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Abstract: The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and
MC4R), have crucial roles in regulating energy homeostasis. The melanocortin-2 receptor accessory
proteins (MRAPs, MRAP1 and MRAP2) have been shown to regulate neural MCRs in a species-
specific manner. The potential effects of MRAP1 and MRAP2 on canine neural MCRs have not been
investigated before. Herein, we cloned canine (c) MC3R and identified one canine MRAP2 splice
variant, MRAP2b, with N-terminal extension of cMRAP2a. Canine MC3R showed higher maximal
responses to five agonists than those of human MC3R. We further investigated the modulation of
cMRAP1, cMRAP2a, and cMRAP2b, on cMC3R and cMC4R pharmacology. For the cMC3R, all
MRAPs had no effect on trafficking; cMRAP1 significantly decreased Bmax whereas cMRAP2a and
cMRAP2b significantly increased Bmax. Both MRAP1 and MRAP2a decreased Rmaxs in response to
α-MSH and ACTH; MRAP2b only decreased α-MSH-stimulated cAMP generation. For the MC4R,
MRAP1 and MRAP2a increased cell surface expression, and MRAP1 and MRAP2a increased Bmaxs.
All MRAPs had increased affinities to α-MSH and ACTH. MRAP2a increased ACTH-induced cAMP
levels, whereas MRAP2b decreased α-MSH- and ACTH-stimulated cAMP production. These findings
may lead to a better understanding of the regulation of neural MCRs by MRAP1 and MRAP2s.

Keywords: canine; melanocortin-2 receptor accessory protein; melanocortin-3 receptor; melanocortin-4
receptor; pharmacology; splice variant

1. Introduction

Melanocortin-3 and -4 receptors (MC3R and MC4R), also called neural MCRs, are
two melanocortin receptors (MCRs) that are highly expressed in the central nervous sys-
tem [1–4], and are essential for regulating energy homeostasis [5–7]. Mice lacking Mc3r
have a moderate obesity phenotype with normal food intake and metabolism, decreased
lean mass and increased fat mass [8–10]. Mc4r knockout mice have increased food intake,
decreased energy expenditure, and morbid obesity [11,12]. These findings suggest a dis-
tinct nonredundant regulation of the energy balance by MC3R and MC4R. Additionally,
mutations in MC3R and MC4R are associated with obesity [7,13–16]. MC3R was shown
to be involved in other physiological functions, including the modulation of natriure-
sis [17], cardiovascular function [18,19], immune response [20–24], and timing of sexual
maturation [25]. MC4R also has crucial roles in sexual function and reproduction [7,15].

MC3R and MC4R are activated by the endogenous agonists, including α-, β-, γ-
melanocyte-stimulating hormones (MSHs) and adrenocorticotropin (ACTH) [26,27]. As
members of the family of G protein-coupled receptors (GPCRs), the neural MCRs pri-
marily couple to the stimulatory G protein (Gαs) to stimulate adenylyl cyclase activity,
resulting in increased generation of the intracellular second messenger cyclic adenosine
monophosphate (cAMP) to trigger downstream signaling.

MCRs have been shown to interact with small single transmembrane proteins,
melanocortin-2 receptor accessory proteins (MRAPs, including MRAP1 and MRAP2) [28–31]
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(reviewed in [32,33]). MRAP1 was first identified as the specific chaperone for MC2R, es-
sential for MC2R forward trafficking [28,29,33,34]. Human (h) MRAP1 mutations account
for ~20% of familial glucocorticoid deficiency cases [28,35]. Subsequent studies suggest
that MRAP1 possesses functions beyond regulating MC2R. Indeed, hMRAP1 has been
shown to modulate five human MCRs in distinct ways [30,36,37]. MRAP1 regulates MC3R
and MC4R in chicken and frog [25,38,39]. So far, there are only a few studies focusing on
MRAP1 regulation of neural MCRs [25,30,37–43].

MRAP2, a paralog of MRAP1, with high expression in the brain, has essential roles
in regulating energy homeostasis. Mice lacking Mrap2 show early onset severe obe-
sity [44,45]. Human MRAP2 mutations are also associated with severe obesity [44,46–48].
MRAP2 has been shown to modulate MC3R/MC4R trafficking and signaling in verte-
brates [30,31,38,43,44,49–53]. Human MRAP2 has three alternatively spliced variants with
different C-termini in the proteins, and these three variants exert different effects on
MC3R/MC4R pharmacology [43].

From the studies on the regulation of MC3R and MC4R by MRAPs, it was shown that
MRAPs modulate neural MCRs in a receptor- and species-dependent manner. The effects
of MRAP1 and MRAP2 on canine (Canis lupus familiaris) (c) MC3R and cMC4R have not
been studied before. Herein, we investigated the pharmacology of cMC3R as well as the
pharmacological modulation of cMC3R and cMC4R by cMRAP1 and cMRAP2a/cMRAP2b.
We have previously reported the pharmacology of cMC4R [54].

2. Materials and Methods
2.1. Ligands and Plasmids

[Nle4,D-Phe7]-α-MSH (NDP-MSH) and D-Trp8-γ-MSH were obtained from Vivitide
(Louisville, KY, USA). Human α-MSH and β-MSH were purchased from Pi Proteomics
(Huntsville, AL, USA). Human ACTH (1-24) was supplied by Phoenix Pharmaceuticals
(Burlingame, CA, USA). Canine α-MSH, β-MSH, and ACTH (1-24), share the same se-
quences with the corresponding human counterparts. [125I]-cAMP and [125I]-NDP-MSH
were iodinated using chloramine T method [55,56]. N-terminal myc-tagged hMC3R,
cMC3R, and cMC4R [54]) and N-terminal Flag-tagged MRAPs (cMRAP1, cMRAP2a, and
cMRAP2b) were commercially synthesized and subcloned into pcDNA3.1 by GenScript
(Piscataway, NJ, USA).

2.2. Cell Culture and Transfection

Human embryonic kidney (HEK) 293T cells (ATCC, Manassas, VA, USA) were cultured
at 37 ◦C in a 5% CO2-humidified incubator [57]. Cells were plated into gelatin-coated 6-
or 24-well plates. Cells were co-transfected with 0.25 µg/µL cMC3R or cMC4R with or
without MRAP plasmids using calcium phosphate precipitation method [58].

2.3. Ligand Binding Assays

Binding assay was performed as described previously [49,57]. The ligands and their
final concentrations used in this study were NDP-MSH (from 10−12 to 10−6 M), α-MSH
(from 10−11 to 10−5 M), β-MSH (from 10−11 to 10−5 M), ACTH (1-24) (from 10−12 to
10−6 M), and D-Trp8-γ-MSH (from 10−12 to 10−6 M). To investigate the regulation of MRAPs
on the binding properties of cMC3R and cMC4R, cMC3R or cMC4R (0.25 µg/µL) and
cMRAP1, cMRAP2a or cMRAP2b plasmids in two ratios (1:0 and 1:5) were co-transfected
into 6-well plates, and two ligands, α-MSH and ACTH (1-24), were used for binding and
signaling assays.
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2.4. Ligand-Stimulated cAMP Assays

Radioimmunoassay (RIA) was used to determine intracellular cAMP levels as de-
scribed previously [55,57]. Five ligands, including NDP-MSH, α-MSH, β-MSH, ACTH
(1-24), and D-Trp8-γ-MSH, were used. To investigate effects of MRAPs on cMC3R or
cMC4R signaling, cells were co-transfected with cMC3R or cMC4R (0.25 µg/µL) and
cMRAP plasmids (1:5), and two ligands, α-MSH and ACTH (1-24), were used.

2.5. Flow Cytometry Assay

The regulation of cMRAP1 or cMRAP2s on the expression of cMC3R and cMC4R was
carried out using flow cytometry (Accuri Cytometers, Ann Arbor, MI, USA) as described
previously [59,60]. Cells were co-transfected with cMC3R or cMC4R and cMRAP1, cM-
RAP2a, or cMRAP2b plasmids (1:5). Fluorescence of cells transfected with pcDNA3.1 was
used for background staining. The expression of receptors was calculated as the percentage
of the cell transfected with receptors in absence of MRAPs (set as 100%) [59].

2.6. Statistical Analysis

All data were presented as mean ± S.E.M. GraphPad Prism 8.3 software (GraphPad,
San Diego, CA, USA) was used to calculate the parameters of ligand binding, cAMP sig-
naling, and flow cytometry assay. The significance in binding and signaling parameters
between cMC3R and hMC3R, as well as vehicle and ligand-treated groups, were all deter-
mined by Student’s t-test. One-way ANOVA was used to analyze the significant differences
in binding, cAMP, and flow cytometry between multiple groups.

3. Results
3.1. Nucleotide and Deduced Amino Acid Sequences of cMC3R, cMRAP1, and cMRAP2s

The canine MC3R (GenBank: NM_001135124.1) had 972 bp open reading frame (ORF),
encoding a putative protein of 323 amino acids with 35.79 kDa molecular mass (Figure 1A).
cMC3R had seven hydrophobic transmembrane domains (TMDs). Several conserved
motifs, including PMY, DRY, and DPxxY, and three potential N-linked glycosylation sites
(Asn2, Asn16, and Asn28) in N-terminus, were present at homologous positions with MC3Rs
of other species (Figure 1). Canine MC3R shared high identities with other MC3R orthologs,
96% to giant panda, 92% to human, 90% to cat, 89% to pig, 87% to mouse, 76% to chicken,
76% to turtle, 75% to frog, and 72% to zebrafish. The phylogenetic tree showed that cMC3R
nested with mammalian MC3Rs (Figure 1B).

The canine MRAP1 had 336 bp ORF that encoded a putative protein of 111 amino
acids with 12.90 kDa molecular mass (Figure 2A). cMRAP1 had the classical characteristic
of other MRAP orthologs, including two potential N-linked glycosylation sites (Asn3 and
Asn6), YEYY motif, LDYL motif, LKANKYL motif, and a single TMD (Figure 2A). cMRAP1
shared high identities with cat MRAP1 (90%), and lower identities with other MRAP1
(44–79%). The phylogenetic tree showed that cMRAP1 clustered with mammalian MRAP1s
and was evolutionarily closer to red fox MRAP1 (Figure 2B).
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(PMY, DRY and DPxxY) are underlined. Asterisk (*) shows stop codon. The tree was constructed by 
the neighbor-joining (NJ) method. Numbers at nodes indicate the bootstrap value, as percentages, 
obtained for 1000 replicates. Black dot denotes canine MC3R. MC3Rs: Canis lupus familiaris (dog, 
NM_001135124.1), Capra hircus (goat, XP_005688382.1), Xenopus tropicalis (frog, XP_002935436.1), 
Culter alburnus (topmouth culter, MT419813), Carassius auratus (goldfish, BAJ83473.1), Danio rerio 
(zebrafish, AAO24744.1), Homo sapiens (human, NP_063941.3), Sus scrofa (pig, AFK25142.1), Mus 
musculus (mouse, AAI03670.1), Gallus gallus (chicken, XP_004947293.1), Rattus norvegicus (rat, 
NP_001020441.3), Pangasianodon hypophthalmus (iridescent shark, XP_026770221.1), Equus caballus 
(horse, NP_001243901.1), Pteropus vampyrus (large flying fox, XP_011368476.1), Pteropus alecto (black 
flying fox, XP_006921991.1), Felis catus (cat, XP_023106851.1), Loxodonta africana (African bush ele-
phant, XP_003419952.1), Salvelinus alpinus (Arctic char, XP_023994975.1), Pelodiscus sinensis (Chinese 
softshell turtle, XP_006129463.1), and Alligator sinensis (Chinese alligator, XP_006018246.1). 
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Figure 1. Nucleotide and deduced amino acid sequences (A) and phylogenetic tree (B) of cMC3R.
Positions of nucleotide and amino acid sequences are indicated on both sides. N-linked glycosylation
sites are present in open boxes. Shaded boxes show putative TMD1-7. The conserved motifs (PMY,
DRY and DPxxY) are underlined. Asterisk (*) shows stop codon. The tree was constructed by
the neighbor-joining (NJ) method. Numbers at nodes indicate the bootstrap value, as percentages,
obtained for 1000 replicates. Black dot denotes canine MC3R. MC3Rs: Canis lupus familiaris (dog,
NM_001135124.1), Capra hircus (goat, XP_005688382.1), Xenopus tropicalis (frog, XP_002935436.1),
Culter alburnus (topmouth culter, MT419813), Carassius auratus (goldfish, BAJ83473.1), Danio re-
rio (zebrafish, AAO24744.1), Homo sapiens (human, NP_063941.3), Sus scrofa (pig, AFK25142.1),
Mus musculus (mouse, AAI03670.1), Gallus gallus (chicken, XP_004947293.1), Rattus norvegicus (rat,
NP_001020441.3), Pangasianodon hypophthalmus (iridescent shark, XP_026770221.1), Equus caballus
(horse, NP_001243901.1), Pteropus vampyrus (large flying fox, XP_011368476.1), Pteropus alecto (black
flying fox, XP_006921991.1), Felis catus (cat, XP_023106851.1), Loxodonta africana (African bush ele-
phant, XP_003419952.1), Salvelinus alpinus (Arctic char, XP_023994975.1), Pelodiscus sinensis (Chinese
softshell turtle, XP_006129463.1), and Alligator sinensis (Chinese alligator, XP_006018246.1).

The canine MRAP2 consists of 11 exons. Two MRAP2 splice variants were identified:
MRAP2a (XM_038682814.1) derived from four exons (2, 6, 7, and 11) that had 621 bp ORF,
encoding a putative protein of 206 amino acids with 23.62 kDa molecular mass (Figure 3A);
MRAP2b (XM_038682813.1) derived from five exons (3, 4, 6, 7, and 11) that had 684 bp ORF
encoding a putative protein of 232 amino acids with 26.71 kDa molecular mass (Figure 3A).
Canine MRAP2b had an extended N-terminus (26 amino acids) compared with cMRAP2a,
and they shared the common structure with other MRAP2s, such as one potential N-linked
glycosylation sites (Asn9 in MRAP2a and Asn35 in MRAP2b), YEYY motif, LKAHKYS
motif, and a single TMD (Figure 3B,C). Multiple sequence alignment analysis showed that
dog MRAP2a and MRAP2b shared high identities with mammalian MRAP2s (>81%) and
lower identities with MRAP2s from other species (<78%). The two isoforms of cMRAP2
were clustered with different MRAP2s, in which MRAP2a was evolutionarily closer to cat
MRAP2, and MRAP2b was nested with Nile tilapia MRAP2 (Figure 3D).
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Figure 2. Nucleotide and deduced amino acid sequences (A) and phylogenetic tree (B) of cM-
RAP1. Positions of nucleotide and amino acid sequences are indicated on both sides. N-linked
glycosylation sites are present in open boxes. Red box denotes YEYY motif. Light blue box
indicates LDYL motif. Black box is LKANKYL motif. Shaded box shows putative TMD. As-
terisk (*) shows stop codon. The tree was constructed by the neighbor-joining (NJ) method.
Numbers at nodes indicate the bootstrap value, as percentages, obtained for 1000 replicates.
Black dot denotes canine MRAP1. MRAP1s: Canis lupus familiaris (dog, XP_005638887.1), Homo
sapiens (human MRAP1a, AAH62721.1; human MRAP1b, NP_996781.1), Mus musculus (mouse,
NP_084120.1); Macaca mulatta (monkey, XP_001096328.3), Gallus gallus (chicken, XR_001470382.2),
Chrysemys picta bellii (turtle, XP_005283970.1), Xenopus tropicalis (frog, XP_002938489.2), Danio re-
rio (zebrafish, ENSDART00000148193.3), Sus scrofa (pig, XP_020926573.1), Cricetulus griseus (chi-
nese hamster, XP_003495626.1), Rattus norvegicus (rat, NP_001129306.1), Lagenorhynchus obliquidens
(dolphin, XP_026957114.1), Vulpes vulpes (red fox, XP_025840964.1), Delphinapterus leucas (whale,
XP_022408665.2), and Capra hircus (goat, XP_005674803.2).
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Figure 3. Schematic diagram (A), nucleotide and deduced amino acid sequences (B, cMRAP2a,
C, cMRAP2b) and phylogenetic tree (D) of MRAP2s. Positions of nucleotide and amino acid se-
quences are indicated on both sides. N-linked glycosylation sites are present in open boxes. Red
box denotes YEYY motif. Light blue box indicates LDYL motif. Black box is LKANKYL motif.
Shaded box shows putative TMD. Asterisk (*) shows stop codon. The tree was constructed by
the neighbor-joining (NJ) method. Numbers at nodes indicate the bootstrap value, as percent-
ages, obtained for 1000 replicates. Black dot denotes canine MRAP1. MRAP1s: MRAP2s: Canis
lupus familiaris (dog MRAP2a, XM_038682814.1; MRAP2b, XM_038682813.1), Mus musculus (mouse
NP_001171202.1), Sus scrofa (pig, XP_003353296.2), Capra hircus (goat, XP_017908670.1), Callorhinchus
milii (elephant shark, XP_007906624.1), Balaenoptera musculus (whale, XP_036727732.1), Bos taurus
(bovine, NP_001092863.1), Danio rerio (zebrafish, MRAP2a: F8W4H9.1, MRAP2b: F8W4H9.1), Gallus
gallus (chicken, ALO81626.1), Mus caroli (Ryukyu mouse, XP_021029091.1), and Homo sapiens (human,
AAH10003.2).

3.2. Ligand Binding Properties of cMC3R

The binding assay was performed using multiple MC3R ligands, including NDP-
MSH, α-MSH, β-MSH, ACTH, and D-Trp8-γ-MSH. We included hMC3R for comparison
in the same experiments to explore whether cMC3R shows any unique pharmacological
characteristics. The maximal binding value (Bmax) of cMC3R was 247.97 ± 13.44% of that of
hMC3R (Figure 4 and Table 1). Canine MC3R had significantly lower affinities to NDP-MSH
and D-Trp8-γ-MSH than that of hMC3R (Figure 4 and Table 1). The two MC3Rs showed
similar IC50s when α-MSH, β-MSH, and ACTH, were used (Figure 4 and Table 1).

Table 1. The ligand binding properties of cMC3R.

MC3R IC50 (nM) cMC3R hMC3R

Bmax (%) 247.97 ± 13.44 b 100
NDP-MSH IC50 (nM) 4.37 ± 0.72 a 1.98 ± 0.43
α-MSH IC50 (nM) 240.42 ± 37.34 221.57 ± 30.23
β-MSH IC50 (nM) 140.18 ± 31.37 161.56 ± 31.45
ACTH IC50 (nM) 58.52 ± 8.67 45.71 ± 5.23

D-Trp8-γ-MSH IC50 (nM) 39.30 ± 0.30 b 24.62 ± 1.25
Values are expressed as the mean ± SEM of at least three independent experiments. a Significant difference from
the parameter of hMC3R, p < 0.05. b Significant difference from the parameter of hMC3R, p < 0.001.
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3.3. cAMP Signaling Properties of cMC3R

Intracellular cAMP levels were determined to explore whether cMC3R could respond
to these agonists. All agonists could dose-dependently stimulate cMC3R and increase cAMP
production (Figure 5 and Table 2). Canine MC3R showed higher maximal responses (Rmax)
in response to four agonists (NDP-MSH, β-MSH, ACTH, and D-Trp8-γ-MSH) compared to
hMC3R (Figure 5 and Table 2). Similar EC50s between the two MC3Rs were observed in
response to five agonists (Figure 5 and Table 2). Additionally, cMC3R showed similar basal
activity as hMC3R (Table 2).

Table 2. The signaling properties of cMC3R.

MC3R EC50/Rmax cMC3R hMC3R

Basal (%) 100.72 ± 7.69 100

NDP-MSH
EC50 (nM) 0.40 ± 0.16 0.24 ± 0.11
Rmax (%) 199.38 ± 28.06 a 100

α-MSH
EC50 (nM) 0.97 ± 0.35 1.49 ± 0.22
Rmax (%) 145.69 ± 14.30 100

β-MSH
EC50 (nM) 1.04 ± 0.23 1.46 ± 0.55
Rmax (%) 229.77 ± 46.45 a 100

ACTH
EC50 (nM) 1.46 ± 0.30 2.12 ± 0.69
Rmax (%) 182.83 ± 25.21 a 100

D-Trp8-γ-MSH
EC50 (nM) 1.08 ± 0.15 0.71 ± 0.19
Rmax (%) 188.25 ± 19.56 a 100

Values are expressed as the mean ± SEM of at least three independent experiments. a Significant difference from
the parameter of hMC3R, p < 0.05.
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Trp8-γ-MSH (E) were used to stimulate the cells. Data are means± SEM from triplicate measurements
within one experiment. All experiments were performed at least three times independently.

3.4. Modulation of cMC3R and cMC4R Expression by MRAPs

Canine MC3R or MC4R expression regulated by MRAPs was measured using flow
cytometry. Results showed that cMRAP1, cMRAP2a, and cMRAP2b had no effect on the cell
surface and total expression of cMC3R (Figure 6A,B). For cMC4R, cMRAP1 and cMRAP2a
increased cell surface and total expression, and cMMRAP2b only increased total expression
of cMC4R (Figure 6C,D).

3.5. Modulation of cMC3R Pharmacology by MRAPs

Ligand binding assays with α-MSH and ACTH showed that cMRAP1 decreased
the Bmax, whereas cMRAP2a and cMRAP2b increased Bmaxs of cMC3R (Figure 7A,B and
Table 3). All MRAPs had no significant effect on IC50s of cMC3R to α-MSH and ACTH
(Figure 7A,B and Table 3). Modulation of cMRAPs on cMC3R signaling was also studied.
Results showed that all MRAPs did not alter α-MSH and ACTH potencies of cMC3R
(Table 4). Both MRAP1 and MRAP2a decreased Rmaxs in response to α-MSH and ACTH;
MRAP2b significantly decreased α-MSH-stimulated cAMP generation but showed similar
ACTH-induced cAMP production of cMC3R (Figure 7C,D and Table 4). Only MRAP2b
decreased the basal activity, and the other MRAPs had no effect on the basal cAMP levels
of cMC3R (Table 4).
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total expression of cMC3R and MC4R was measured by flow cytometry. HEK293T cells were co-
transfected with cMC3R or cMC4R and cMRAPs (1:5). Fluorescence in cells transfected with empty
vector pcDNA3.1 was used for background staining. The results were calculated as % of 1:0 group.
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group (p < 0.05) (one-way ANOVA followed by Tukey test).

Biomolecules 2022, 12, x FOR PEER REVIEW 11 of 18 
 

 
Figure 7. Modulation of cMC3R pharmacology by MRAPs. Ligand binding (A,B) and signaling 
(C,D) properties of cMC4R to α-MSH or ACTH (1-24) upon co-expression of cMC4R with cMRAP1, 
cMRAP2a or cMRAP2b were measured. Results of binding properties were calculated as % of 
cMC4R without MRAPs, from duplicate determinations within one experiment. All experiments 
were performed at least three independent times. 

Table 3. The effect of MRAPs on ligand binding properties of cMC3R. 

cMC3R/cMRAPs Bmax (%) 
α-MSH ACTH 

IC50 (nM) IC50 (nM) 
cMC3R 100 106.68 ± 13.80 55.56 ± 11.64 

cMC3R/cMRAP1  81.81 ± 5.01 a 127.76 ± 30.47 68.59 ± 9.31 
cMC3R/cMRAP2a  148.43 ± 14.94 a 118.61 ± 22.25 57.58 ± 4.09 
cMC3R/cMRAP2b 128.42 ± 9.06 a 148.03 ± 30.16 49.59 ± 6.77 

Values are expressed as the mean ± SEM of at least three independent experiments. a Significant 
difference from the parameter of cMC3R, p < 0.05. 

Table 4. The effect of MRAPs on cAMP signaling of cMC3R. 

cMC3R/cMRAPs Basal (%) 
α-MSH ACTH 

EC50 (nM) Rmax (%) EC50 (nM) Rmax (%) 
cMC3R 100 3.08 ± 1.26 100 2.02 ± 0.39 100 

cMC3R/cMRAP1 100.91 ± 16.74 0.88 ± 0.18 46.67 ± 8.88 b 2.11 ± 0.56 46.61 ± 12.37 a 
cMC3R/cMRAP2a 84.71 ± 19.03 1.37 ± 0.26 73.02 ± 5.81 a 2.18 ± 0.39 73.79 ± 4.94 a 
cMC3R/cMRAP2b 68.88 ± 9.35 a 3.64 ± 1.11 66.93 ± 9.64 a 3.41 ± 0.99 85.02 ± 11.04 

Values are expressed as the mean ± SEM of at least three independent experiments. a Significant 
difference from the parameter of cMC3R, p < 0.05. b Significant difference from the parameter of 
cMC3R, p < 0.001. 

3.6. Modulation of cMC4R Pharmacology by MRAPs 
Ligand binding assays showed that MRAP1 and MRAP2a increased Bmaxs of cMC4R 

and MRAP2b did not affect the Bmax (Figure 8A,B and Table 5). All MRAPs increased the 
affinities of cMC4R to α-MSH and ACTH (Figure 8A,B and Table 5). 

Signaling results showed that all MRAPs did not affect EC50s of cMC4R in response 
to α-MSH and ACTH (Table 6). MRAP1 had no effect on α-MSH- and ACTH-stimulated 
cAMP level of cMC4R (Figure 8C,D and Table 6). MRAP2a decreased α-MSH- and ACTH-

Figure 7. Modulation of cMC3R pharmacology by MRAPs. Ligand binding (A,B) and signaling
(C,D) properties of cMC4R to α-MSH or ACTH (1-24) upon co-expression of cMC4R with cMRAP1,
cMRAP2a or cMRAP2b were measured. Results of binding properties were calculated as % of
cMC4R without MRAPs, from duplicate determinations within one experiment. All experiments
were performed at least three independent times.
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Table 3. The effect of MRAPs on ligand binding properties of cMC3R.

cMC3R/cMRAPs Bmax (%)
α-MSH ACTH

IC50 (nM) IC50 (nM)

cMC3R 100 106.68 ± 13.80 55.56 ± 11.64
cMC3R/cMRAP1 81.81 ± 5.01 a 127.76 ± 30.47 68.59 ± 9.31

cMC3R/cMRAP2a 148.43 ± 14.94 a 118.61 ± 22.25 57.58 ± 4.09
cMC3R/cMRAP2b 128.42 ± 9.06 a 148.03 ± 30.16 49.59 ± 6.77

Values are expressed as the mean ± SEM of at least three independent experiments. a Significant difference from
the parameter of cMC3R, p < 0.05.

Table 4. The effect of MRAPs on cAMP signaling of cMC3R.

cMC3R/cMRAPs Basal (%)
α-MSH ACTH

EC50 (nM) Rmax (%) EC50 (nM) Rmax (%)

cMC3R 100 3.08 ± 1.26 100 2.02 ± 0.39 100
cMC3R/cMRAP1 100.91 ± 16.74 0.88 ± 0.18 46.67 ± 8.88 b 2.11 ± 0.56 46.61 ± 12.37 a

cMC3R/cMRAP2a 84.71 ± 19.03 1.37 ± 0.26 73.02 ± 5.81 a 2.18 ± 0.39 73.79 ± 4.94 a

cMC3R/cMRAP2b 68.88 ± 9.35 a 3.64 ± 1.11 66.93 ± 9.64 a 3.41 ± 0.99 85.02 ± 11.04

Values are expressed as the mean ± SEM of at least three independent experiments. a Significant difference from
the parameter of cMC3R, p < 0.05. b Significant difference from the parameter of cMC3R, p < 0.001.

3.6. Modulation of cMC4R Pharmacology by MRAPs

Ligand binding assays showed that MRAP1 and MRAP2a increased Bmaxs of cMC4R
and MRAP2b did not affect the Bmax (Figure 8A,B and Table 5). All MRAPs increased the
affinities of cMC4R to α-MSH and ACTH (Figure 8A,B and Table 5).
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Figure 8. Modulation of cMC4R pharmacology by MRAPs. Ligand binding (A,B) and signaling
(C,D) properties of cMC4R to α-MSH or ACTH (1-24) upon co-expression of cMC4R with cMRAP1,
cMRAP2a or cMRAP2b were measured. Results of binding properties were calculated as % of
cMC4R without MRAPs, from duplicate determinations within one experiment. All experiments
were performed at least three independent times.
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Table 5. The effect of MRAPs on ligand binding properties of cMC4R.

cMC4R/cMRAPs Bmax (%)
α-MSH ACTH

IC50 (nM) IC50 (nM)

cMC4R 100 504.66 ± 124.33 348.29 ± 94.51
cMC4R/cMRAP1 151.36 ± 10.67 a 186.62 ± 13.60 a 37.63 ± 6.84 b

cMC4R/cMRAP2a 167.03 ± 11.83 c 228.40 ± 40.74 a 35.63 ± 8.10 b

cMC4R/cMRAP2b 121.60 ± 10.06 120.19 ± 22.41 b 16.93 ± 5.69 c

Values are expressed as the mean ± SEM of at least three independent experiments. a Significant difference from
the parameter of cMC4R, p < 0.05. b Significant difference from the parameter of cMC4R, p < 0.01. c Significant
difference from the parameter of cMC4R, p < 0.001.

Signaling results showed that all MRAPs did not affect EC50s of cMC4R in response
to α-MSH and ACTH (Table 6). MRAP1 had no effect on α-MSH- and ACTH-stimulated
cAMP level of cMC4R (Figure 8C,D and Table 6). MRAP2a decreased α-MSH- and ACTH-
induced cAMP signaling, whereas MRAP2b increased ACTH-stimulated signaling and did
not affect α-MSH-stimulated cAMP signaling (Figure 8C,D and Table 6). Canine MC4R
showed higher basal cAMP production than that of hMC4R (2.38 times that of hMC4R),
indicating that cMC4R might be constitutively active. In this study, all MRAPs decreased
the basal cAMP levels of cMC4R (Table 6).

Table 6. The effect of MRAPs on signaling properties of cMC4R.

cMC4R/cMRAPs Basal (%)
α-MSH ACTH

EC50 (nM) Rmax (%) EC50 (nM) Rmax (%)

cMC4R 100 1.18 ± 0.21 100 0.92 ± 0.41 100
cMC4R/cMRAP1 53.89 ± 4.06 b 1.37 ± 0.24 99.80 ± 3.80 1.92 ± 0.40 76.21 ± 13.29

cMC4R/cMRAP2a 74.70 ± 4.28 b 0.90 ± 0.10 87.00 ± 10.28 3.82 ± 1.25 144.41 ± 13.36 a

cMC4R/cMRAP2b 55.82 ± 3.43 b 0.63 ± 0.10 52.62 ± 7.93 b 1.20 ± 0.44 55.87 ± 9.82 a

Values are expressed as the mean ± SEM of at least three independent experiments. a Significant difference from
the parameter of cMC4R, p < 0.05. b Significant difference from the parameter of cMC3R, p < 0.001.

4. Discussion

In this study, we cloned canine MC3R and investigated its pharmacological properties.
We have reported cMC4R pharmacology previously [54,61]. In the current study, we
also identified a MRAP2 variant, MRAP2b. The potential regulation of cMRAP1 and two
cMRAP2 isoforms on cMC3R/cMC4R pharmacology were further studied.

To investigate the pharmacology of cMC3R, ligand binding and signaling assays were
performed. cMC3Rs showed a higher binding capacity than that of hMC3R, consistent
with the results of other MC3Rs, including channel catfish [49], topmouth culter [52],
and giant panda [62]. For signaling, different from the results of giant panda and pig
MC3Rs [62,63], cMC3R had a higher ligand-induced cAMP level than that of hMC3R. In
addition, our current results are consistent with mammalian MC3Rs in that MC3R has little
or no basal cAMP signaling [62–65]. Of interest, high constitutive activities were present
in several non-mammalian MC3Rs, including teleosts [49,52,66], amphibians (Mexican
axolotl) [67], and avian (chicken) [38,68]. The amino acids accounting for the differences in
the constitutive activity between these MC3Rs are not clear. N-termini and extracellular
loops are essential for the modulation of constitutive activities in hMC4R [69,70], luteinizing
hormone receptor [71], and thyroid-stimulating hormone receptor [72,73]. Lower homology
is observed in the N-termini and extracellular loops of mammalian and non-mammalian
MC3Rs. Further studies are needed to determine the exact molecular determinants.

The potential roles of cMRAPs on cMC3R/cMC4R trafficking were studied. Human
MRAP1a decreased [30,74] or increased [43], and MRAP2a decreased [30,74] or had no
effect [43] on the cell surface expression of hMC3R. The current study showed that all
cMRAPs did not affect the cell surface expression of cMC3R. In other species, frog MRAP1
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increased and chicken MRAP1 did not alter the surface expression of MC3Rs [38,39].
MRAP2 decreased the surface expression of clawed frog MC3R [39], increased the surface
expression of topmouth culter Mc3r [52], and had no effect on the surface expression
of Mexican axolotl and chicken MC3Rs [38,67]. For MC4R, hMRAP1a and hMRAP2a
decreased [30,74] or increased [43] the cell surface expression of hMC4R. In this study,
cMRAP1 and cMRAP2a increased cell surface expression of cMC4R. MRAP1 had no effect
on the surface expression of chicken MC3R [38] and increased frog MC3R expression [42].
MRAP2 has been reported to decrease the surface expression of tilapia and Mexican axolotl
MC4Rs [67,75], increase the membrane expression of zebrafish (Mrap2b) [31], topmouth
culter (Mrap2a and Mrap2b) [51], and Xenopus MC4Rs [39], or have no effect on the surface
expression of chicken and snakehead MC4Rs [38,53]. Collectively, MRAP1 and MRAP2
modulate the MC3R/MC4R trafficking to the plasma membrane in a species- and receptor-
specific manner.

Pharmacological studies were further performed on the potential MRAP modulation
of cMC3R. Human MRAP1 and MRAP2 decreased α-MSH- and ACTH-induced [43] or
increased α-MSH-stimulated [37,74] cAMP production of hMC3R. Xenopus MRAP1 in-
creased α-MSH- and ACTH-induced cAMP signaling, and chicken MRAP1 did not affect
agonist-induced signaling of MC3Rs [38,39]. Mrap2-decreased Mc3r signaling was also re-
ported in channel catfish, topmouth culter (Mrap2a) [51], and Mexican axolotl [67], whereas
MRAP2-increased MC3R signaling was observed in chicken and Xenopus MC3Rs [39].
Zebrafish Mrap2s did not affect agonist-induced signaling of MC3R [31]. Our results
showed that MRAP1 did not alter MC3R trafficking, decreased Bmax, and α-MSH- and
ACTH-induced cAMP levels, indicating that interaction between cMRAP1 and cMC3R
might inhibit cMC3R bound to ligands, resulting in decreased signaling; MRAP2s did not
change cMC3R trafficking, increased Bmaxs, but decreased signaling, probably due to the
interaction of cMRAP2s and cMC3R leading to conformation change, further inhibiting G
protein-induced intracellular cAMP signaling.

The potential modulation of cMRAPs on cMC4R pharmacology was also studied. Con-
flicting results were reported previously on hMRAP1a- and hMRAP2a-regulated signaling
of hMC4R, where hMRAP1a decreased α-MSH-induced or did not affect α-MSH- and
ACTH-stimulated hMC4R signaling [37,43]; MRAP2a had no effect [76], decreased [43] or
increased [41,74] α-MSH-stimulated and did not affect ACTH-induced [43,76] signaling of
hMC4R. Chicken MRAP1 was shown to decrease α-MSH-stimulated and have no effect on
ACTH-induced signaling of MC4R [38]. MRAP1 increased α-MSH- and ACTH-stimulated
signaling of Xenopus MC4R [39]. MRAP2-suppressed α-MSH- and/or ACTH-stimulated
signaling of MC4Rs were present in several teleosts [31,51,53,75,77]. Our results indicated
that MRAP1 had no effect on the efficacy of cMC4R in response to α-MSH and ACTH,
MRAP2a increased ACTH-stimulated but had no effect on α-MSH-induced cMC4R sig-
naling, and MRAP2b decreased α-MSH- and ACTH-induced signaling, suggesting that
MRAP1 modulated cMC4R trafficking and ligand binding, but did not affect signaling; the
interaction of MRAP2a and cMC4R might change MC4R ligand selectivity and sensitivity;
MRAP2b might inhibit receptor coupling to G protein, resulting in decreased signaling.
Hence, MRAPs might be involved in regulating receptor ligand selectivity and sensitivity
in a species-dependent manner. The potential mechanisms of the MRAP regulation of
receptor ligand selectivity and sensitivity need further study.

Human MC4R shows modest basal cAMP signaling [65]. The defect in basal activities
of MC4R mutations can cause obesity [69,78]. Mrap2- and Agrp-suppressed basal activity
of Mc4r play an important role in promoting the growth of zebrafish and culter [31,52,79].
These studies indicate that the basal activity of MC4R plays a pivotal role in the modulation
of energy homeostasis [80]. Human MRAP1s increased [37,41,43] or did not affect [30,36]
the basal activities of hMC4R, and MRAP2s decreased [43] or had no effect [30,36,41,81] on
the basal activities of hMC4R. Our studies showed that cMRAP1 and cMRAP2s decreased
the basal cAMP signaling of cMC4R. Decreased MC4R basal activities by MRAP2(s) were
also reported in other species [31,51,53,75,77].
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Alternative splicing is prevalent in eukaryotes and isoforms generated by alternative
splicing might have different functions [82–85]. Splicing variants provide a nature-made
chance to investigate the roles of specific domains. Human MRAP and MRAP2 have two
and three alternatively spliced forms, respectively, and they show different effects on
the hMC3R/hMC4R pharmacology [28,43]. Canine MRAP2 also had two alternatively
spliced variants, MRAP2a and MRAP2b (MRAP2b with extension at N-terminus compared
with MRAP2a). This extension sequence at the N-terminus of MRAP2b is not found in
other MRAP2s. Our results showed that MRAP2a and MRAP2b had different effects
on cMC3R/cMC4R pharmacology. The N-termini of MRAP1 and MRAP2, with several
conserved motifs, have important roles in modulating GPCR pharmacology [43,86–88]. We
speculate that the extension sequences at the N-termini of MRAP2 might have important
roles in MC3R/MC4R pharmacology.

5. Conclusions

In summary, we cloned canine MC3R and investigated its pharmacology, as well as
modulation of MC3R and MC4R pharmacology by MRAPs. MRAP1 did not affect the
MC3R trafficking and decreased α-MSH- and ACTH-induced signaling, whereas MRAP1
increased the cell surface expression and decreased the basal activity of cMC4R. The two
MRAP2 isoforms exerted different effects on cMC3R or MC4R pharmacology. MRAP2a
decreased α-MSH- and ACTH-induced signaling, whereas MRAP2b only the decreased
α-MSH-stimulated signaling of cMC3R. MRAP2a increased the cell surface expression and
ACTH-induced signaling, decreased the basal activity of cMC4R, whereas MRAP2b had no
effect on trafficking, and decreased basal and α-MSH- and ACTH-induced signaling. This
study contributes to a better understanding of cMC3R/cMC4R.
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