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Abstract: There are currently no accurate biomarkers for optimal treatment selection in early-stage
non-small cell lung cancer (NSCLC). Novel therapeutic targets are needed to improve NSCLC survival
outcomes. This study systematically evaluated the association between genome-scale regulatory
network centralities and NSCLC tumorigenesis, proliferation, and survival in early-stage NSCLC
patients. Boolean implication networks were used to construct multimodal networks using patient
DNA copy number variation, mRNA, and protein expression profiles. T statistics of differential
gene/protein expression in tumors versus non-cancerous adjacent tissues, dependency scores in
in vitro CRISPR-Cas9/RNA interference (RNAi) screening of human NSCLC cell lines, and hazard
ratios in univariate Cox modeling of the Cancer Genome Atlas (TCGA) NSCLC patients were
correlated with graph theory centrality metrics. Hub genes in multi-omics networks involving
gene/protein expression were associated with oncogenic, proliferative potentials and poor patient
survival outcomes (p < 0.05, Pearson’s correlation). Immunotherapy targets PD1, PDL1, CTLA4,
and CD27 were ranked as top hub genes within the 10th percentile in most constructed multi-omics
networks. BUB3, DNM1L, EIF2S1, KPNB1, NMT1, PGAM1, and STRAP were discovered as important
hub genes in NSCLC proliferation with oncogenic potential. These results support the importance of
hub genes in NSCLC tumorigenesis, proliferation, and prognosis, with implications in prioritizing
therapeutic targets to improve patient survival outcomes.

Keywords: multi-omics networks; hub genes; CRISPR-Cas9; RNAi; proliferation; non-small cell lung
cancer; patient survival; biomarkers; therapeutic targets

1. Introduction

Non-small cell lung cancer (NSCLC) is the most common cause of cancer mortality for
both men and women [1]. It is challenging to manage NSCLC due to its complex somatic
mutations and DNA copy number variations (CNV) during cancer genome evolution [2],
extensive invasion, acquired therapeutic resistance, and tumor recurrence/metastasis [3].
Recent immunotherapy of blockades of PD1, PDL1, and CTLA4 has improved NSCLC
treatment outcomes [4,5] in both neoadjuvant and adjuvant settings for NSCLC of all
stages [6–10]. PD1 inhibitor nivolumab [4] is NCCN-recommended for neoadjuvant treat-
ment in combination with chemotherapy for early-stage NSCLC [11]. PDL1 inhibitor
atezolizumab is NCCN-recommended for adjuvant immunotherapy following chemother-
apy for stage 2/3A NSCLC in patients with PDL1 > 1% [9,10]. Nevertheless, the 5-year
survival rate for NSCLC remains a dismal 26% [1]. The molecular mechanisms underlying
NSCLC tumorigenesis, proliferation, and recurrence/metastasis are not well-understood.
To date, there are no accurate prognostic or predictive biomarkers for optimal treatment
selection for individual NSCLC patients. More therapeutic targets are needed to improve
NSCLC survival outcomes.
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Molecular network analysis is important to understand cancer mechanisms and ad-
vance precision oncology [12]. Recent advances in high-throughput technologies empower
landscape analysis of molecular machinery at DNA, RNA, and protein levels in tumor
initiation, progression, and metastasis. Traditional statistical or machine learning methods
merely computing numerical gene associations with clinical outcomes cannot effectively re-
veal essential molecular interaction networks at multiple regulatory levels. Combined with
patient clinical phenotypes, artificial intelligence (AI)-based multi-modal network analysis
is needed to embed biological relevance into discovery of biomarkers and therapeutic
targets for improved cancer outcomes.

In our previous studies, disease-specific gene co-expression networks were constructed
for identification of gene signatures with concurrent crosstalk with major NSCLC signaling
hallmarks [13]. These gene signatures led to discovery of a seven-gene panel that can
provide patient stratification and prediction of clinical benefits of chemotherapy in early-
stage NSCLC patients, including clinical trials [14]. Within the seven-gene panel, CD27 is
an emerging target for cancer immunotherapy [15–18] involved in PD1 and CD70 block-
ades [19–22], CD8+ T cell expansion [23], and anti-viral/anti-tumor T cell immunity [24].
As a new generation of immune checkpoint inhibitors (ICIs) [25], CD27 agonist antibodies
are being tested as adjuvant therapy in phase I/II clinical trials, showing promising results
for multiple tumor types [17,26]. We discovered proliferative multi-omics networks con-
taining CD27, PD1, and PDL1 as well as the seven-gene panel, respectively, implicated in
NSCLC prognosis, drug sensitivity, and therapeutics [27,28].

Recent studies showed that hub genes in multi-omics networks are promising cancer
biomarkers and therapeutic targets [29,30]. There are insufficient reports on multi-omics
network centralities quantified with graph theory metrics and their relevance in cancer
etiology and therapy. Genome-scale analysis is needed to evaluate the biological and
clinical relevance of network hub genes in NSCLC tumorigenesis, proliferation, and pa-
tient survival. In this study, we utilized a computationally efficient Boolean implication
algorithm to construct genome-scale multi-omics networks using CNV (n = 371), transcrip-
tomics (n = 200), and proteomics profiles (n = 103) of NSCLC patient bulk tumors. Network
centralities were evaluated using graph theory metrics and were correlated with differ-
ential gene/protein expression in tumors versus non-cancerous adjacent tissues (NATs),
in vitro dependency scores in CRISPR-Cas9/RNAi screening data, and hazard ratios in the
Cancer Genome Atlas (TCGA) NSCLC patients (n = 1016). Furthermore, the distributions
of network centrality metrics of immunotherapy targets PD1, PDL1, CTLA4, and CD27
were evaluated in the constructed NSCLC multi-omics networks.

2. Materials and Methods
2.1. Boolean Implication Networks

In this study, multi-omics networks were generated with our previously published
Boolean Implication network algorithm [31,32]. The details of the application of this
algorithm were described in our previous study [28]. Boolean implication networks were
used to construct CNV-mediated transcriptional networks in NSCLC tumors as described
previously [27,28]. In addition, mRNA co-expression, protein co-expression, and mRNA-
mediated protein expression networks were also constructed using the Boolean Implication
networks. The implication rules in each network were selected based on the thresholds
of their precision and scope [28,31,32]. In this study, the thresholds of precision and scope
were calculated using the sample size of each dataset and a z value of 1.64 (one-tailed z
tests, p < 0.05, 95% confidence interval).

2.2. NSCLC Patient Cohorts
2.2.1. NSCLC Patient Cohort GSE31800

NSCLC patient cohort with the NCBI Gene Expression Omnibus (GEO) accession
number GSE31800 [33] contained 271 tumor samples (179 adenocarcinomas and 92 squa-
mous cell carcinomas). All the samples had DNA copy number profiles, among which
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49 samples (29 adenocarcinomas, 20 squamous cell carcinomas) had matched microarray
gene expression measurements. Gene expression data were generated using the Custom
Rosetta-Affymetrix Human platform. Fresh-frozen lung tumors were obtained from Van-
couver General Hospital. Microdissection of tumor cells was performed, and total RNA
was isolated using RNeasy Mini Kits (Qiagen Inc., Duesseldorf, Germany). Samples were
labeled and hybridized to a custom Affymetrix microarray, containing 43,737 probes map-
ping to approximately 23,000 unique genes, according to the manufacturer’s protocols
(Affymetrix Inc., Santa Clara, CA, USA) All data were normalized using the Robust Mul-
tichip Average algorithm in R. Of the lung tumor cohort, only samples with sufficient
material for RNA isolation were selected for expression analysis.

The genome reference version was converted to hg38. The genome annotation was
obtained from the UCSC genome browser with the Python package cruzdb on 28 January
2020. Copy number variation (CNV) data were processed with Bioconductor R package
“CGHbase” (v1.46.0) [34] and “CGHcall” (v2.48.0) [35]. CNV data were categorized as
“1—amplification”, “0—normal”, and “−1—deletion” for constructing CNV co-occurrence
(CNV–CNV) networks. The gene expression data were categorized into three categories:
“1—up-regulated”, “0—normal”, and “−1—down-regulated” with the method using
27 housekeeping genes described in our previous study [28]. CNV-mediated gene ex-
pression networks were built with patients’ gene expression data and their matched CNV
profiles. Gene co-expression networks were constructed with the categorized gene expres-
sion data.

2.2.2. NSCLC Patient Cohort GSE28582

NSCLC patient cohort with NCBI GEO accession number GSE28582 [36,37] contained
100 tumor samples (50 adenocarcinomas, 22 large cell carcinomas, and 28 squamous cell
carcinomas). All samples had SNP array DNA copy number profiles and microarray gene
expression data.

A total of 2 µg RNA (RIN value > 7.0) from each tissue specimen was used for analysis
on Affymetrix Human Genome U133 Plus 2 arrays (Affymetrix Inc.). Sample preparation,
processing, and hybridization were performed according to the GeneChip Expression
Analysis Technical Manual (Affymetrix Inc., Rev. 5). Subsequent analyses of the gene
expression data were carried out in the freely available statistical computing language R
using packages available from the Bioconductor project. The raw data were normalized
using the robust multiarray average method and were available in GEO with the accession
number GSE28582. Only transcripts with average signal intensities above 5 were used for
further analysis. For the comparison of gene expression levels between different patient
groups, a two-sided Student’s t test was used.

The genome annotation version was converted to hg38. SNP array CNV data were
processed with the PennCNV package [38] and were then categorized as “1—amplification”,
“0—normal”, and “−1—deletion”. The gene expression data were processed in the same
way as described above. CNV–CNV networks, CNV-mediated gene expression networks,
and gene co-expression networks were also generated for this patient cohort.

2.2.3. Xu’s Lung Adenocarcinoma (LUAD) Patient Cohort

Xu’s LUAD patient cohort [39] contained paired tumors and non-cancerous adjacent
tissues (NATs) samples from 103 Chinese LUAD patients. All samples had protein expres-
sion profiles of matched tumors and NATs, among which 51 samples had RNA sequencing
gene expression profiles in tumors and 49 matched RNA sequencing gene expression
profiles in NATs.

The genome annotation version in Xu’s cohort was hg38 and thus did not require
additional conversion. Gene expression and log10 transformed protein expression data
were categorized into three categories: “1—up-regulated”, “0—normal”, and “−1—down-
regulated”. The categorization was based on the distribution of the selected housekeeping
genes (B2M, ESD, FLOT2, GAPDH, GRB2, HPRT1, HSP90AB1, LDHA, NONO, POLR2A,
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PPP1CA, RHOA, SDCBP, and TFRC) [14,40–42]. Gene co-expression networks, mRNA-
mediated protein expression networks, and protein co-expression networks of LUAD
tumors and NATs were generated for this patient cohort.

2.2.4. TCGA

LinkedOmics (http://www.linkedomics.org/, accessed on 28 April 2021) [43] was
utilized to obtain RNA sequencing data of TCGA–LUAD (n = 515) and TCGA–LUSC
(n = 501) patient cohorts. Clinical annotation including survival information was used to
calculate the hazard ratios of each gene with a univariate Cox model.

2.3. Graph Theory Centrality Metrics

Centrality metrics were used in the network analysis to identify critical nodes. The
centrality calculation methods can be divided into two main categories: local and global
methods. Local methods detect the influence of nodes based on local information (nodes
and their neighbors). These methods require simple information and low computational
complexity and are suitable for large and complex networks. Global methods require
traversing the global knowledge of the whole network to calculate the impact of nodes.
Although the computational complexity is higher, it will obtain some compensation in
accuracy and can obtain a more accurate node importance ranking. If the nodes and
connected edges in the network change over time, it will be challenging to obtain the global
properties. Therefore, global methods are often limited in dynamic situations.

In each of the networks used to calculate the centralities, all implication rule types
were merged; i.e., if gene A and gene B have an association with each other in a CNV–CNV
network, the amplification of gene A implies the amplification of gene B, and the deletion
of gene A can also imply the deletion of gene B. In this study, we only count the two rules
as one association for “A implies B”. All the centralities were calculated with the Python
package NetworkX [44].

2.3.1. Degree Centrality

Degree centrality is a local method that was first proposed for ranking the importance
of nodes. Degree centrality is the simplest and most intuitive measure of the importance
of a node. In a directed network, degree centrality can be further divided into in-degree
centrality and out-degree centrality. In this study, the in- and out-degree centralities for the
same-level gene association networks (i.e., CNV–CNV, mRNA co-expression, or protein
co-expression) are the same due to the symmetric characteristics. In- and out-degree
centralities are summed to degree centrality.

Degree centrality represents the total number of neighbors (the number of edges
connected to other nodes) of a node. The more neighbors the more important the node
is [45]. A network G(N, E) with N nodes and E edges has an adjacency matrix of A. The
degree centrality of node i in G(N, E) can be expressed as:

CD(i) =
∑N

j=1 Aij

N − 1
(1)

j (j 6= i) denotes all other nodes in the network, and Aij is the value in adjacency
matrix A. If there is a connection between node i and node j, then Aij = 1; otherwise,
Aij = 0. ∑N

j=1 Aij represents the total number of neighbors (connections) of node i. N-1 is
the maximum number of possible connections of a single node in the network.

2.3.2. Eigenvector Centrality

Eigenvector centrality takes into account not only the number of neighbors of a node
but also the importance of its neighbors in the network [46]. The main idea of eigenvector
centrality is that each node in the network is assigned a centrality, and the centrality of
each node is the sum of the centrality of its neighbors to which it is connected. A node will

http://www.linkedomics.org/
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have its centrality boosted by connecting to high-centrality nodes [47]. Nodes with higher
centrality can be connected to a large number of general nodes or a small number of other
nodes with high centrality.

A network G(N, E) with N nodes and E edges has adjacency matrix A. Similar to
degree centrality, Aij is the value in adjacency matrix A. If there is a connection between
node i and node j, then Aij = 1, and vice versa Aij = 0. Eigenvector centrality of node i is
expressed as [48]:

CE(i) =
1
λ ∑

j∈M(i)
Aijxj (2)

where λ is a constant representing the maximum value of the eigenvalues of the adjacency
matrix A. M(i) is the set of neighboring nodes of node i. xi is the score of the importance of
node i, x = [x1, x2, x3, . . . , xn]T, then Equation (2) can be written as the eigenvector equation
Ax = λx.

The basic way to calculate the vector x is to give an initial x(0) value, usually, 1,
multiply the vector x cyclically with A, and update x with the following Equation (3) until
x stabilizes and does not change, then the final value of x is obtained. If x is divided by the
principal eigenvalue λ of adjacency matrix A during each iteration, the equation yields a
convergent non-zero solution, i.e., x =λ−1Ax

x(t) = (λ− 1)Ax(t− 1), t = 1, 2, 3, . . . (3)

2.3.3. Betweenness Centrality

Betweenness centrality considers that the more times a node is present in the shortest
path between any two non-adjacent nodes, the node is routable and more important in
the network. Betweenness centrality is a global method of computing centrality, which
requires first getting all the shortest paths in the network. If a node appears on the shortest
path of all node pairs in the network more often, then that node is more important. The
network G(N, E) with N nodes and E edges, and the set V denotes the set of all nodes in the
network. The betweenness centrality of node i in G(N, E) can be expressed as [49]:

CB(i) =
2

(N − 1)(N − 2) ∑
s 6=i 6=t∈V

pst(i)
pst

(4)

s and t are any two nodes in the network, the two nodes cannot be the same or node i.
pst denotes the number of shortest paths between node s and node t in the network, and
pst(i) denotes the number of entries in the shortest path between node s and node t that
passed through node i. The term 2

(N−1)(N−2) is used for normalization.

2.3.4. Closeness Centrality

Closeness centrality is also a global method based on the shortest path between nodes.
It ranks nodes based on the average distance between the target node and other nodes in
the network. The smaller the average distance between a node and other nodes, the greater
the closeness centrality of that node, i.e., the more critical that node is. dij denotes the length
of the shortest path between any two nodes in the network, then di =

1
N−1 ∑j 6=i dij is the

average shortest path length from node i to other nodes in the network. The closeness
centrality of node i is expressed as follows:

CC(i) =
1
di

=
N − 1

∑j 6=i dij
(5)

This formula is only applicable to the case of a connected network (i.e., there exists a
path from every node to every other node in the network).
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2.3.5. VoteRank Centrality

VoteRank centrality is an algorithm proposed by Zhang et al. [50] to identify important
nodes based on the phenomenon of voting in reality. The VoteRank algorithm simulates
the voting process by considering that each node has two attributes: voting score (VS) and
voting ability (VA). The sum of VAs of all neighbors of node i is the VS of node i. That is, in
a network G(N, E) with N nodes and E edges, the VoteRank centrality of node i is:

CV(i) = ∑
j∈M(i)

VAj (6)

M(i) is the set of neighboring nodes of node i. The VoteRank algorithm selects one
node that gets the highest voting score in each round. If the first r nodes need to be selected,
r rounds of operation need to be performed, and the order of the nodes in the result set S is
their VoteRank centrality.

2.4. CRISPR-Cas9 Knockout Assays

In the Cancer Cell Line Encyclopedia (CCLE) panel, the dependency scores of whole-
genome CRISPR-Cas9 knockout screening data of 94 human NSCLC cell lines were obtained
from the DepMap portal (https://depmap.org/portal/download/all/, accessed on 12
September 2022; release 21Q4) [51,52]. The dependency score threshold used for determin-
ing a significant effect on a cell line was –0.5 in this study [27,53]. A gene with a dependency
score lower than –0.5 was considered as having a significant effect of CRISPR-Cas9 knockout
on the corresponding cell line.

2.5. RNAi Knockdown Assays

The dependency scores of whole-genome RNA interference (RNAi) knockdown screen-
ing data of 92 human NSCLC cell lines in CCLE were also obtained from the DepMap
portal (https://depmap.org/portal/download/all/, accessed on 12 September 2022; re-
lease 21Q4) [51,52]. The dependency score threshold used for determining a significant
effect on the cell line was also−0.5 [27,53]. A dependency score smaller than−0.5 indicated
the gene has a significant RNAi knockdown effect on the corresponding cell line.

2.6. Statistical Methods

Statistical analysis was performed in R software (version 4.1.3) with RStudio (ver-
sion 2022.07.2 Build 576). The comparisons of two groups, such as differential expression
analysis, were performed with two sample t tests. Univariate Cox proportional hazards
regression was performed to obtain hazard ratios using the R package “survival”. To test if
a constructed Boolean implication network had higher average centrality values compared
with random networks, the averaged centrality metrics (except VoteRank centrality) of the
constructed network were compared with those of 1000 randomly selected networks with
the same number of genes. The random networks contained the same number of genes
randomly selected from the whole genome excluding our identified network genes. The p
values were determined as the percentage of the constructed network that did not have a
higher average centrality value than a random network. Comparison of VoteRank centrality
was performed with one-tailed two-sample Wilcoxon tests. A total of 1000 Wilcoxon tests
were applied in the random tests, and the p values showed a percentage of non-significant
results. The correlation between centrality metrics and tumorigenesis, proliferation, and
cancer patient survival outcomes was measured with Pearson’s correlation coefficients in
the genome-scale. T statistics of two-tailed two-sample t tests (unpaired) in differential
expression between tumor versus NATs were used for tumorigenesis assessment. Positive
t statistics indicated higher expression in tumors than in NATs and vice versa. Gene de-
pendency scores of human NSCLC cell lines from CRISPR-Cas9/RNAi data were used in
proliferation analysis. Negative dependency scores indicated the cancer cell line growth
was highly dependent on the gene; positive dependency scores indicated the cell line grew
faster after the gene was knocked out/knocked down. Univariate hazard ratios were used

https://depmap.org/portal/download/all/
https://depmap.org/portal/download/all/
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in the association assessment with patient survival outcomes. Hazard ratios higher than
1 indicate increased risks from tumor recurrence, metastasis, or death from disease. Since
the VoteRank centrality indicated a higher rank with a smaller number, which was the
reverse of the other centrality metrics, a positive correlation with VoteRank was equiva-
lent to a negative correlation with other centrality metrics. Any statistical results with a
p value < 0.05 were considered significant.

ToppFun, an online tool from ToppGene Suite [54], was used to perform the functional
enrichment analysis. The ToppFun tool can be accessed at https://toppgene.cchmc.org/
enrichment.jsp (accessed on 25 November 2022).

3. Results
3.1. Multi-Omics Networks of NSCLC Patient Cohorts

Using the Boolean Implication network algorithm, 12 multi-omics networks were con-
structed, including CNV–CNV networks, CNV-mediated gene expression (GE) networks,
and mRNA co-expression networks for patient cohorts GSE28582 (n = 100) [36,37] and
GSE31800 (n = 271) [33], respectively; mRNA co-expression networks, mRNA-mediated
protein expression networks, and protein co-expression networks in tumors and NATs
samples, respectively, in Xu’s LUAD patient cohort [39]. Detailed network information was
provided in Table 1.

Table 1. Information of multi-omics networks in tumor samples from non-small cell lung cancer
patients. The network nodes are genes and network edges are computed gene associations (one-tailed
z tests, p < 0.05, 95% confidence interval).

Patient Cohort Network (Number of Patient Samples) Number of
Network Nodes

Number of
Network Edges

GSE28582 [37,38]
CNV–CNV (n = 100) 11,533 3,228,054

CNV-mediated GE (n = 100) 20,836 3,102,789
mRNA co-expression (n = 100) 15,297 48,373,448

GSE31800 [34]
CNV–CNV (n = 271) 19,344 20,950,447

CNV-mediated GE (n = 49) 17,442 2,421,110
mRNA co-expression (n = 49) 15,180 4,541,858

Xu’s LUAD [40]

NATs: mRNA co-expression (n = 49) 12,408 20,419,308
NATs: mRNA-mediated protein expression (n = 49) 13,254 436,488

NATs: Protein co-expression (n = 103) 2206 785,204

Tumors: mRNA co-expression (n = 51) 11,938 16,101,406
Tumors: mRNA-mediated protein expression (n = 51) 13,047 1,501,406

Tumors: Protein co-expression (n = 103) 3072 2,273,792

3.2. Association of Centrality Metrics with Tumorigenesis, Proliferation, and Patient Survival

The centrality metrics in this study were generated based on the 12 multi-omics
networks shown in Table 1. Degree centrality, in-degree centrality, out-degree centrality,
eigenvector centrality, betweenness centrality, closeness centrality, and VoteRank central-
ity were calculated for each network. To assess the association between multi-omics
network centrality and NSCLC tumorigenesis, proliferation, and patient survival in the
genome scale, correlation coefficients between the seven centrality metrics and t statis-
tics of differential gene/protein expression in tumors versus NATs, dependency scores
in CRISPR-Cas9/RNAi, and hazard ratios in univariate Cox model of survival analysis
were computed for each of the 12 multi-omics networks. Figure 1 showed the number of
concordant significant correlations with seven centrality metrics between each pair of net-
works. Selected hub genes were provided in Supplementary File S1. Measurements used to
assess tumorigenesis, proliferation, and patient survival were provided in Supplementary
File S2. Categorized data as input to generate multi-omics networks were provided in
Supplementary File S3.

https://toppgene.cchmc.org/enrichment.jsp
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Figure 1. Concordance of correlation coefficients between seven centrality metrics of the selected
networks with NSCLC tumorigenesis, proliferation, and patient survival. Tumorigenesis was de-
scribed with the t statistics (two-sample t tests) of tumor vs. NAT differential expression in mRNA
(ntumor = 51, nNAT = 49) and protein (ntumor = nNAT = 103) datasets in Xu’s LUAD patients [39]. Pro-
liferation was assessed in human NSCLC cell lines with dependency scores in in vitro CRISPR-Cas9
(n = 94) and RNAi (n = 92) genome-wide screening. Patient survival was represented by hazard ratios
in univariate Cox modeling of TCGA RNA sequencing data of NSCLC patient tumors (n = 1016).
Each cell in the figure showed the number of metrics with concordant significant Pearson’s correlation
coefficients in a pair of compared networks: I. CNV–CNV networks (GSE28582 and GSE31800); II.
CNV-mediated GE networks (GSE28582 and GSE31800); III. gene co-expression networks (GSE28582
and GSE31800); IV. gene co-expression networks (Xu’s LUAD tumors and NATs [39]); V. mRNA-
mediated protein expression networks (Xu’s LUAD tumors and NATs [39]); VI. protein co-expression
networks (Xu’s LUAD tumors and NATs [39]).

Differential mRNA expression in tumors versus NATs in Xu’s LUAD patients [39] had
a concordant significant correlation with network centrality metrics across independent
patient cohorts except for CNV–CNV networks (Table 2). In CNV-mediated GE networks
and mRNA co-expression networks constructed in GSE28582 and GSE31800 patient co-
horts, genes with higher network centrality, quantified with multiple metrics, correlated
with higher mRNA expression in tumors. For mRNA co-expression networks, mRNA-
mediated protein expression networks, and protein co-expression networks constructed in
both tumors and NATs, higher network centrality metrics correlated with higher mRNA
expression in tumors. These results indicate that hub genes in multi-omics networks in
tumors and NATs appear to be oncogenic.

Differential protein expression in tumors versus NATs in Xu’s LUAD patients [39]
had a concordant significant correlation with centrality metrics in protein co-expression
networks in both tumors and NATs, respectively (Table 3), consistent with elevated mRNA
expression of hub genes in tumors in the above multi-omics networks (Table 2). These
results suggest that hub genes in protein co-expression networks in both tumors and NATs
have higher oncogenic potential. Interestingly, in CNV–CNV networks constructed in both
GSE28582 and GSE31800, hub genes with more co-occurrence of CNV in NSCLC tumors
were associated with lower protein expression in tumors, suggesting tumor-suppressive
potential (Table 3).
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Table 2. Correlations between seven centralities of the selected networks and t statistics of differential mRNA expression in tumors vs. NATs in Xu’s LUAD
cohort [39]. pos: Pearson’s correlation coefficient r > 0 and p < 0.05; neg: r < 0 and p < 0.05. The blue color indicates concordant positive correlations.
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mRNA co-expression network (GSE31800, n = 49) - - - pos - pos -

mRNA co-expression networks in Xu’s LUAD
tumors and NATs

mRNA co-expression network in LUAD tumors (n=51) pos pos pos pos - pos -

mRNA co-expression network in LUAD NATs (n=49) pos pos pos pos pos pos neg

mRNA-mediated protein expression networks
in Xu’s LUAD tumors and NATs

mRNA-mediated protein expression network in LUAD tumors (n=51) pos pos - pos pos pos pos

mRNA-mediated protein expression network in LUAD NATs (n = 49) pos pos - - - pos -

Protein co-expression networks in Xu’s LUAD
tumors and NATs

Protein co-expression network in LUAD tumors (n = 103) pos pos pos pos pos pos -

Protein co-expression network in LUAD NATs (n = 103) pos pos pos pos - pos -
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Table 3. Correlations between seven centralities of the selected networks and t statistics of differential protein expression in tumors vs. NATs in Xu’s LUAD cohort
(n = 103) [39]. pos: Pearson’s correlation coefficient r > 0 and p < 0.05; neg: r < 0 and p < 0.05. The blue color indicates concordant positive correlations. The orange
color indicates concordant negative correlations.

Tumorigenesis—Differential Protein Expression in Tumors vs. NATs
(n = 103)
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CNV–CNV networks
CNV–CNV network (GSE28582, n = 100) neg neg neg - neg neg pos

CNV–CNV network (GSE31800, n = 271) neg neg neg neg neg - -

CNV-mediated GE networks
CNV-mediated GE network (GSE28582, n = 100) - pos neg pos - pos pos

CNV-mediated GE network (GSE31800, n = 49) - - - - - - -

mRNA co-expression networks
mRNA co-expression network (GSE28582, n = 100) pos pos pos pos - pos -

mRNA co-expression network (GSE31800, n = 49) neg neg neg neg neg - pos

mRNA co-expression networks in Xu’s LUAD
tumors and NATs

mRNA co-expression network in LUAD tumors (n = 51) - - - - neg - pos

mRNA co-expression network in LUAD NATs (n = 49) pos pos pos pos pos pos neg

mRNA-mediated protein expression networks
in Xu’s LUAD tumors and NATs

mRNA-mediated protein expression network in LUAD tumors (n = 51) pos pos neg pos pos pos pos

mRNA-mediated protein expression network in LUAD NATs (n = 49) - - - - - - -

Protein co-expression networks in Xu’s LUAD
tumors and NATs

Protein co-expression network in LUAD tumors (n = 103) pos pos pos pos - pos -

Protein co-expression network in LUAD NATs (n = 103) pos pos pos pos - pos -
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Next, we assessed the association between multi-omics network centrality and NSCLC
proliferation. In genome-scale CRISPR-Cas9/RNAi screening, hub genes in CNV–CNV
networks were associated with higher dependency scores, i.e., anti-proliferative potential
(Tables 4 and 5), consistent with a lower protein expression in tumors and putative tumor-
suppressive potential (Table 3). In contrast, hub genes in CNV-mediated GE networks,
mRNA co-expression networks, and mRNA-mediated protein expression networks in
both tumors and NATs correlated with lower dependency scores, i.e., proliferation, across
different NSCLC patient cohorts in CRISPR-Cas9/RNAi screening (Tables 4 and 5). It
is noteworthy that regulated genes represented with higher in-degree centrality were
associated with proliferative potential, whereas regulatory genes represented with higher
out-degree centrality were associated with anti-proliferative potential in CNV-mediated
GE networks and mRNA-mediated protein expression networks. Hub genes in protein
co-expression networks in NATs, measured with multiple metrics, appeared to be more
proliferative in human NSCLC cell lines (Tables 4 and 5), consistent with their putative
oncogenic potential observed in Tables 2 and 3.

The association between network centralities and NSCLC patient survival was also
examined. Hazard ratios in univariate Cox modeling of combined TCGA–LUAD (n = 515)
and TCGA–LUSC (n = 501) were used in the genome-wide evaluation. Hub genes in
mRNA co-expression networks, mRNA-mediated protein expression, and protein co-
expression networks were associated with higher hazard ratios in multiple patient cohorts,
suggesting they are survival hazard genes (Table 6). These results are consistent with the
oncogenic and proliferative potential of hub genes described above. Regulatory genes
with higher out-degree centralities in mRNA-mediated protein expression networks in
tumors and NATs in Xu’s LUAD cohort [39] were associated with lower hazard ratios
in TCGA patients. These results are consistent with the anti-proliferative potential of
regulatory genes (Tables 4 and 5). The association of VoteRank in mRNA co-expression
networks tumors and NATs in Xu’s Chinese patient cohort was inconsistent with those of
other centrality metrics in GSE31800 and GSE28582. Overall, hub genes in multi-omics
networks tend to be associated with increased survival hazards, i.e., poor prognosis, in
NSCLC patients (Table 6).

3.3. Distributions of Multi-Omics Network Centrality Metrics of Therapeutic Targets

Having substantiated the association between multi-omics network centralities and
NSCLC tumorigenesis, proliferation, and patient survival, we sought to investigate the
potential of hub genes as therapeutic targets. Here, we examined four established immune
checkpoint inhibitors (ICIs) for NSCLC immunotherapy, including PD1, PDL1, CD27, and
CTLA4. The percentile of these ICIs was determined for the seven centrality metrics of
twelve constructed multi-omics networks. Figure 2 showed the rank of centrality metrics of
CD27, CTLA4, PD1, and PDL1 that were within the top 10th percentile in our constructed
multi-omics networks. These ICIs were top hub genes in CNV-mediated gene expression
networks in GSE28582 and GSE31800, mRNA co-expression networks in tumors from
GSE28582, GSE31800, and Xu’s LUAD patient cohort [39], and mRNA-mediated protein
expression network of tumors in Xu’s LUAD patient cohort [39]. These ICIs were not
ranked within the top 10th percentile of the examined centrality metrics in CNV–CNV
networks or protein co-expression networks constructed in this study. These results imply
that established therapeutic targets in immunotherapy are often top-ranked hub genes in
multi-omics networks in tumors across NSCLC patient cohorts.
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Table 4. Correlations of seven centrality metrics of selected networks with CRISPR-Cas9 dependency scores. pos: Pearson’s correlation coefficient r > 0 and p < 0.05;
neg: r < 0 and p < 0.05; -: not significant. The numbers in parentheses showed the number of NSCLC cell lines with a significant correlation coefficient. The blue
color indicates concordant positive correlations. The orange color indicates concordant negative correlations.

Proliferation-CRISPR-Cas9 (n = 94)
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CNV–CNV networks

CNV–CNV network (GSE28582, n = 100) pos
(61/94)

pos
(61/94)

pos
(61/94)

pos
(9/94)

pos
(94/94)

pos
(39/94)

neg
(93/94)

CNV–CNV network (GSE31800, n = 271) pos
(94/94)

pos
(94/94)

pos
(94/94)

pos
(94/94)

pos
(94/94)

pos
(94/94)

neg
(94/94)

CNV-mediated GE networks

CNV-mediated GE network (GSE28582, n = 100) neg
(40/94)

neg
(94/94)

pos
(72/94)

neg
(94/94) - neg

(91/94)
neg

(43/94)

CNV-mediated GE network (GSE31800, n = 49) pos
(90/94)

neg
(72/94)

pos
(94/94)

neg
(76/94)

pos
(15/94)

neg
(92/94)

neg
(21/94)

mRNA co-expression networks

mRNA co-expression network (GSE28582, n = 100) neg
(94/94)

neg
(94/94)

neg
(94/94)

neg
(94/94)

neg
(12/94)

neg
(94/94)

pos
(94/94)

mRNA co-expression network (GSE31800, n = 49) - - - neg
(94/94)

pos
(81/94)

neg
(94/94)

pos
(4/94)

mRNA co-expression networks in Xu’s LUAD
tumors and NATs

mRNA co-expression network in LUAD tumors (n = 51) neg
(64/94)

neg
(64/94)

neg
(64/94)

neg
(91/94)

pos
(6/94)

neg
(76/94) -

mRNA co-expression network in LUAD NATs (n = 49) neg
(94/94)

neg
(94/94)

neg
(94/94)

neg
(94/94)

neg
(38/94)

neg
(94/94)

pos
(92/94)

mRNA-mediated protein expression networks
in Xu’s LUAD tumors and NATs

mRNA-mediated protein expression network in LUAD tumors (n = 51) neg
(94/94)

neg
(94/94)

pos
(94/94)

neg
(94/94)

neg
(94/94)

neg
(94/94)

neg
(94/94)

mRNA-mediated protein expression network in LUAD NATs (n = 49) neg
(94/94)

neg
(94/94)

pos
(94/94)

neg
(94/94)

neg
(94/94)

neg
(94/94)

neg
(30/94)

Protein co-expression networks in Xu’s LUAD
tumors and NATs

Protein co-expression network in LUAD tumors (n = 103) - - - - - - neg
(21/94)

Protein co-expression network in LUAD NATs (n = 103) neg
(93/94)

neg
(93/94)

neg
(93/94)

neg
(94/94) - neg

(75/94) -
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Table 5. Correlations of seven centrality metrics of selected networks with RNAi dependency scores. pos: Pearson’s correlation coefficient r > 0 and p < 0.05;
neg: r < 0 and p < 0.05. The numbers in parentheses showed the number of significant NSCLC cell lines. The blue color indicates concordant positive correlations.
The orange color indicates concordant negative correlations.

Proliferation—RNAi (n = 92)
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CNV–CNV networks

CNV–CNV network (GSE28582, n = 100) pos
(17/92)

pos
(17/92)

pos
(17/92) - pos

(88/92)
pos

(8/92)
neg

(91/92)

CNV–CNV network (GSE31800, n = 271) pos
(66/92)

pos
(66/92)

pos
(66/92)

pos
(70/92)

pos
(82/92)

pos
(67/92)

neg
(5/92)

CNV-mediated GE networks

CNV-mediated GE network (GSE28582, n = 100) neg
(27/92)

neg
(92/92)

pos
(11/92)

neg
(92/92) - neg

(91/92) -

CNV-mediated GE network (GSE31800, n = 49) pos
(1/92)

neg
(12/92)

pos
(9/92)

neg
(9/92)

pos
(1/92)

neg
(65/92)

pos
(1/92)

mRNA co-expression networks

mRNA co-expression network (GSE28582, n = 100) neg
(92/92)

neg
(92/92)

neg
(92/92)

neg
(92/92)

neg
(80/92)

neg
(92/92)

pos
(92/92)

mRNA co-expression network (GSE31800, n = 49) neg
(24/92)

neg
(24/92)

neg
(24/92)

neg
(74/92)

pos
(2/92)

neg
(92/92)

pos
(6/92)

mRNA co-expression networks in Xu’s LUAD
tumors and NATs

mRNA co-expression network in LUAD tumors (n = 51) - - - neg
(1/92)

pos
(33/92) - neg

(27/92)

mRNA co-expression network in LUAD NATs (n = 49) neg
(92/92)

neg
(92/92)

neg
(92/92)

neg
(92/92)

neg
(82/92)

neg
(92/92)

pos
(78/92)

mRNA-mediated protein expression networks
in Xu’s LUAD tumors and NATs

mRNA-mediated protein expression network in LUAD tumors (n = 51) neg
(92/92)

neg
(92/92)

pos
(92/92)

neg
(92/92)

neg
(92/92)

neg
(92/92)

neg
(89/92)

mRNA-mediated protein expression network in LUAD NATs (n = 49) neg
(92/92)

neg
(92/92)

pos
(92/92)

neg
(92/92)

neg
(88/92)

neg
(92/92)

neg
(1/92)

Protein co-expression networks in Xu’s LUAD
tumors and NATs

Protein co-expression network in LUAD tumors (n = 103) - - - neg
(1/92) - - neg

(10/92)

Protein co-expression network in LUAD NATs (n = 103) neg
(32/92)

neg
(32/92)

neg
(32/92)

neg
(65/92)

neg
(1/92)

neg
(14/92) -



Biomolecules 2022, 12, 1782 14 of 24

Table 6. Correlations of seven centrality metrics of selected networks with hazard ratios in univariate Cox modeling of combined TCGA–LUAD (n = 515) and
TCGA–LUSC (n = 501). pos: Pearson’s correlation coefficient r > 0 and p < 0.05; neg: r < 0 and p < 0.05. The blue color indicates concordant positive correlations. The
orange color indicates concordant negative correlations.

Patient Survival—Hazard Ratio in Combined TCGA–LUAD (n = 515) and TCGA–LUSC (n = 501)
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CNV–CNV networks
CNV–CNV network (GSE28582, n = 100) - - - - - - -

CNV–CNV network (GSE31800, n = 271) neg neg neg neg neg neg pos

CNV-mediated GE networks
CNV-mediated GE network (GSE28582, n = 100) - pos - pos - - -

CNV-mediated GE network (GSE31800, n = 49) neg - neg - - - -

mRNA co-expression networks
mRNA co-expression network (GSE28582, n = 100) pos pos pos pos - pos neg

mRNA co-expression network (GSE31800, n = 49) pos pos pos pos - pos -

mRNA co-expression networks in Xu’s
LUAD tumors and NATs

mRNA co-expression network in LUAD tumors (n = 51) neg neg neg neg neg neg pos

mRNA co-expression network in LUAD NATs (n = 49) - - - - - - pos

mRNA-mediated protein expression
networks in Xu’s LUAD tumors and NATs

mRNA-mediated protein expression network in LUAD tumors (n = 51) pos pos neg pos pos pos -

mRNA-mediated protein expression network in LUAD NATs (n = 49) pos pos neg pos pos pos -

Protein co-expression networks in Xu’s
LUAD tumors and NATs

Protein co-expression network in LUAD tumors (n = 103) - - - pos - - -

Protein co-expression network in LUAD NATs (n = 103) pos pos pos pos pos pos neg
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Figure 2. Distributions of centrality metrics in multi-omics networks with CD27, CTLA4, PD1,
or PDL1 ranked within the top 10th percentile. Each subplot represented a centrality metric.
(A) Degree centrality. (B) In-degree centrality. (C) Out-degree centrality. (D) Eigenvector cen-
trality. (E) Betweenness centrality. (F) Closeness centrality. (G) VoteRank centrality. Each violin plot
showed the distribution of the centrality metric in one specific network: I. CNV-mediated gene expres-
sion network in GSE28582; II. mRNA co-expression network in GSE28582; III. CNV-mediated gene
expression network in GSE31800; IV. mRNA co-expression network in GSE31800; V. mRNA-mediated
protein expression network in tumors of Xu’s LUAD patient cohort [39]; VI. mRNA co-expression
network in tumors of Xu’s LUAD patient cohort [39].

3.4. Clinical Relevance of Multi-Omics Network Centrality

We utilized Boolean implication networks and identified two multi-omics networks
implicated in NSCLC proliferation, prognosis, and drug sensitivity in our previous stud-
ies [27,28]. Both multi-omics networks led to discovery of novel therapeutic targets for
treating NSCLC [27,28]. Here, we examined if these two clinically relevant multi-omics
networks had higher network centralities in the genome-scale compared with 1000 random
networks with the same number of genes. Both networks utilized CNV and GE profiles.
The genes included in these two networks were provided in Supplementary File S4.
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The results showed that, in genome-scale CNV–CNV networks in GSE28582 and
GSE31800, the genes from network A and network B did not have significantly higher
average centrality measurements than randomly selected gene sets. In CNV-mediated
GE networks in GSE28582 and GSE31800, the genes from network A and network B both
had significantly (p < 0.05) higher average in-degree centrality, closeness centrality, and
betweenness centrality values than randomly selected sets of genes. In gene co-expression
networks in GSE28582 and GSE31800, the genes from network A and network B had
significantly (p < 0.05) higher averaged centralities than randomly selected sets of genes in
almost all the evaluated metrics (Figure 3). These results show that multi-omics networks
with clinical relevance tend to contain more hub genes than randomly selected gene sets
from genome-scale CNV-mediated GE networks and gene co-expression networks.

Figure 3. The comparison of centrality metrics of two published multi-omics networks vs. randomly
selected networks with the same number of genes. Network A contains 30 genes in the CD27, PD1,
and PDL1 multi-omics network in NSCLC tumors [28]. Network B contains 66 genes in the multi-
omics network of the 7-gene prognostic signature in NSCLC tumors [27]. The p values showed the
percentage of randomly selected genes having a larger averaged centrality (except VoteRank) than
networks A and B. The p value of VoteRank centrality showed the percentage of randomly selected
genes having a lower averaged rank (one-tailed Wilcoxon rank sum test, p < 0.05) than networks
A and B. Each column showed a centrality metric: I. degree centrality; II. in-degree centrality; III.
out-degree centrality; IV. eigenvector centrality; V. closeness centrality; VI. betweenness centrality;
VII. VoteRank centrality.

3.5. Important Hub Genes in NSCLC

To select hub genes important in NSCLC, we first extracted the genes that ranked
within the top 10th percentile for all seven evaluated centrality metrics in at least one of
the 12 multi-omics networks. Then, the measurements of tumorigenesis (t statistics of
mRNA and protein differential expression in tumors vs. NATs in Xu’s LUAD cohort [39])
and patient survival (hazard ratios in univariate modeling of mRNA expression in TCGA
NSCLC patients) were extracted for each gene. The genes that were significant (p < 0.05) in
at least one measurement were shown in Supplementary File S1.

Table 7 showed the hub genes that were significant and concordant in all measurements
of tumorigenesis and patient survival. These genes had significantly higher mRNA and
protein expression in tumors compared with NATs and had an increased hazard ratio (>1)
in patient survival. These genes are potential oncogenes in NSCLC. Among these genes,
BUB3, DNM1L, EIF2S1, KPNB1, NMT1, PGAM1, and STRAP had a significant dependent
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score in at least 41 human NSCLC cell lines tested in CRISPR-Cas9 or RNAi screening,
indicating they are also proliferation genes. Venn diagrams of gene associations involving
these seven genes in NSCLC regulatory networks were provided in Supplementary File
S5. Among these NSCLC regulatory networks, CDC6 and DIAPH3 had significant mRNA
co-expression (p < 0.05, z tests) with all seven genes in both GSE28582 [36,37] and Xu’s
LUAD tumors [39] (Figure 4). Twenty proteins had significant co-expression (p < 0.05,
z tests) with the protein expression of all seven genes (Figure 4). Significantly enriched
cytobands and gene families of this network were obtained with ToppFun and were listed
in Supplementary File S6.

Table 7. Selected hub genes that were significant in all measurements of tumorigenesis and patient
survival. LUAD: Xu’s LUAD cohort [39]. DE: differential expression. Fold change: tumor/NATs.
The percentage in proliferation results represented the number of cell lines with a dependency
score < −0.5 divided by the total number of tested human NSCLC cell lines in CRISPR-Cas9/RNAi
screening. CI: confidence interval.

Gene Name
mRNA DE t
Statistics in

LUAD

mRNA DE
Fold Change

in LUAD

Protein DE t
Statistics in

LUAD

Protein DE
Fold Change

in LUAD

Proliferation%
(CRISPR-

Cas9)

Proliferation%
(RNAi)

Survival
Hazard
Ratio in
TCGA

95% CI of
Survival
Hazard
Ratio in
TCGA

BUB3 10.45 1.78 12.50 1.05 94/94 2/92 1.26 [1.02, 1.55]
DNM1L 3.10 1.29 14.21 1.08 50/94 41/92 1.17 [1.01, 1.37]
EIF2S1 5.84 1.60 15.79 1.04 94/94 70/92 1.24 [1.03, 1.5]

GALNT2 6.50 1.92 15.87 1.10 0/94 0/92 1.28 [1.12, 1.47]
KPNB1 9.56 1.80 14.58 1.04 94/94 73/92 1.24 [1.01, 1.52]
NMT1 8.36 1.46 17.63 1.10 62/94 0/92 1.31 [1, 1.71]
PFKP 6.09 2.51 16.59 1.10 1/94 0/92 1.21 [1.09, 1.34]

PGAM1 3.81 1.48 20.62 1.09 94/94 1/92 1.17 [1.01, 1.35]
PTGES3 5.79 1.49 17.46 1.10 3/94 0/92 1.24 [1.03, 1.49]
STRAP 5.61 1.66 18.41 1.09 84/94 8/92 1.17 [1.02, 1.35]

Figure 4. Gene and protein co-expression network of selected seven genes (BUB3, DNM1L, EIF2S1,
KPNB1, NMT1, PGAM1, and STRAP) in NSCLC tumors.
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4. Discussion

NSCLC is the leading cause of cancer-related deaths due to its complex etiology. Use
of small-molecule tyrosine kinase inhibitors (TKIs) and immunotherapy has clinically
benefited selected NSCLC patients [55]. Nevertheless, the overall cure and survival rates
of NSCLC remain low. Novel biomarkers and drug targets are needed to improve patient
care outcomes. The availability of multimodal data offers emerging opportunities for the
discovery of biomarkers and therapeutic targets for better cancer outcomes in broader
patient populations.

The molecular machinery in a tumor and its microenvironment involves complicated
interactions among genes and proteins functioning in epithelial, immune, and stromal
cells as well as other systemic host factors [56]. Given this intricacy, multi-omics networks
that integrate these elements should be elucidated to better understand tumor biology
and molecular mechanisms for development of novel therapeutic strategies. Recent multi-
omics studies identified several hub genes as cancer biomarkers and drug targets, including
NSCLC [29,30]. Nevertheless, it is not unknown if molecular network centralities are
associated with tumorigenesis, proliferation, and patient survival in NSCLC in an unbiased,
systematic evaluation.

A barrier to evaluating genome-scale network centralities lies in that current computa-
tional methods have certain limitations in modeling multi-omics networks. Correlation
networks (relevance networks) [57] cannot integrate continuous expression variables with
discrete data, such as CNV. Bayesian networks are topologically acyclic and cannot model
cyclic molecular interactions [58]. More importantly, probabilistic graphical models, includ-
ing Bayesian networks and Markov networks [59], describe joint probability distribution
and have exponential complexity [60], making it impossible to model genome-scale net-
works. Other Boolean networks [61] use Fisher’s exact tests or χ2-square tests to analyze
binary variables in quadrants that do not present multivariate biological states.

This study utilized our developed Boolean implication networks to construct genome-
scale multi-omics networks. Our Boolean implication network algorithm is based on
prediction logic and overcomes the theoretical limitations of these models, with its capa-
bility to efficiently analyze multivariate biological data, cyclic molecular interactions, and
discrete and continuous multi-omics data in seamless integration [27,28]. Our Boolean
implication networks revealed more biologically relevant molecular interactions in NSCLC
tumors than other Boolean networks, Bayesian networks, and correlation networks in com-
prehensive evaluation using MSigDB [32]. Using our Boolean implication networks, novel
gene signatures co-expressed with major NSCLC signaling hallmarks were identified as
prognostic of NSCLC survival outcomes, which outperformed the existing gene signatures
in the same patient data [13]. Furthermore, a prognostic and predictive seven-gene panel
was discovered from these identified candidate genes and was confirmed in qRT-PCR [14],
RNA-sequencing data of TCGA [27], and proteomic profiles in more than 1600 NSCLC
patients, including a clinical trial JBR.10.

This study conducted a landscape evaluation of the biological and clinical relevance
of multi-omics Boolean implication network centralities rigorously quantified with graph
theory metrics in NSCLC tumors. Our results across multiple patient cohorts showed
that hub genes in CNV-mediated GE networks, mRNA co-expression networks, mRNA-
mediated protein expression networks, and protein co-expression networks in NSCLC
tumors had oncogenic and proliferative potential and were associated with poor patient
prognosis. Hub genes in protein co-expression networks in NATs also seemed to be more
proliferative and oncogenic in NSCLC. Regulated genes represented with higher in-degree
centrality in multi-omics networks were associated with proliferative potential and worse
patient survival, whereas regulatory genes represented with higher out-degree centrality
were associated with anti-proliferative potential and better patient survival. The results on
CNV co-occurrence networks were different from those on multi-omics networks involving
gene/protein expression; hub genes with more co-occurrences of CNV in NSCLC tumors
appeared to have tumor-suppressive and anti-proliferative potential.
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Our previous studies identified two CNV-mediated GE networks containing prolifera-
tive and prognostic gene signatures, capable of providing accurate patient stratification
in more than 1000 NSCLC patients [27,28]. One multi-omics network contains 66 genes,
including the prognostic and predictive seven-gene panel [27], and the other one with
30 genes involves PD1, PDL1, and CD27 [28]. In the TCGA consortium, the seven marker
genes and major ICIs have more CNV aberrations than mutations in NSCLC tumors. In
addition to their prognostic capacity, these two multi-omics networks can determine drug
sensitivity to 10 therapeutic regimens in 135 human NSCLC cell lines [27,28]. Further
analysis of these two multi-omics networks led to the discovery of novel targeted therapies
as new or repositioning drugs for treating NSCLC [27,28]. Both networks had significantly
higher average centrality than random networks selected in genome-wide CNV-mediated
GE networks and gene co-expression works. These results substantiate that clinically
relevant multi-omics networks have more hub genes than random networks. In addition,
NSCLC immunotherapy targets, including PD1, PDL1, CTLA4, and CD27, also ranked
as top hub genes in most multi-omics networks constructed in this study. To show the
relevance of network centrality and therapeutic targets, Figure 2 included immunotherapy
targets that are either used for treating NSCLC patients (including PD1, PDL1, and CTLA4)
or showed promising results in phase I/II clinical trials (CD27). Many NSCLC biomarkers,
including CD151, that have not been substantiated in clinical trials were not included in
Figure 2. CD151, a cancer driver and tumor metastasis promoter [62–66], was ranked as
a top hub gene within the 10th percentile of degree centrality in the CNV-mediated gene
expression network in GSE28582 [36,37] and mRNA-mediated protein expression network
in Xu’s LUAD NATs [39]. These results further support the importance of hub genes in
NSCLC therapeutics.

This study also identified important hub genes in NSCLC tumor cell proliferation and
oncogenic processes. BUB3 is within the spindle assembly checkpoint (SAC) complex. The
BUB3 protein is essential in activation of the SAC complex, which, in turn, regulates meiosis
and causes mitotic arrest [67]. BUB3 up-regulation was found in multiple human cancers,
including NSCLC, and was linked to poor prognoses [67]. The DNM1L gene encodes
dynamin-related protein 1 (DRP1), which regulates mitochondria fission [68]. DRP1, highly
expressed in Kras-mutant NSCLC, is critical in tumor cell proliferation through utilization
of lactate in the metabolic reprogramming of NSCLC [69]. Inhibition of DRP1 and NRF2
restored cisplatin sensitivity and stopped the spread of cancer cells in a mouse model of
metastatic breast cancer cells latent in the lung soft tissue [70]. Stabilization of oncoprotein
EIF2S1 diminished the efficacy of EGFR TKIs in NSCLC treatment through binding of
lncRNA LCETRL4 [71]. KPNB1 promoted NSCLC proliferation by mediating nuclear
translocation of PDL1 via the Gas6/MerTK signaling pathway [72]. Down-regulation of
KPNB1 induced by PLK1 inhibition caused apoptosis in lung adenocarcinoma [73]. NMT1
was overexpressed in spheroid cells, NSCLC tumors, and patients with poor survival
outcomes [74]. NMT1 promoted stemness in NSCLC via activating the PI3K/AKT pathway.
NMT1 also accelerated NSCLC tumor metastasis and resistance to cisplatin [74]. Oncogenic
STRAP [75] inhibits E-cadherin and P21(CIP1) through modulation of transcription factor
SP1, contributing to tumor progression [76]. GALNT2 functions as an oncogenic driver
in NSCLC proliferation, migration, and invasion in vitro, and its knockdown restrained
tumor formation in vivo [77]. PFKP, involved in metabolism, is a suggested oncogene in
lung cancer [78]. PTGES3 correlates with poor patient prognosis and immune infiltrates in
lung adenocarcinoma [79] and is an oncogenic driver within a 10-gene metabolic panel in
NSCLC [80]. Overall, the literature supports that the 10 hub genes (Table 7) identified in
this study are potential oncogenes in NSCLC. This study shows that multi-omics network
centrality can be used as a prioritization method in selection of biomarkers and therapeutic
targets. Hub genes can be candidate genes for development of clinical diagnostic tests. The
final determination of inclusion of the candidate genes in clinical tests will be made based
on the assay optimization and validation results in multiple patient cohorts according to
REMARK guidelines [81,82].



Biomolecules 2022, 12, 1782 20 of 24

5. Conclusions

To the best of our knowledge, this study is the first systematic revelation of the associ-
ation between multi-omics network centralities and NSCLC tumorigenesis, proliferation,
and patient survival. Hub genes in multimodal networks involving gene/protein expres-
sion tended to be more oncogenic, proliferative, and hazardous for patient survival. Hub
genes with more co-occurrences of CNV aberrations appeared to be tumor-suppressive
and anti-proliferative. Regulated genes in hubs were associated with proliferative potential
and worse patient survival, whereas regulatory genes in hubs were associated with anti-
proliferative potential and better patient survival. Immunotherapy targets, including PD1,
PDL1, CTLA4, and CD27, were top hub genes in the majority of the constructed multi-omics
networks in NSCLC tumors. BUB3, DNM1L, EIF2S1, KPNB1, NMT1, PGAM1, and STRAP
were discovered as important hub genes in NSCLC proliferation with oncogenic potential.
These results contributed to a better understanding of NSCLC tumor biology and underly-
ing mechanisms. This study showed that gene centrality metrics in multi-omics networks
can be used in prioritization of candidates for biomarkers and drug targets. The AI/big
data technology presented in this study can be applied to many other human cancers.

6. Patents

Our AI technology using Boolean implication networks for discovery of biomarkers
and therapeutic targets is included in patent PCT/US22/75136.
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of the gene and protein co-expression network of selected seven gene in Figure 4.
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