion dipole source. Com-
parisons of the data of the DCE reaction induced by 18O+40Ca at Tlab = 270 MeV can be
found elsewhere [23].
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Figure 9. Pion potentials in 18O for p = 700 MeV/c (left column) and p = 2100 MeV/c (right column)
are shown as functions of the distance x between the two nucleons participating in the DCE transition.
Diagonal combinations of vertex operators as shown in the upper row. The potentials for mixed
operator combinations are displayed in the lower row. The (scaled) potentials U00 and U01 are shown
in the inserts. The two momenta correspond to p ∼ 1

3 kα and p ∼ kα, respectively, of the DCE reaction
induced by 18O+40Ca at Tlab = 270 MeV.

Figure 10. Pion potentials in 40Ca for p = 700 MeV/c (left column) and p = 2100 MeV/c (right
column) are shown as functions of the distance x between the two nucleons participating in the DCE
transition. Diagonal combinations of vertex operators as shown in the upper row, and the potentials
for mixed operator combinations are displayed in the lower row. The (scaled) potentials U00 and U01

are shown in the inserts. The two momenta correspond roughly to p ∼ 1
3 kα and p ∼ kα, respectively,

of the DCE reaction induced by 18O+40Ca at Tlab = 270 MeV.
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7.5. Transition Matrix Elements

In closure approximation and with the pion potential formalism, the TMEs are ob-
tained in the condensed form

WAB(p1, p2) = ⟨I
(π)
2∓2⟩ ∑

i,j=0,1,2
M(ij)

AB(p1, p2). (56)

Thus, the transition A→ B is described by a sum of nine partial TMEs

M(ij)
AB(p1, p2) = ⟨B|e−ip2·r2W(ij)

AB (x|p1, p2)eip1·r1 I(N)
2±2|A⟩ (57)

which are determined by the transition potentials W(ij)
AB . They are defined and studied in

detail in Appendix E. There, it is also shown that the useful and successful approach is to
express momentum and spin operators in the basis of spherical unit vectors. In that basis,
one finds that W(ij)

AB are dyadic tensor forms. The x-dependence is given by Yukawa-type
form factors of a rather short range of less than half of the range of a (static) pion-exchange
potential. Hence, using contact interactions might be a meaningful approximation which,
however, will not be considered further here.

The two-body operator connecting, in Equation (57), the initial and final states is in
fact separable into one-body operators. That property is evident for the plane wave factor,
considering that x = r1− r2, and also the potentials W(ij)

AB are given by products of one-body
operators. In practical calculations, the plane waves are expanded into partial waves in r1
and r2, and by the formalism introduced in Appendix E the potentials can also be treated
accordingly. At the end, Equation (57) reduces to a (finite) sum of a number of multipole
components which are determined by the angular momentum and parity selection rules of
the DCE transition A(Z, N|JπA

A )→ B(Z± 2, N ∓ 2|JπB
B ).

With the bi-spherical harmonics

Y(ℓ1ℓ2)ℓm(x̂, ŷ) = ∑
m1m2

(ℓ1m1ℓ2m2|ℓm)Yℓ1m1(x̂)Yℓ1m1(ŷ). (58)

we find
M(ij)

AB(p1, p2) = ∑
ℓ1ℓ2,ℓm

(−)ℓ+mY(ℓ1ℓ2)ℓ−m(p̂1, p̂2)M(ij)
(ℓ1ℓ2)ℓm(p1, p2) (59)

The multipole TMEs are given by rank-2 isotensor two-body multipole operators

M(ij)
(ℓ1ℓ2)ℓm(p1, p2) = ⟨B|

[
Rℓ2(r2|p2)⊗ Rℓ2(r1|p1)

]
ℓmW(ij)

AB (x|p1, p2)I
(N)
2±2|A⟩. (60)

For i, j = 0, 1, the MDCE transition operators are of a spin–scalar character, and the
matrix elements describe non-spinflip double-Fermi (FF) excitation. The FF modes are
described by spin–scalar one-body operators which are given by Riccati–Bessel functions
jℓ(x):

Rℓm(r|p) = jℓ(pr)iℓYℓm(r̂). (61)

For i = j = 2, spin–vector transition operators are encountered which give rise to
double excitations of Gamow–Teller (GG) modes, which include a spin–vector transition
of natural and unnatural parity. If i = 2 but j = 0, 1 or i = 0, 1 and j = 2, we encounter
two-body operators of mixed spin–scalar/spin–vector structure, leading to mixed FG and
GF excitation by combination of Fermi and Gamow–Teller modes.

The GG and mixed FG/GF modes are described by spin–vector one-body opera-
tors. Their derivation and especially proper implementation into the theory requires a
remarkable amount of angular momentum recoupling. The spin–vector formalism for DCE
reactions was studied in detail in [1] and will not be considered further here. As was shown
also in [1], the GG operators support total spin transfers S = 0, 1, 2, to be combined with the
total orbital angular momentum transfer L to total angular momentum transfer J = L + S.
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That leads to a rich spectrum of transitions, e.g., a DCE reaction with Jπ = 0+ may proceed
by L = 0, S = 0 and L = 2, S = 2 partial contributions.

7.6. Transition Matrix Elements in Collinear Approximation

For arbitrary values of p1 and p2, the evaluation and the practical handling of the TMEs
are theoretically and numerically formidable tasks. The efforts, however, are substantially
reduced for collinear external momenta, i.e., p1||p2 and also p1 − p2 = q12 and (p1 +
p2)/2 = P12 are collinear. Further simplifications are obtained by imposing, in addition,
the stronger constraint p1 = p2 = p, which implies |q12| = 0 and P12 = p. Then,
Equation (57) simplifies to

M̃(ij)
AB(p) = ⟨B|e

ip·xW̃ (ij)
AB (x|p)I

(N)
2±2|A⟩ = ⟨B|Ŵ

(ij)
AB (x|p)I

(N)
2±2|A⟩, (62)

where Ŵ (ij)
AB contains the plane wave factor. As an example, we consider the L = 0, S = 0

component of A(Z, N|0+) → B(Z± 2, N ∓ 2|0+) double-Fermi transitions. Hence, only
the spin–scalar S-wave (i = j = 0), P-wave (i = j = 1) and the mixed S/P-wave parts
(i = 0, j = 1) and (i = 1, j = 0) are considered. In Appendix F, the spin–scalar collinear
transition potentials Ŵ (ij)

AB are derived, and their multipole structure is investigated. For
0+ → 0+ transitions, the complexity of the potentials is reduced further. For that case,
explicit expression are found also in Appendix F.

Following [56], we assume that the states in the DCE daughter nucleus B are ob-
tained by acting with appropriate many-body operators on the ground state of the parent
nucleus A:

|B(Z± 2, N ∓ 2), JB MB⟩ ≃ ∑
C1C2

zJB MB
C1C2

[
Ω†

C1
⊗Ω†

C2

]
JB MB
|A(Z, N), JA MA⟩+ . . . , (63)

where higher-order quasiparticle configurations may contribute but will not be reached in
leading order by the DCE transition operators. The same set of operators and the underlying
basis of single article wave functions are used to express the transition potentials in second
quantization. In practice, nuclear ground-state properties are described with Hartree–Fock–
Bogolyubov (HFB) theory, and Quasiparticle Random Phase Approximation (QRPA) is
used for excited SCE-type states, see [2].

Without going further into the details of the nuclear structure approach, the essence of
the approach is that the TMEs, Equation (62), are given by nuclear transition form factors

ρ
(C)
λµ (p) ∼ ⟨A|[ΩC, Rλµ(r|p)]|A⟩, (64)

The TMEs are obtained by the scheme developed in Appendix F. As a recipe, we have
to replace in the expression derived in the appendix the operators Rλµ by the Fourier–Bessel

form factors ρ
(C)
λµ (p) and finally perform the momentum integrals.

In Figures 11–13, partial TMEs, Equation (60), of 0+ → 0+ transitions in 18O→ 18Ne
and 40Ca→ 40Ar are shown. The TMEs are relevant for the DCE reaction 40Ca(18O,18Ne)40Ar
studied in [23,57]. State-independent average transition densities are used, which are aver-
aged over the spectral distributions and normalized to the respective non-energy weighted
multipole sum rule, corresponding to the unit strength form factors introduced in [56]. Hence,
the results are representative of monopole FF modes in 18Ne and in 40Ar, relative to the
respective parent nuclei.
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Figure 11. DCE non-spinflip double-Fermi (L = 0) transition matrix elements for 18O→18Ne (left)
and 40Ca→40Ar (right), respectively, are shown in collinear approximation. The real parts of the

double S-wave TME M(00)
(λλ)L for λ = 0, 1, 2 are compared. See text for further discussion.

Figure 12. DCE non-spinflip double-Fermi (L = 0) transition matrix elements for 18O→18Ne (left)
and 40Ca→40Ar (right), respectively, are shown in collinear approximation. The real parts of the

double P-wave TME M(11)
(λλ)L for λ = 0, 1, 2 are compared. See text for further discussion.

Figure 13. DCE non-spinflip double-Fermi (L = 0) transition matrix elements for 18O→18Ne (left)
and 40Ca→40Ar (right), respectively, are shown in collinear approximation. The real parts of the

mixed S/P-wave TME M(01)
(λλ)L for λ = 0, 1, 2 are compared. See text for further discussion.

Comparing the results, the most outstanding feature are the differences between the
S-wave and the P-wave TMEs. The double S-wave TME, Figure 11, contribute only at small
momenta close to the threshold. The TME involving P-wave amplitudes, Figures 12 and 13,
increase strongly with momentum, exceeding the strength of the S-wave TME by large fac-
tors. The P-wave enhancement is largely an effect of the additional polynomial momentum
dependencies up to order p4, see Appendix F. However, it has to be remembered that the
shown results are the bare TMEs before ISI/FSI renormalization. After renormalization,
i.e., in a full distorted wave calculation, the high-momentum regions will especially be
quenched in addition to the overall reduction by about two to three orders of magnitude,
thus considerably damping the apparent enhancement.
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For arbitrary total angular momentum Jπ , various combinations of partial contribu-
tions of angular momentum Jπ1

1 and Jπ2
2 are allowed, constrained, however, by parity,

π = π1π2, and otherwise limited only by the shell structure and other related properties
of the nucleus under consideration. For the 0+ case, this means that in principle, all pairs
of transition densities of equal angular momentum ℓ1 = ℓ2 = λ may contribute. For the
J = L = 0 case, this property of the TME is illustrated in the figures by showing the
partial TME, Equation (60), for λ = 0, 1, 2. In magnitude and shape, the partial TMEs are
rather similar. Thus, we conclude that the MDCE operators support a large spectrum of
multipolarities as is typical for short-range dynamics.

An eye-catching feature visible in all plots is the kinks. They appear at the momenta
where the intermediate π + C channels cross from below the on-shell boundary, which
produces a pole in the propagator. That happens at p ∼ 2156 MeV/c and p = 3225 MeV/c
for π+18F and π+40K, respectively. Another feature is the crossing of the on-shell boundary
of the π + N subsystems at the slightly smaller momenta p ∼ 2120 MeV/c for A = 18 and
p ∼ 3180 MeV/c for A = 40. The location of these thresholds depends however, on the
modeling of in-medium pion dynamics, which here is not considered, as mentioned before.
Above these momenta, the potentials develop imaginary parts of moderate strength which
are not shown here.

8. Relation of Heavy Ion DCE Dynamics to Double Beta Decay
8.1. Leptonic and Hadronic DCE Processes

Besides hadronic DCE reactions, there is only one other process known to change
nuclear charges by two units, namely, double beta decay by weak interactions. The simi-
larities between hadronic DCE (HDCE) reactions and leptonic DBD (LDBD), elucidated
recently in [20] are worth closer consideration. An overall striking similarity is already that
both hadronic and leptonic DCE may proceed in two distinct versions: in HDCE, these are
the DSCE and MDCE reaction mechanisms, and in LDBD, these are the 2ν2β and the 0ν2β
processes. Moreover, due to obvious reasons, HDCE and LDBD utilize unavoidably the
same kind of nuclear configurations, which implies that spectroscopic information gained
in one type of DCE will be of high value for research on the other kind of DCE.

The multitudes of similarities will surely be realized also on the level of elementary
processes. However, we have to keep in mind that in the sense of the standard model, HDCE
and LDBD occur on asymptotic low-energy scales. Hence, LDBD does not give direct access
to electro-weak gauge boson physics, and HDCE physics is highly unlikely to probe directly
quark–gluon QCD dynamics. The hidden background scale is another connecting feature
of the two DCE sectors. Nevertheless, the fundamental dynamics is of course reflected in
operator structures, coupling constants, form factors and other features of the involved
interactions. In the DBD area, the connections to fundamental dynamics have been studied
for decades in much detail, see [21,22]. In the HDCE sector investigations of comparable
intensity are at an emerging level.

In Figure 14, two-neutrino DBD and DSCE are compared for a set of selected diagrams,
chosen for emphasizing the similarities. The emission of the two e−ν̄e pairs is initiated
by unobserved W− vector bosons, acting far off the their respective mass shells. For
comparison, a DSCE subprocess is displayed, where highly virtual ρ− vector mesons decay
into neutral and charged pions, both far off their respective mass shells. The triangle
diagram would appear in a field-theoretical description of NN scattering. The π0 mesons
are reabsorbed at the emission point within the same nucleus, while the two virtual π−

mesons leave the interaction zone on their way to a nucleon in the reaction partner. Since a
pair of neutrons is changed into a pair of protons, the emitting nucleus is left in a p2n−2

configuration. In the acceptor nucleus, the π− mesons initiate a complementary DCE
process, in which a pair of protons is converted into a pair of neutrons and a n2 p−2 state
emerges. Two-neutrino DBD is a second-order process of two (uncorrelated) single beta
decay events, characterized by almost point-like interactions. The strength is determined
by the weak axial and vector coupling constants gA,V ∼ O(1) which describe already very
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accurately the decay properties. In DSCE, the pions are emitted by nucleon sources also
in a point-like manner, where finite seize effects are parameterized into the pion–nucleon
coupling constants gπN . The considerably larger value of gπN ∼ O(10) and of the other
meson–nucleon couplings demands to solve the NN scattering problem in all orders with
the full set of mesons and to use the NN T matrix in DSCE calculations.

The hidden connections between MDBD and MDCE are exemplified by the two
diagrams shown in Figure 15. The MDBD process starts again by a pair of virtual W−

bosons, now materializing, however, in Majorana neutrinos νM = ν̄M and a e− pair, which
leaves the nucleus on the mass shell [21,22]. The MDCE event resembling the closest the
Majorana decay is depicted by the diagram on the right side of Figure 15. As before, virtual
ρ− mesons and their subsequent decay into π0π− are the initiators of the DCE process. The
initial rho-mesons may be produced in s-channel pion–nucleon resonance formation–decay
processes or result from t-channel pion–nucleon interactions. However, different from the
DSCE case, here the neutral pions are exchanged between the decay vertices, i.e., they take
the role of the MDBD neutrinos. In the previous sections, the π0 exchange led to the pion
potentials, which established a short-range correlation between the two πN SCE events.
The charged pions leave the DCE vertex in highly virtual states. But different from the
DSCE scenario, they are emitted by a correlated source. As a result, they have imprinted
the two–nucleon correlation of their origin and will transmit that information to the other
nucleus. The result is a combination of p2n−2 in one nucleus accompanied by a n2 p−2

in the other nucleus. Under reaction–theoretical aspects, we encounter a pair of virtual
complementary pion–nucleon DCE reactions as explored in the previous sections.

Figure 14. Diagrams describing the A(Z, N) → B(Z + 2, N − 2) transition for two-neutrino DBD
(left) and hadronic DSCE in one of the interacting nuclei participating in a DCE reaction (right). In
the DSCE case, the wavy line indicates a virtual ρ− meson, which decays in to a reabsorbed π0 and a
virtual π− meson. See text and Ref. [20] for further discussion.

Figure 15. Graphical illustration of a A(Z, N)→ B(Z + 2, N − 2) nuclear DCE transition for neutri-
noless Majorana DBD (left) and the hadronic MDCE modes in one of the interacting nuclei (right).
See text and Ref. [20] for further discussion.
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8.2. Lepton MDCE in Heavy Ion DCE Reactions?

As an outlook to future work, we point finally to possible purely leptonic contribu-
tions in a heavy ion MDCE reaction. Leaving aside the much weaker interactions of an
electro-weak process, in principle, the ions may also interact by the exchange of leptons.
In Figure 16, as an example, we show a diagram illustrating a DCE reaction by e± t-channel
exchange between the ions. By inverse beta-decay on a nucleon—without or with excitation
of an N∗ resonance—the e± are converted into a neutrino or antineutrino, respectively,
which propagates in the s channel, interacts with another nucleon, and is converted into a
lepton of a charge which is complementary to the one of the incoming lepton. As indicated
in Figure 16, the ν/ν̄ may be replaced by Majorana neutrinos νM/ν̄M. Obviously, such
processes are of special interest for MDCE and MDBD physics because they contain as a
subprocess the same dynamical structure as neutrinoless DBD. The graph shows that this
hitherto neglected MDCE process relies completely on electro-weak interactions, probing
directly the Majorana hypothesis in an off-shell process embedded into the environment
of a heavy ion DCE reaction. It is also of interest that the diagram is of the same topology
as the hadronic counterpart in Figure 2. The charged pions are replaced by electrons or
positrons, respectively. The neutrinos and antineutrinos take over the role of the neutral
pions and propagate between the two SCE vertices, thus also establishing a short-range
correlation. In the scenario involving Majorana neutrinos, the heavy ion DCE reaction
corresponds to a double Majorana DBD process, occurring, however, off the mass shell.
SCE scattering of leptons on nuclei is an important issue in understanding the interactions
of high–energy cosmic neutrinos with matter. In that context, SCE reactions induced by
charged leptons and neutrinos are studied extensively in theory and experiment [58–64].

Hence, dynamically leptonic MDCE would include a process which depends on the
same kind of interactions as expected for neutrinoless Majorana DBD (MDBD). Of special
interest is that the vertices necessarily are determined by the same e± ↔ νM ν̄M conversion
mechanisms as assumed for MDBD. In particular, lepton MDCE will probe in both of
the interacting nuclei directly the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mass
matrix [65–67], albeit under the conditions of a nuclear reaction.

Figure 16. Diagrammatical illustration of the leptonic MDCE process discussed in the text.
The charged pions, responsible for hadronic MDCE processes, are replaced by electrons and positrons
exchanged in the t-channel, while the neutral pions, propagating in the s-channel, are replaced
by neutrinos and antineutrinos, respectively, or by Majorana neutrinos, if they exist. See text for
further discussion.

As a caveat, the interactions involved in leptonic MDCE will be much weaker than
hadronic MDCE. Nevertheless, it is tempting and worthwhile to investigate further that
kind of heavy ion DCE subprocess, if not for heavy ion reactions but for the DCE reaction
with light ion or pion beams, respectively. The search for a signal might be tedious, but
looking for interference signals of the weak lepton MDCE amplitude with the dominating
hadronic MDCE amplitude could be a promising approach. Since lepton MDCE is deter-
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mined by long-range interactions, signatures will most likely be best observable at extreme
forward angles.

9. Summary

A generic feature of heavy ion DCE reactions is the versatility of reaction mechanisms
by which the transition from the initial to the final channel can proceed. Occasionally,
the related ambiguities are considered a severe disadvantage of research with heavy ion
beams. That point of view is much too pessimistic because in reality, it is of advantage
to be able to investigate all facets of a physical system under the same, well-defined
experimental conditions and describe the results consistently by the theoretical apparatus
of nuclear many-body theory. The theoretical task and challenge is to overcome the
traditional separation of nuclear reaction and nuclear structure physics. Heavy ion DCE
physics demands a combined approach as indispensable for any research on quantum
mechanical many-body systems. In the NUMEN project, this decisive aspect is realized by
the multimethod approach as discussed in [23].

In this work, we investigated the theory of the Majorana (MDCE) mechanism which is
an especially interesting part of heavy ion DCE reactions. As it was emphasized repeatedly,
MDCE theory requires to go much beyond traditional concepts of nuclear reaction and
structure theory. First of all, as a hitherto never considered aspect, the MDCE scenario relies
on pion–nucleon dynamics which—from the beginning, most likely unexpected—suddenly
involves subnuclear degrees of freedom as nucleon resonances into a low-energy nuclear
process. Already, that aspect makes it worth the effort of investigating DCE reactions.

The MDCE process relies on a hitherto unknown mechanism, namely, a dynamically
induced rank-2 isotensor interaction. One of the central results was to introduce the MDCE
closure approximation, which allowed to derive pion potentials and two-body nuclear
matrix elements connecting directly the entrance and the DCE exit channels. The pion
potentials include combinations of spin and momentum scalar parts, spin–scalar longitudi-
nal and spin–vector transversal momentum–vector components, all attached to a rank-2
isotensor operator. This rich operator structure allows widespread spectroscopic studies,
allowing a detailed tomography of the nuclear wave functions. However, experimentally
and theoretically such studies are highly demanding because they require to observe,
analyze, and interpreted energy–momentum distributions over large ranges.

An especially appealing aspect of heavy ion DCE physics is the conceptional closeness
to double beta decay research. That relationship was elucidated in some detail by consider-
ing the deeper levels underlying weak and strong DCE processes. They meet at the level of
QCD and electro-weak physics. Clearly, neither DBD nor DCE reactions proceed at those
fundamental levels. Rather, both types of process are determined by low-energy realiza-
tions of the two fundamental theories of the current standard model of physics. However,
the comparison of weak and strong DCE processes at the fundamental level is helpful to
understand that nuclear DBD and nuclear DCE phenomena are finally nothing but two
realizations of the same kind of fundamental processes. The differences in dynamics and
strengths of DBD and hadronic DCE are due to the breaking of the fundamental symmetries
in our physical low-energy environment.

As an interesting outlook to future work, the closeness of low-energy DBD and DCE
physics was elucidated further by pointing to another competing reaction mechanism
in heavy ion DCE reactions. Nothing forbids MDCE reactions from proceeding by the
exchange of leptons. Leptonic MDCE proceeds by electro-weak dynamics but relies on
diagrams of the same topology as investigated in this paper in detail for hadronic MDCE.
It is left for future work to understand the dynamics and physics of lepton MDCE in detail
and explore the competition of the two seemingly very different but interfering types of
weak and strong MDCE reaction mechanisms.

As a closing remark, we emphasize again that in MDCE, reactions are not governed by
NN interactions as is the case for DSCE reactions. MDCE reactions are determined by pion–
nucleon interactions, which provide the required isospin operator structures for an effective
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rank-2 isotensor interaction. In MDCE reactions, the colliding ions dynamically generate
their own and specific isotensor interactions. Charge and baryon number conservation and
isospin symmetry require that a ∆Z = +2 transition in one nucleus must be accompanied
by a ∆Z = −2 transition in the other nucleus. Obviously, all of the involved transitions
are allowed and possible by strong nuclear interactions. Hence, hadronic DCE is not
suppressed or even forbidden by violating fundamental laws of the standard model as
required for 0ν2β decay. While MDBD is constrained trivially to appear on the mass shell,
MDCE reactions take advantage of the presence of another nucleus which gives access to a
broad spectrum of off-shell processes and new research opportunities. Hence, it depends
on our theoretical and experimental skills to identify and prepare the proper conditions
under which rare hadronic or even leptonic MDCE events will become observable.
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Appendix A. Momentum Structure of Distorted Waves and Distortion Amplitudes

With ISI and FSI, the momentum relation is changed because the diffractive and
absorptive interactions of the optical potential Uopt admix a certain amount of off-shellness
into the theory as seen immediately by expressing the distorted waves by their integral
equation, e.g.,

|χ(+)
k ⟩ = |ϕk⟩+

∫ d3k′

(2π)3 |ϕk′⟩
1

Ek − Ek′ + iη
⟨ϕk′ |Uopt|χ(+)

k ⟩ (A1)

= |ϕk⟩+
∫ d3k′

(2π)3 |ϕk′⟩
1

Ek − Ek′ + iη
⟨ϕk′ |Uopt|ϕk⟩ . . . . (A2)

ϕk and ϕk′ are plane waves and Ek,k′ are the kinetic energies defined by the momenta k, k′,
Ek ∼ k2. Thus, a finite range optical potential will always lead to a wave functions with a
momentum distribution centered at the physical asymptotic momentum k but with a finite
width, which in leading order is determined by the 3D Fourier transform of the potential.

As anticipated in Section 3, the distorted wave may indeed by cast into the form

χ
(+)
k (r) = ⟨r|χ(+)

k ⟩ = eik·r(1− hk(r)) (A3)

and referring to Equation (A1), we derive

hk(r) = −e−ik·r
∫ d3k′

(2π)3 eik′ ·r 1
Ek − Ek′ + iη

⟨ϕk′ |Uopt|χ(+)
k ⟩ (A4)

where we changed to the coordinate representation ⟨r|ϕk⟩ = eik·r.
Now, we are at the position for gaining further insight into the meaning and physical

content of the distortion coefficients:

D(p, k) =
1

(2π)3 ⟨ϕp|χ(+)
k ⟩ = δ(k− p) +

1
Ek − Ep + iη

1
(2π)3 ⟨ϕp|Uopt|χ(+)

k ⟩ (A5)

≈ δ(k− p)− iπδ(Ek − Ep)Uopt(p, k)|p|=|k| +
P

Ek − Ep
Uopt(p, k) . . . (A6)
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where we introduce Uopt(k, k′) = 1
(2π)3 ⟨ϕk|Uopt|ϕk′⟩ and the Cauchy decomposition of

the energy denominator is used. The distortion amplitudes defined in Equation (19) are
identified as the Fourier transform

f (p, k) =
∫ d3r

(2π)3 e−i(p−k)·rhk(r) (A7)

= − 1
Ek − Ep + iη

1
(2π)3 ⟨ϕp|Uopt|χ(+)

k ⟩. (A8)

Finally, we note that on the momentum shell |p| = |k|, defined by the pole part
of the energy denominator, we retrieve the optical model elastic scattering amplitude,
Topt(k, k′) ≃ ⟨ϕk′ |Uopt|χ(+)

k ⟩ where k′ · k = k2 cos θ.

Appendix B. Evaluation of the MDCE Box Diagram without ISI and FSI: Plane Waves

The total available energy in the rest frame of the incident A + A′ system is defined
by the sum Pα = kA + kA′ of the four-momenta kA,A′ of the incoming ions, leading to
the Lorentz-invariant Mandelstam energy sα = P2

α (kA + kA′)
2 and by energy–momentum

conservation sα = P2
β = (kB + kB′)

2. In the laboratory frame with a beam of ions with rest
mass MA′ impinging with kinetic energy Tlab on the target nuclei with rest mass MA, the
invariant energy is defined by sα = (Tlab + MA′ + MA)

2 − Tlab(Tlab + 2MA′). In the rest
frame, the ions carry the four-momenta kA,A′ = (ET

A,A′ ,∓kα)T with the invariant relative
three-momentum and energies

k2
α =

1
4sα

(sα − (MA + MA′)
2)(sα − (MA −MA′)

2) ; EA,A′ =
√

M2
A,A′ + k2

α. (A9)

The outgoing ions B, B′ leave the interaction zone with four-momenta kB,B′ = (EB,B′ ,±kβ)
T.

In the rest frame, they are given by

k2
β =

1
4sα

(sα − (MB + MB′)
2)(sα − (MB −MB′)

2) ; EB,B′ =
√

M2
B,B′ + k2

β. (A10)

The reaction proceeds by momentum transfers in the t-channel qαβ = kA − kB = −(kA′ −
kB′) and in the u-channel pαβ = kA − kB′ = −(kA′ − kB), leading to the well-known
invariants t = q2

αβ and u = p2
αβ. Together with the invariant total energy, we retrieve the

well-known Mandelstam relation

s + t + u = M2
A + M2

A′ + M2
B + M2

B′ (A11)

The charged pions are exchanged in the t channel with momenta

p1 = k1 − kA = k2 + kA′ ; p2 = k1 − kB = k2 + kB′ . (A12)

Hence, we find

p2 − p1 = kA − kB = kB′ − kA′ = qαβ ; k1 − k2 = kA + kA′ = kB + kB′ = Pα, (A13)

and the t-channel and s-channel momenta are related by

k1 + k2 − (p1 + p2) = pαβ. (A14)

Summing the squares of these relations, the Mandelstam relation, Equation (A11), is
recovered but now expressed by the internal momenta of the box diagram. Since the four
internal momenta of the box diagram are constrained by three invariants, we realize that
the initially four independent momentum integrals have collapsed to a single momentum
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integration. A meaningful choice is to use one of the t-channel momenta as the independent
variable, e.g., p1.

Considering the reaction in the ion–ion rest frame, in the plane wave (PW) limit, the
momenta are fixed by Equation (26), from which we find immediately the following:

• kA = (EA(kα),−kα)T and kB = (EB(kβ),+kβ)
T ;

• kA′ = (EA′(kα),+kα)T and kB′ = (EB′(kβ),−kβ)
T ;

• p1 = (0, p1)
T is a purely space-like four momentum;

• p2 = (EA − EB, p2)
T includes formally the Q-value of the DCE reaction;

• p1 = kα and p2 = kβ are fixed by the three momenta of the incoming and outgoing
systems;

• k1 = p1 + kA = (EA(kα), 0)T is a purely time-like four vector;
• k2 = p1 − kA′ = (−EA′(kα), 0)T is a purely time-like four-vector.

Thus, in the PW limit, the intermediate s-channels have available the energies k2
1 = E2

A =
M2

A + k2
α and k2

2 = E2
A′ = M2

A′ + k2
α, showing that in the PW limit all momenta are known.

Dynamically, the intranuclear DCE transitions are given by sequential pion–nucleon
SCE reactions, meaning that finally we have to resolve the intermediate configurations into
their pion–nucleon substructures. The first step is to recognize that the invariant energy
available for the π0 + C configurations is defined by the purely time-like four-vector k1.
Thus, energetically sπC = k2

1 = E2
A = k2

α + M2
A defines the on-shell conditions. In their

rest frame, the pion and the SCE–excited nucleus C are moving with the invariant three-
momentum k2

γ = (sπC − (M∗C + mπ)2)(sπC − (M∗C −mπ)2)/(4sπC). Their four-momenta
are kC = (Ec(kγ),−kγ)T and kπ = (Eπ(kγ), kγ)T and kC + kπ = k1. On the pion–nucleon
level, we have available in the average the energy sπN = k21/A2 = E2

A/A2 from which we
obtain, as before, the relative pion–nucleon momentum k, k2 = (sπN − (mN +mπ)2)(sπN −
(mN −mπ)2)/(4sπN). As a side result, we find the equivalent (fictitious) pion energy in
the laboratory frame,

Tlab =
1

2mN

(
sπN − (mN + mπ)

2
)

. (A15)

which attains positive values as long as sπN > (mN + mπ)2). However, depending on
the energy of the initial A + A′–system, we may encounter sπN < (mN + mπ)2 and con-
sequently Tlab < 0, thus entering into the subthreshold region. Classically, that energy
region is of course forbidden, but not in quantum mechanics which, however, also inhibits
to explore experimentally the below-threshold regions. The pion–nucleon interactions
become virtual processes, governed by TπN which is located outside of the physically
accessible region. Hence, it is the task of theory to provide a description which allows
to extend TπN from the experimentally accessible regime into the subthreshold energy
regions encountered for pion–nucleon interactions in nuclear reaction like a heavy ion
DCE reaction.

Obviously, there is no unique choice for (virtual) pion–nucleon kinematics under the
conditions of a heavy ion reaction. The DCE reaction in total is a highly dynamical process
and as such corresponds to sampling over many different π0 + C configurations. The mean
energy approach sketched above takes that into account in the average.

Appendix C. Evaluation of the MDCE Box Diagram with ISI and FSI: Distorted Waves

A realistic description of heavy ion DCE reactions requires of course the inclusion
of elastic ion–ion interactions. With ISI/FSI, the interacting ions occupy regions of the
configuration space beyond the on-shell point. In the ion–ion rest frame, the off-shellness
is defined by the distribution of the three-momenta p1,2 around the respective on-shell
momenta kα,β. The width and shape in general of the distribution are controlled by the
distortion amplitudes fα,β. According to Appendix A, Equation (A7), for a known optical
potential, modeling the elastic ion–ion self-energies, the distributions are unambiguously
known as determined by the half off-shell elastic scattering amplitudes of the incoming
and outgoing ions.
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Hence, ISI and FSI dissolve the strict momentum relations of the PW limit. This
process, however, is of a purely virtual character which introduces a dynamically generated
uncertainty in the three-momenta but does not alter the conserved energy. Hence, in the
ion–ion rest frame, A and A′ carry momenta kA,A′ = (EA,A′(p1),∓p1)

T , while the on-
shell energies k2

A,A′ = M2
A,A′ are retained. Accordingly, the exit channel is described by

kB,B′ = (EB,B′(p2),±p2)
T , k2

B,B′ = M2
B,B′ .

As a result, also the intermediate pion–nucleus, and consequently the pion–nucleon,
channels are affected because k1,2 = (EA,A′(p1), 0)T depend on the virtual momentum p1.
Thus, sπC and sπN depend on p1. Since the MDCE reaction amplitude, Equation (14), is
given finally by integrations over the virtual momenta p1,2, the reaction A + A′ → B + B′

proceeds as a sampling over a distribution of off-shell nuclear transition form factors. The
distribution, however, is centered at the on-shell form factor, which is directly related to the
MDCE nuclear matrix element.

Appendix D. The Pion–Nucleon T Matrix

The form factors Tk, k = 0, 1, 2 of the pion–nucleon T matrix, Equation (13), are given
by the partial wave amplitudes. The The T0 component is given by formation of πN S-wave
N∗ resonances S2I2J of negative parity with isospin I = 1

2 , 3
2 and total angular momentum

Jπ = 1
2
−

. The form factors T1,2 of the longitudinal and transversal parts originate from

P2I2J configurations of positive parity with isospin as before but Jπ = 1
2
+

, 3
2
+

. The most
prominent P-wave resonances are the Delta and the Roper resonances with spectroscopic
notations P33(1232) and P11(1440), respectively.

At the energies considered here, MDCE reactions take place off the pion–nucleon
mass shell. Hence, pion–nucleon scattering must be described by methods allowing to
extrapolate TπN into off-shell energy regions. That goal is achieved by appropriately
modeling the pion self-energies with the analytically given complex-valued form factors,
where the parameters are adjusted to on-shell observables, which in our case are partial
wave cross sections. In order to obtain converged below-threshold results, in practical
calculations, resonances up to the mass region of about 2 GeV must be taken into account.

The vertex form factors of the isovector pion–nucleon T matrix are obtained from
the scattering amplitudes UL2I2J in the various pion–nucleon channels by proper isospin
coupling. The pion–nucleon scattering amplitudes are measured (and calculated) in the
particle basis [π±n], [π±p], [π0n], and [π0 p], respectively. The pion–nucleon states are
transformed to the isospin basis by Clebsch–Gordan coefficients. For example,

|π−p⟩ = ∑
T,T3

(1− 1
1
2

1
2
|TT3)|TT3⟩ (A16)

where T = 1
2 , 3

2 and in above case we have T3 = − 1
2 . The scattering amplitudes in the

particle basis are set equal to the matrix elements which are obtained in the isospin basis for
the isoscalar and the isovector interactions. The pion–nucleon T matrix T̂ = T0 + T1Tπ · τ
is an isospin invariant operator and as also are the matrix elements. The isoscalar and
isovector operator form of the T matrix is finally obtained by inversion from the scattering
amplitudes in the particle basis. The procedure is discussed in [55]. The result is

T0(k) =
1
3

F(k)(US11(k)−US31(k)) (A17)

T1(k) =
1
3

F(k)(UP11(k) + 2UP13(k)−UP31(k)− 2UP33(k)) (A18)

T2(k) =
1
3

F(k)(UP13(k)−UP11(k)−UP33(k) + UP31(k)) (A19)

The factors of ± 1
3 and ± 2

3 are resulting from the isospin Clebsch–Gordan coefficients.
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The scattering amplitudes are normalized to units of 1/MeV. With the the kinematical
factor F(k) = −4πh̄3/(2mπN) the T-matrix amplitudes are normalized to units of MeVfm3.
mπN is the pion–nucleon reduced mass. k = k(sπN) denotes the invariant relative pion–
nucleon momentum which is determined by the invariant Mandelstam energy sπN .

Appendix E. Nuclear Matrix Elements and Pion Potentials

In closure approximation, the TMEs are given in general by a superposition of
nine terms

WAB(p1, p2) = ∑
i,j=0,1,2

⟨I (π)
2∓2⟩⟨B|e

−ip2·r3W(ij)
AB (x|p1, p2)eip1·r1I (N)

2±2(13)|A⟩ (A20)

I (N)
2±2(13) = [τ3 ⊗ τ1]2±2 is the nucleon rank-2 isotensor operator and ⟨I (π)

2±2⟩ denotes the
pion counter apart. The distance between the two SCE–vertices, i.e., the distance between
the participating nucleons, is x = r1 − r3.

The three diagonal potentials are

W(00)
AB (x|p1, p2) = U00(x), (A21)

W(11)
AB (x|p1, p2) = U11(x|p1, p2), (A22)

W(22)
AB (x|p1, p2) = σ3 ·

←→
U 22(x|p1, p2) · σ1. (A23)

As seen below, U00 and U11, respectively, are scalar forms giving rise to spin–scalar double
excitations of Fermi character (FF). U22 is a dyadic vector form featuring spin–vector double
excitations of the Gamow–Teller type (GG).

The two non-diagonal terms inducing FF modes are

W(01)
AB (x|p1, p2) = U01(x|p1), (A24)

W(10)
AB (x|p1, p2) = U10(x|p2). (A25)

The remaining four non–diagonal terms are of mixed spin character inducing FG and
GF modes, respectively:

W(02)
AB (x|p1, p2) =

−→
U 02(x|p1) · σ1, (A26)

W(20)
AB (x|p1, p2) = σ3 ·

←−
U 20(x|p2), (A27)

W(12)
AB (x|p1, p2) =

−→
U 12(x|p1, p2) · σ1, (A28)

W(21)
AB (x|p1, p2) = σ3 ·

←−
U 21(x|p1, p2). (A29)

Appendix E.1. The S-Wave Potential

The diagonal S-wave potential is easily evaluated:

U00(x) = T0(kπN)
∫ d3k

(2π)3 g(+)
γ (k|p1)eik·xT0(kπN) = H0(x) (A30)

with the scalar monopole form factor

H0(x) = T2
0 (kπN)

1
2π2

∫ ∞

0
dkk2g(+)

γ (k|p1)j0(kx), (A31)
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where jℓ(kx) is the Riccati–Bessel function of order ℓ. Numerically, the form factor resembles
a regularized Yukawa potential as seen in Figure A1. The magnitude of H0 is defined
sγ,γ′ = E2

A,A′(p1), see Equation (33).

H

Figure A1. The S-wave form factor H0(x) for 40Ca (blue) and 18O (red). The full propagator,
Equation (33), was used. See text for further discussion.

Appendix E.2. The Diagonal P-Wave and the Mixed S/P-Wave Potentials

The mixed S/P-wave potentials and the diagonal P-wave potentials are evaluated by
expressing the momentum vectors in spherical coordinates, see [1]. The spherical basis is
defined by the bi-orthogonal set of unit vectors {em, e∗m}, m = 0,±1:

e±1 =
±√

2

(
ex ± iey

)
; e0 = ez (A32)

e∗m · en = em · e∗n = δmn. (A33)

The vector products are
ei × ej = ϵijkek (A34)

where the Levi–Civita tensor is evaluated with {−1, 0,+1} = {123}. In that basis, space-
like three-vectors V are given by:

V = ∑
m=0,±1

emV∗m = ∑
m=0,±1

Vme∗m. (A35)

where
Vm = V · em ; V∗m = e∗m ·V (A36)

A particularly useful result is that the spherical components of V can be expressed in
terms of spherical harmonics

Vm = V

√
4π

3
Y1m(V̂), (A37)

where V = |V| and the rank–1 spherical harmonics Y1m(V̂) = Y1m(θV , φV), m = 0± 1,
describes the orientation of V in 3D–space.

In the mixed S/P-wave potentials and in the diagonal P-wave potentials, we encounter
monadic and dyadic structures of tensorial rank 1 and rank-2, respectively:

−→
H (x) =

∫ d3k
(2π)3 g(+)

γ (k|p1)eik·xk. (A38)

←−
H (x) =

∫ d3k
(2π)3 kg(+)

γ (k|p1)eik·x. (A39)
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←→
H (x) =

∫ d3k
(2π)3 kg(+)

γ (k|p1)eik·xk. (A40)

In the spherical basis, the tensors become

−→
H (x) = ∑

m=0,±1
H(01)

1m (x)e∗m, (A41)

←−
H (x) = ∑

m=0,±1
em(−)1+m H(10)

1−m(x). (A42)

The rank-2 tensor is treated accordingly but leads to a more involved structure:

←→
H (x) = ∑

λ=0,2;µ
(−)λ+µH(11)

λ−µ(x)[e⊗ e]λµ (A43)

with the dyadic products

[e⊗ e]λµ = ∑
m,n=0,±1

(1m1n|λµ)emen. (A44)

The multipole form factors are

H(ℓ1ℓ2)
λµ (x) = H(ℓ1ℓ2)

λ (x)iλYλµ(x̂) (A45)

with the radial form factor

H(ℓ1ℓ2)
λ (x) = Cλ(ℓ1ℓ2)

1
2π2

∫ ∞

0
dkk2+ℓ1+ℓ2 g(+)

γ (k|p1)jλ(kx). (A46)

The parity coefficient

Cλ(ℓ1ℓ2) =

(
4π

3

) ℓ1+ℓ2
2
√

(2ℓ1 + 1)(2ℓ2 + 1)
4π(2λ + 1)

(ℓ10ℓ20|λ0)
1
2

(
1 + (−)ℓ1+ℓ2+λ

)
(A47)

vanishes if ℓ1 + ℓ2 + λ is an odd number. A collection of Clebsch–Gordan coefficients is
found in Table A1. Other values of relevance for the present purpose are obtained readily
by means of the symmetry relations

(ℓ1,−m1, ℓ2,−m2|λ,−µ) = (−)ℓ1+ℓ2−λ(ℓ1, m1, ℓ2, m2|λ, µ)

and also
(ℓ2, m2, ℓ1, m1|λ, µ) = (−)ℓ1+ℓ2−λ(ℓ1, m1, ℓ2, m2|λ, µ).
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Table A1. Short table of Clebsch–Gordon coefficients.

ℓ1, m1 ℓ2, m2 λ, µ (ℓ1m1ℓ2m2|λµ)

0, 0 0, 0 0, 0 1

1, 0 1, 0 0, 0 − 1√
3

1, 1 1, −1 0, 0 1√
3

1, 0 1, 0 2, 0
√

2
3

1, 1 1, −1 1, 0 1√
2

1, 1 1, −1 2, 0 1√
6

1, 1 1, 0 2, 1 1√
2

1, 1 1, 1 2, 2 1

The diagonal P-wave transition potentials are given by:

U11(x|p1, p2) =
1

m4
π

T1(kπN)p2 ·
←→
H (x) · p1T1(kπN), (A48)

and
←→
U 22(x|p1, p2) = −

1
m4

π

T2(kπN)σ3 ·
(

p2 ×
←→
H (x)× p1

)
· σ1T2(kπN). (A49)

The mixed S/P-wave transition potentials are

U01(x|p1) =
1

m2
π

T0(kπN)
−→
H (x) · p1T1(kπN), (A50)

U10(x|p2) =
1

m2
π

T1(kπN)p2 ·
←−
H (x)T0(kπN), (A51)

−→
U 02(x|p1) = −

1
m2

π
T0(kπN)

−→
H (x)× p1 · σ1T2(kπN), (A52)

←−
U 20(x|p1) =

1
m2

π
T2(kπN)σ3 · p2 ×

←−
H (x) · p1T0(kπN), (A53)

−→
U 12(x|p1, p2) = −

1
m4

π

T1(kπN)p2 ·
←→
H (x)× p1 · σ1T2(kπN), (A54)

←−
U 21(x|p1, p2) =

1
m4

π

T2(kπN)σ3 · p2 ×
←→
H (x) · p1T1(kπN). (A55)

Appendix F. Spin–Scalar Transition Potentials in Collinear Approximation

In the collinear limit, it is mathematically advantageous to include the plane wave
factors into the potentials. The modified spin–scalar transition potentials are introduced in
Equation (62). They are given by

Ŵ (ij)
AB (x|p, p) = eip·xW̃ (ij)

AB (x|p, p) = ∑
i=0,1,j≥i

Wij(r1, r2|p), (A56)

where x = r1 − r2. By a proper change of integration variables k→ q = k + p, we find the
transition potentials

Wij(x|p) = Ti(kπN)
∫ d3q

(2π)3 Gij(q, p)eiq·xTj(kπN), (A57)
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with the integration kernels

G00(q, p) = g(+)
γ (|q− p|) (A58)

G01(q, p) =
1

m2
π

p · (q− p)g(+)
γ (|q− p|) (A59)

G11(q, p) =
1

m4
π
(p · (q− p))2g(+)

γ (|q− p|). (A60)

We define t = cos ϑpq, express powers of t by sums of Legendre polynomials Pℓ(t),
use the addition theorem of spherical harmonics, and find

p · (q− p) = pqt− p2 = pqP1(t)− p2P0(t) (A61)

= 4π

(
pq ∑

m
Y∗1m(p̂)Y1m(q̂)− p2Y∗00(p̂)Y00(q̂)

)
(A62)

The two-body potential obtained from the double P-wave amplitude contains the
polynomial

(p · (q− p))2 = p2q2t2 + p4 − 2p3qt (A63)

=
2
3

p2q2P2(t)− 2p3qP1(t) + (
1
3

p2q2 + p4)P0(t)

which is converted to

(p · (q− p))2 = 4π (A64)

×
(

2
3

p2q2 ∑
m

Y∗2m(p̂)Y2m(q̂)− 2p3q ∑
m

Y∗1m(p̂)Y1m(q̂) + (
1
3

p2q2 + p4)Y∗00(p̂)Y00(q̂)

)

The propagator is expanded accordingly in spherical harmonics:

g(+)
γ (|q− p|) = 4π ∑

λµ

gλ(p, q)Y∗λµ(p̂)Yλµ(q̂), (A65)

Since the kernel of the double S-wave potential is identical to the propagator, we
already find the multipole expansion of G0(q, p). The multipoles of the kernels involv-
ing P-wave amplitudes are found by combining Equation (A65) with the corresponding
polynomial pre-factors. Formally, the final results are of a similar structure:

Gij(q, p) = 4π ∑
λµ

Y∗λµ(p̂)Yλµ(q̂)g(ij)λ (q, p). (A66)

However, the multipole form factors are of a more complex form. The mixed S/P-wave
form factor is

g(01)
λ (q, p) =

4π

m2
π

λ+1

∑
ℓ=0

(
pqA2

ℓ1λ − p2δℓλ A2
ℓ0λ

)
gℓ(p, q) (A67)

and in the double P-wave case, we find

g(11)
λ (q, p) =

4π

m4
π

λ+2

∑
ℓ=0

(
2
3

p2q2 A2
ℓ2λ − 2p3qA2

ℓ1λ + (
1
3

p2q2 + p4)δℓλ A2
ℓ0λ

)
gℓ(p, q). (A68)

The coefficient

Aℓ1ℓ2ℓ =

√
(2ℓ1 + 1)(2ℓ2 + 1)

4π(2ℓ+1)
(ℓ10ℓ20|ℓ0)

1
2

(
1 + (−)ℓ1+ℓ2+ℓ

)
(A69)
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defines the parity selection rule that ℓ1 + ℓ2 + ℓ must be an even number.
Finally, the plane wave is expanded into partial waves in the coordinates r = r1,2.

Separating spherical harmonics depending on the momenta, we find

eiq·x = (4π)2 ∑
ℓ1ℓ1ℓm

Aℓ1ℓ2ℓ(−)
ℓ+mYℓ−m(q̂)

[
Rℓ2(r2|q)⊗ Rℓ2(r1|q)

]
ℓm. (A70)

The angular integration can be performed in closed form and we find:

Wij(r1, r2|p) = Ti(kπN)Tj(kπN) (A71)

×8 ∑
ℓ1ℓ1LM

Aℓ1ℓ2L(−)LY∗LM(p̂)
∫ ∞

0
dqq2g(ij)L (q, p)

[
Rℓ2(r2|q)⊗ Rℓ2(r1|q)

]
LM.

For L = 0, the two-body potentials simplify to the operator

W (0)
ij (r1, r2|p) = Ti(kπN)Tj(kπN)∑

ℓ

(2ℓ+ 1)
2
π

∫ ∞

0
dqq2g(ij)0 (q, p)Rℓ(r2|q)Rℓ(r1|q). (A72)

The multipole kernels are

g(00)(p, q) = g0(p, q) (A73)

g(01)
0 (q, p) =

1
m2

π

(
3pqg1(p, q)− p2g0(p, q)

)
, (A74)

g(11)
0 (q, p) =

1
m4

π

(
10
3

p2q2g2(p, q)− 6p3qg1(p, q) + (
1
3

p2q2 + p4)g0 (p, q)
)

. (A75)

The spin–vector potentials W02, W12, and W22 can be evaluated by the same tech-
niques, but additional work is needed for the proper treatment of the vector products,
for which the formalism of Appendix E will be found useful.
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