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Abstract: Hepatocellular carcinoma (HCC) ranks the most common types of cancer worldwide. As
the fourth leading cause of cancer-related deaths, its prognosis remains poor. Most patients developed
HCC on the basis of chronic liver disease. Cirrhosis is an important precancerous lesion for HCC.
However, the molecular mechanisms in HCC development are still unclear. To explore the changes
at the level of transcriptome in this process, we performed RNA-sequencing on cirrhosis, HCC and
paracancerous tissues. Continuously changing mRNA was identified using Mfuzz cluster analysis,
then their functions were explored by enrichment analyses. Data of cirrhotic HCC patients were
obtained from TCGA, and a fatty acid metabolism (FAM)-related prognostic signature was then
established. The performance and immunity relevance of the signature were verified in internal and
external datasets. Finally, we validated the expression and function of ADH1C by experiments. As
a result, 2012 differently expressed mRNA were identified by RNA-sequencing and bioinformatics
analyses. Fatty acid metabolism was identified as a critical pathway by enrichment analyses of the
DEGs. A FAM-related prognostic model and nomogram based on it were efficient in predicting the
prognosis of cirrhotic HCC patients, as patients with higher risk scores had shorter survival time.
Risk scores calculated by the signature were then proved to be associated with a tumor immune
environment. ADH1C were downregulated in HCC, while silence of ADH1C could significantly
promote proliferation and motility of the HCC cell line.

Keywords: hepatocellular carcinoma; cirrhosis; RNA-sequencing; prognostic signature; fatty acid metabolism

1. Introduction

Liver cancer is the sixth most common cancer and the third leading cause of cancer-
related death worldwide causing more than 830,000 deaths in 2020 [1], among which
hepatocellular carcinoma (HCC) accounts for about 90% of all primary liver malignan-
cies [2]. In the pathogenesis of HCC, chronic hepatitis B (HBV) is one of the important
causes, followed by hepatitis C (HCV) and alcohol abuse. Despite the success of direct-
acting antiviral therapy in curing chronic HCV infection, current antiviral therapy can only
reduce, rather than eliminate HBV [3].

With advances in gene chips and high-throughput sequencing, several prognostic gene
signatures have been established to predict overall survival of HCC [4–6]. Liver cirrhosis
is usually considered as precancerous lesion of HCC, with 80–90% of HCC cases having
underlying cirrhosis [7], and 2–4% patients with cirrhosis will develop HCC annually [3].
The incidence of HCC is a process of a gradual change from normal liver, cirrhotic liver to
cancer, however, the detailed mechanism of cirrhosis to HCC is unclear. High-throughput
sequencing technologies are now routinely being applied to a wide range of important
topics in tumor medicine, often allowing physicians to address tumor evolution that was
not possible before.
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In the present study, we screened and verified HCC-associated genes combined with
self-building RNA sequencing data and public databases. We found fatty acid metabolism
(FAM)-related DEGs enriched in HCC development and constructed a FAM-related prog-
nostic signature of HCC. Fatty acids (FA), the main components of several lipid species,
are required for energy storage, membrane proliferation, and the generation of signaling
molecules [8]. Cancer cells prefer de nove FA biosynthesis rather than exogenous sources,
which is more common in normal cells, to meet the demand of their rapid growth [9]. The
liver is the central organ of lipid metabolism. Several papers have clarified the role of
FA metabolism and related genes in HCC progression [10,11]. Abnormal FA metabolism
were also reported to take part in chronic liver diseases [12,13]. In addition, we choose
ADH1C, one of the FAM-related prognostic signatures, as a typical example to validate its
function in HCC development with in vitro experiments, as well as to explore the potential
mechanisms underlying abnormal FA metabolism in the process from cirrhosis to HCC.

2. Materials and Methods
2.1. Patients and Samples

A total of 18 samples from 13 patients were collected for RNA sequencing, including
8 cirrhosis tissues, 5 pairs of HCC tissues and adjacent paracancerous tissues. Paracancerous
tissues were collected adjacent to tumor tissues. All tissues were collected from the sample
library for HCC and liver transplantation patients established by Shanghai General Hospital
Affiliated to Shanghai Jiaotong University, School of Medicine. Eight cirrhosis tissues were
obtained from diseased livers in liver transplantation. All of the five patients with HCC
had a medical history of liver cirrhosis. All specimens were snap-frozen in liquid nitrogen
and stored at −80 ◦C before using. In addition, another three pairs of HCC and adjacent
normal tissues were collected for immunohistochemistry. The use of samples in scientific
research has obtained the informed consent of patients. The research was permitted by
Ethics Committee of Shanghai General Hospital.

2.2. RNA-Sequencing Analysis

Total RNA was extracted using the mirVana miRNA Isolation Kit (Ambion, Thermo Fisher
Scientific, Waltham, MA, USA) following the manufacturer’s protocol. RNA integrity was
evaluated using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
The samples with RNA Integrity Number (RIN) ≥ 7 were subjected to the subsequent
analysis. The libraries were constructed using TruSeq Stranded Total RNA with Ribo-Zero
Gold according to the manufacturer’s instructions. Then these libraries were sequenced
on the Illumina sequencing platform (HiSeqTM 2500, Illumina, San Diego, CA, USA)
and 150 bp/125 bp paired-end reads were generated. Sequenced reads were aligned to
the human reference genome (hg38 assembly) using the TopHat2 [14]. The transcript
abundance was obtained using bowtie2 and eXpress [15,16].

2.3. Public Database

In this study, a total of 158 FAM-related genes were obtained from Molecular Signa-
tures Database (MSigDB) [17]. Gene expression data and clinical information of 371 HCC
patients were downloaded from The Cancer Genome Atlas (TCGA) for construction of the
prognostic signature, and GSE14520 dataset was obtained from Gene Expression Omnibus
(GEO) for external validation [18]. Preliminary processing of data from TCGA and GEO
was performed by “TCGAbiolinks Version 2.18.0” and “GEOquery Version 2.58.0” in R re-
spectively. Expression data in two platforms of the GSE14520 was integrated by R package
“sva Version3.38.0”. All of the three databases are publicly available.

2.4. Filtering of DEGs from Self-Building RNA-Sequencing Database

Differently expressed genes (DEGs) in the three comparisons (cirrhosis vs. paracancer-
ous tissues, paracancerous tissues vs. cirrhotic HCC and cirrhosis vs. cirrhotic HCC)
were filtered using Limma package Version 3.46.0 in R respectively. Expression data in
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RNA-sequencing were normalized by voom in Limma package. |Log2FC| > 1 and p < 0.05
were set as the cutoffs for the DEGs. Overall, DEGs in three comparisons were intersected
using the venn diagram.

2.5. Mfuzz Cluster and Bioinformatic Analyses of DEGs from Self-Building
RNA-Sequencing Database

The R package “Mfuzz Version 2.50.0” was used for cluster analysis of DEGs according
to the order of HCC development, which gathered genes with similar expression trend
into one group. Cirrhosis, para-carcinoma tissues and HCC were set as point1, point2 and
point3, respectively. DEGs were divided into 8 clusters with a membership threshold of 0.25.
GO enrichment and KEGG pathway analyses were performed to explore the potential
biological processes, cellular components and molecular functions of the DEGs by the
“clusterProfiler Version 3.18.1” package in R.

2.6. Construction of the FAM-Related Prognostic Signature Using Public MSigDB and
TCGA Dataset

FAM-related DEGs were identified by overlapping DEGs and FAM gene sets from
MSigDB. A total of 97 patients were selected from the TCGA-LIHC cohort for evaluating the
prognostic value of FAM-related DEGs. Patient selection criteria were as follows: (1) have a
follow-up time more than 30 days; (2) have a diagnosis of liver fibrosis. Subsequently, the
prognostic signature was constructed by Lasso penalized Cox regression analysis using
“glmnet Version4.1.4” package in R. A five-gene FAM-related prognostic signature with a
corresponding coefficient was selected, and a risk score was calculated for each patient by
formula as a follow-up (exp: value of FAM-related gene expression; coef: coefficient β for
each gene given by LASSO algorithm):

Risk score =
n

∑
i=1

(exp(i) ∗ coe f (i))

Then, the 97 patients were divided into two groups based on the median of the risk
score. To assess the performance of the five-gene prognostic signature, the Kaplan-Meier
estimator curves were calculated using package “survival Version 3.3.1” in R. The time-
dependent receiver operating characteristic (ROC) curve analysis was conducted by using
the R package “ROCR Version 1.0.11”.

2.7. Independent Validation of Prognostic Gene Signature Using Multivariable Cox Regression
Analysis and External Datasets

The risk score and other clinical variants, including age, sex, tumor grade, tumor
stage, fibrosis status and AFP, were analyzed by univariable Cox regression analysis. A
multivariable Cox regression analysis was applied to validate the value of the signature as
an independent prognostic factor for cirrhotic HCC using the TCGA-LIHC cohort.

The GSE14520 dataset come from a GEO database was used to validate the perfor-
mance of the FAM-related signature. A total of 221 patients in the GSE14520 datasets
were selected for validation with the same criteria as 97 patients selected from the TCGA-
LIHC cohort.

A composite nomogram was established based on all significant prognostic parameters
determined through multivariate Cox regression analysis to predict the probability of 1-, 3-,
5-year OS using the “rms Version6.2.0” package in R. The calibration curve of a nomogram
was utilized to vividly assess the consistency between its prediction probabilities and the
actual observation. Time-dependent ROC curves of the nomogram were employed in
compare with the American Joint Commission on Cancer (AJCC) stage.

2.8. Analyses of Tumor Immune Infiltration and Immune-Related Molecular Characteristics

To explore the relationship between FAM-related signature and tumor immune mi-
croenvironment, stromal, immune, and estimate scores were calculated for every patient
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selected from TCGA by an ESTIMATE algorithm with the “estimate Version 1.0.13” pack-
age by R software. A gene set consisting of 178 genes encoding immunomodulators and
chemokines were obtained from TISIDB to verify the relationship between the prognostic
signature and tumor immune microenvironment.

2.9. Immunohistochemistry

Clinical tissues were fixed in 4% paraformaldehyde for 12 h, dewaxed in xylene, re-
hydrated in descending series of alcohol (100, 95 and 75% alcohol), and heated in 0.01 M
citrate buffer for 15–20 min. After cooling to room temperature, the tissues were washed
with PBS, blocked with goat serum and left to stand at room temperature for 20 min.
Next, the tissues were immunostained with primary antibodies against ADH1C (8081, Ab-
clonal, Wuhan, China, 1:100) at room temperature for 1 h. The tissues were incubated with
30 µL secondary goat anti-rabbit immunoglobulin G (ab6721, 1:2000, Abcam, Cambridge,
UK) for 1 h at room temperature. Thereafter, the tissues were treated with streptavidin-
peroxidase, allowed to stand at 37 ◦C for 30 min, developed with 3,3′-diaminobenzidine
tetrahydrochloride for 5–10 min, counterstained for 2 min, and differentiated with hy-
drochloric acid-ethanol. The tissues were observed under a microscope after conventional
dehydration, clearing and mounting.

2.10. Cell Culture and Transfection

The hepatocellular carcinoma cell line HCCLM3 was obtained from Shanghai CellBank
of Chinese Academy of Sciences (Shanghai, China) and cultured in Dulbecco’s modified
Eagle’s medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) containing 10% fetal
bovine serum. Cells were incubated at 37 ◦C in a humidified atmosphere of 5% CO2.

HCCLM3 cell lines were seeded in a 6-well plate and cultured overnight before trans-
fection. The siRNA targeting ADH1C was designed by Genomeditech (Shanghai, China).
The siRNA was transfected with Lipofectamine 2000 (Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s protocol.

2.11. Quantitative Real-Time PCR (qRT-PCR)

Total RNAs from HCC cell lines were extracted using Trizol (Takara Biotechnol-
ogy, Shiga, Japan). We used a reverse transcription kit (EnzyArtisan, Shanghai, China)
to synthesize cDNA for subsequent PCR assay. QRT-PCR was performed with 2× S6
Universal SYBR qPCR Mix (EnzyArtisan, Shanghai, China). Relative mRNA expres-
sion levels were normalized to Actin and calculated by the 2−∆∆ct method. The for-
ward primer of ADH1C is ATGAGGCATGTGGCACAAGTGTC, and the reverse primer is
GCGTCCAGTCAGTAGCAGCATAG.

2.12. CCK-8

Cells were cultured in 96-well plate with 3000 cells each well. The proliferation rate
of HCCLM3 cells was detected by the Cell Counting Kit-8 assay (Dojindo Laboratories,
Kumamoto, Japan). The absorbance at 450 nm of the experimental wells was measured at
24 h, 48 h and 72 h with an automatic microplate reader.

2.13. Ethynyldeoxyuridine (Edu) Analysis

Cells were cultured in 96-well plates and then incubated with the Cell-Light EdU
Apollo 567 (RiboBio, Guangzhou, China) for 2 h. After treatment with 4% paraformalde-
hyde and 0.5% Triton X-100, DNA synthesis and cell proliferation were observed using a
fluorescence microscope.

2.14. Wound-Healing Assay

HCCLM3 cells were cultured to 90% confluence in a 6-well plate after transfection. A
scratch wound was generated using a sterile 200µL pipette tip, and floating cells were removed
by washing with 1× PBS. Scratched lines were photographed under 0 h, 24 h and 72 h.
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2.15. Transwell Assay

This experiment was performed using 6.5 mm Transwell® inserts of polycarbonate
membranes with 8.0µm pores (Corning, New York, NY, USA). 1 × 105 cells were seeded
in the upper chamber with 200 µL serum-free DMEM, while 600 µL DMEM containing
20% FBS was added to the bottom chamber. After 48 h, cells were fixed by paraformalde-
hyde and stained with 0.1% crystal violet and photographed.

2.16. Oil Red O Staining

For determination of lipid droplet, cells were cultured in a 6-well plate. Two days after
transfection, cells were fixed in 4% PFA for 30 min and then incubated with Oil Red O for
15 min. The images were captured under optical microscope.

2.17. Statistical Analysis

Statistical analysis was performed in the R platform (v. 4.0.4). Lasso regression
was performed for the establish of the prognostic model. The overall survival between
subgroups was compared by the Kaplan–Meier method. Univariate and multivariate Cox
proportional hazards regression analyses were used for assessing the prognosis value
of the signature. Wilcoxon rank sum test was used to compare immune infiltration and
immune-related gene expression between subgroups. Statistical significance was defined
as a p-value of less than 0.05 (p < 0.05).

3. Results
3.1. Filtering of DEGs in Sequence of Cirrhosis, Paracancerous and HCC Tissues

The whole study flow is shown in Figure 1. Self-building RNA-sequencing database of
cirrhosis, paracancerous and HCC tissues were analyzed. The DEGs of three comparisons
were obtained respectively. As a consequence, 2301 DEGs (cirrhosis vs. HCC), 1319 DEGs
(paracancerous tissues vs. cirrhosis) and 159 DEGs (paracancerous tissues vs. HCC) were
identified. The volcano plots and heatmap of the 3 DEG sets were shown in Figure 2a,b. A
total of 2838 overall DEGs were finally identified by combining the three DEG sets using a
venn diagram (Figure 2c).

3.2. Mfuzz Cluster and Bioinformatic Analyses for Overall DEGs Screened from Self-Building
RNA-Sequencing Database

To identify genes which played crucial roles in the process from cirrhosis to HCC, the
Mfuzz cluster analysis was performed to research the expression trends of DEGs in the three
groups (Figure 3a). A total of 2838 overall DEGs obtained above were used as input for
Mfuzz analysis. Seen as cirrhosis tissues with HCC background, paracancerous tissues of
cirrhotic HCC patients could have been taken as an intermediate state between cirrhosis and
HCC, so the order for Mfuzz analysis was as follows: 1. Cirrhosis, 2. Paracancerous tissues
and 3. HCC. As a result, 8 clusters were obtained and then divided into 3 groups, including
upregulated group (cluster 6,8), downregulated group (cluster 2,4,7) and discontinuous
changing group (cluster 1,3,5). A total of 970 DEGs in upregulated groups and 1042 in
downregulated groups were considered to be continuously changing in the development of
HCC. To identify the biological functions of these DEGs and research the potential critical
pathways in disease development, GO and KEGG enrichment analyses were performed by
clusterProfiler (Figure 3b,c). DEGs increasing in this process were significantly enriched in
cell cycle-related pathways, while downregulated DEGs were closely related to metabolism
process. FAM ranked the top in these enriched pathways, indicating its critical function in
the development of cirrhotic HCC.
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Figure 1. Flowchart presenting the process of establishing the gene signature and prognostic nomo-
gram of cirrhotic HCC in this study.

3.3. Construction of the Five FAM-Related DEGs Prognosis Signature by Combining Self-Building
RNA-Sequencing Database with Multidimensional Public Database

FAM was identified to participate in HCC development via enrichment analyses above.
To better understand the role of FAM-related genes in cirrhotic HCC, a gene set composed
of 158 mRNA involved in metabolism of fatty acids was downloaded from MSigDB dataset.
A total of 18 FAM-related DEGs were identified by overlapping the DEGs obtained above
and the FAM gene set. Names of FAM-related DEGs were listed in Table S1.

To establish the prognostic signature, a total of 97 samples with a follow-up period >30 days
and a diagnosis of liver fibrosis were identified from TCGA. The clinical characteristics
of selected patients were listed in Table 1. Then, Lasso penalized Cox regression analysis
was performed with FAM-related DEGs, and a prognostic signature comprising 5 genes
(ADH1C, ACSL4, GPD2, ME1, NCAPH2) was developed. The risk score was calculated as
follows: Risk score = [(−0.08396789) × Expression value of ADH1C] + [(−0.01354980) ×
Expression value of ACSL4] + [(0.07405249) × Expression value of GPD2] + [(0.01765228) ×
Expression value of ME1] + [(0.08031334) × Expression value of NCAPH2]. Patients were
divided into low- and high-risk groups according to the median risk score at 0.292565594.
The gene expression was revealed in Figure 4b. The Kaplan–Meier survival curves revealed
significantly poorer overall survival in the group with a higher risk score (p = 0.00019)
(Figure 4d). A time-dependent ROC curve was performed to evaluate the prognostic values
of the five-gene prognosis signature. The AUCs (area under the curves) for the 1-, 3-,
5-year OS predictions for the risk score were 0.782, 0.825 and 0.821, respectively (Figure 4a).
Patients who survived at the 1st, 3rd and 5th years had significantly lower risk scores
(Figure 4c).
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Figure 2. Identification of DEGs in the three comparisons. (a) Volcano plots revealed the DEGs
between each comparison. (b) Heatmap of DEGs in cirrhosis, paracancerous tissues and HCC. (c) A
Venn diagram revealed overall DEGs by combining three DEG sets.

3.4. Cox Proportional Hazards Regression Analysis of the Five FAM-Related DEGs
Prognosis Signature

We further evaluated the effect of the FAM-related prognostic signature on the OS
of cirrhotic HCC patients through univariate and multivariate cox regression. Clinical
information of the 97 patients involved in this study was collected from TCGA. Univariate
cox regression revealed that age, the AJCC stage and risk score were significantly correlated
with HCC survival (p < 0.05). The multivariate Cox regression analysis uncovered that
HCC patients with higher risk scores potentially have poorer prognosis (Table 2). Therefore,
a high risk score was an independent risk indicator for cirrhotic HCC prognosis.

3.5. External Validation of the Prognostic Performance of the Five-Gene Signature Using
GEO Database

To validate the performance of the prognostic signature with different data platforms,
we downloaded GSE14520 which contained 223 cirrhotic HCC patients. Risk scores were
calculated with the same formula and the patients were divided into two groups based on
the median risk score. Patients with lower risk scores had obviously better OS according
to the Kaplan–Meier survival curves (Figure 5d). Then, prognostic power was evaluated
by time-dependent ROC and the Wilcoxon Rank Sum Test. Risk scores were significantly
different between the alive group and dead group (Figure 5c). p value of 1-, 3- and 5-year
overall survival predictions for the signature were 0.004, 0.0025 and 0.00042 respectively,
which indicated good performance of the FAM-related signature at predicting prognosis in
cirrhotic HCC patients.
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Figure 3. Mfuzz cluster and enrichment analyses of overall DEGs. (a) Mfuzz cluster analysis illustrated
the changes in mRNA expression in the process of HCC development. (b,c) GO and KEGG enrichment
analyses revealed potential functions of the DEGs and critical pathways in disease progression.
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Table 1. Clinical features of selected TCGA-LIHC patients.

Age 58.4 ± 11.5

Follow-up time(month) 31.8 ± 22.9
Survival status

Alive 75 (77.3%)
Dead 22 (22.6%)

Gender
Male 77 (79.4%)

Female 20 (20.6%)
Grade

G1 11 (11.3%)
G2 48 (49.5%)
G3 34 (35.1%)
G4 3 (3.1%)

unknown 1 (1.0%)
AJCC stage

Stage I 55 (56.7%)
Stage II 25 (25.8%)
Stage III 13 (13.4%)

unknown 4 (4.1%)
T classification

T1 57 (58.8%)
T2 27 (27.8%)
T3 11 (11.3%)
T4 1 (1.0%)

unknown 1 (1.0%)
N classification

N0 73 (75.3%)
N1 1 (1.0%)
NX 22 (22.7%)

unknown 1 (1.0%)
M classification

M0 77 (79.4%)
MX 20 (20.6%)

Fibrosis status
Fibrous Speta 24 (24.7%)

Incomplete Cirrhosis 8 (8.2%)
Established Cirrhosis 65 (67.0%)

Vascular invasion
No 64 (66.0%)

Macro 3 (3.1%)
Micro 25 (25.8%)

unknown 5 (5.2%)
Cancer status

With tumor 42 (43.3%)
Tumor free 35 (36.1%)
unknown 20 (20.1%)

History of radiation treatment
Yes 4 (4.1%)
No 76 (78.4%)

unknown 17 (17.5%)
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Table 2. Univariate and multivariate Cox regression analysis of TCGA-LIHC patients.

Characteristics
Univariate Cox Multivariate Cox

p HR (95%CI) p HR (95%CI)

Risk score 0.00011 18 (4.1–75) 0.000033 62 (8.8–440)
Age (<65/≥65) 0.028 0.39 (0.17–0.9) 0.084 0.43 (0.17–1.1)
Sex (female/male) 0.45 1.6 (0.47–5.4) 0.37 1.8 (0.48–7.1)
Grade (G1+G2/G3+G4) 0.54 0.77 (0.33–1.8) 0.059 0.36 (0.13–1)
AJCC stage
(I+II/III+IV) 0.0064 0.26 (0.097–0.68) 0.0063 0.17 (0.046–0.6)

Fibrosis level 0.85 0.92 (0.37–2.3) 0.038 0.29 (0.091–0.94)
AFP (<400/≥400) 0.93 0.95 (0.32–2.8) 0.37 1.8 (0.51–6.1)
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3.6. Building and Validating a Novel Predictive Nomogram including of the Five FAM-Related
DEGs Prognosis Signature

In Cox proportional hazards regression analysis above, risk score, AJCC stage and age
were filtered to be associated with OS. For better prediction of cirrhotic HCC patients’ prog-
nosis, a novel nomogram combing these two clinical parameters and FAM-related signature
was established (Figure 6a) using data of 93 cirrhotic HCC patients from TCGA-LIHC co-
hort, as 4 in 97 patients were excluded for the lack of clinical information. Calibration
plots were performed for the validation of the nomogram (Figure 6b). The AUCs of the
1-, 3-, and 5-year OS predictions for the nomogram were 0.86, 0.812 and 0.915 (Figure 6c),
respectively, which were significantly higher than the AUCs for AJCC stage, indicating that
the nomogram performed better in predicting the prognosis of cirrhotic HCC.

3.7. Tumor Immunity Relevance of the FAM-Related Signature and Expression of
Immune-Related Genes

To explore the relationship between the signature and tumor immune microenviron-
ment, we performed ESTIMATE to calculate immune scores, ESTIMATE scores, and stromal
scores for 97 cirrhotic HCC patients from TCGA. Patients were divided into high group and
low group according to the scores, respectively. As a result, patients with lower immune
scores and ESTIMATE scores had higher risk scores (Figure 7a). Also, the expression of
genes encoding immunomodulators and chemokines were compared between high-risk
and low-risk group. In 178 genes we downloaded from TISIDB database, 127 could be
found in TCGA expression matrix and 30 were differently expressed between two groups
(p < 0.05). The most significant ones (p < 0.01) were shown in Figure 7b.
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3.8. Construction of FAM-Related lncRNA-mRNA Network

Long non-coding RNA (lncRNA) plays an important role in gene regulation and
cancer development. To explore lncRNA, which is related with FAM and participates in
HCC progression, we extracted the sequence results of lncRNA and performed difference
analysis and Mfuzz cluster analysis on it (Figure S2a,b). A total of 2107 dynamic chang-
ing lncRNAs were obtained, including 960 upregulated ones and 1147 downregulated
ones (Figure S2c and Table S3). Pearson correlation coefficients were calculated between
FAM-related genes and lncRNAs in order to explore the potential regulatory relationship.
Correlation coefficients >0.9 and p < 0.001 were set as threshold to identify FAM-related
lncRNA. Finally, a FAM-related regulatory network containing 9 mRNAs and 54 lncRNAs
were established (Figure 8). Correlation coefficient between lncRNA and mRNA was
established in Table S2.
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3.9. Validation of Expression and Function of ADH1C by IHC and Cell Experiments

We performed survival analysis on the 3 genes selected in the signature. ADH1C was
identified as a protective factor and may play a critical role in HCC progression (Figure S1).
Then, the expression of ADH1C was verified in 3 pairs of HCC and adjacent normal
tissues using IHC. As a result, ADH1C expression was significantly downregulated in HCC
tissues on protein level (Figure 9a). To further explore the function of ADH1C in HCC
development, siRNA was transfected into the HCCLM3 cell line to knock down ADH1C
(Figure 9b). The CCK8 and EdU assays illustrated that a knockdown of ADH1C can
significantly enhance the proliferation of HCCLM3 transfected with siRNA (Figure 9c,d).
In addition, we observed that ADH1C silencing effectively enhanced the migration ability
of HCCLM3 cells by performing transwell and wound healing assays (Figure 9e,f). In brief,
knockdown of ADH1C effectively promoted the proliferation and migration of HCCLM3
cells. In addition, Oil red O staining was performed in three HCC cell lines to check the
lipid droplets’ accumulation after transfection (Figure 9g).
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Figure 9. The expression and function of ADH1C in HCC. (a) Immunohistochemistry (IHC) staining
of ADH1C in HCC and adjacent normal tissues. (b) The efficiency of siRNA targeting ADH1C.
(c,d) CCK-8 and EdU assay indicated that ADH1C knockdown promoted proliferation of HCCLM3.
(e,f) Transwell and the wound healing assay indicated that ADH1C knockdown promoted migration
of HCCLM3. (g) Oil red O staining of HCC cell lines to check lipid droplets’ accumulation. * p < 0.05,
** p < 0.01.

4. Discussion

Liver cancer is one of the most common and the most mortal cancers worldwide,
which causes more than 830,000 deaths in 2020 [1]. HCC occupies the majority of liver
cancer. Cirrhosis is an important precancerous lesion for HCC, with 90% patients developed
HCC under a background of cirrhosis [19]. Exploring the detailed mechanism of cirrhosis
to HCC would be useful to clarify carcinogenesis of HCC and may benefit to HCC therapy.

In this study, to further explain the molecular mechanism of cirrhosis to HCC, we
performed RNA-sequencing on cirrhosis, paracancerous and HCC tissues. Combing with
Mfuzz clustering analysis, a self-building RNA-sequencing database of HCC development
was established. GO and KEGG enrichment analyses were employed using 2012 continu-
ously change DEGs in this database for function analysis. Metabolism-associated terms,
especially FAM-related ones, were significantly enriched in downregulated DEGs, indi-
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cating their important position in promoting cirrhosis to HCC. FAM-related DEGs were
identified by overlapping DEGs with a hallmark gene set from MSigDB database. A total
of 97 HCC patients with cirrhosis were selected from TCGA, and 5 genes (ADH1C, ACSL4,
GPD2, ME1, NCAPH2) were selected to construct a FAM-related prognosis signature via
Lasso–Cox regression using this cohort. The prognostic efficiency of the FAM-related
signature was verified via Kaplan–Meier survival curve analysis and ROC analysis in both
internal and external datasets. Multivariate Cox regression analysis indicated that the FAM-
related signature was an independent prognostic factor of cirrhotic HCC. A nomogram
consisting of the gene signature and clinical parameters was established, which performed
better in predicting OS of cirrhotic HCC patients. ESTIMATE algorithm analysis was
performed and the expression of immune-related genes was compared, which indicated
the relevance between a FAM-related signature and immune. Finally, ADH1C was selected
and function experiments were performed using the HCC cell line.

Differently expressed genes between three comparisons were identified respectively
and then combined in this study. We observed that the number of DEGs in the comparison
of paracancerous tissues and HCC was respectively small. Similar analyses were performed
on data from the TCGA dataset (Figure S3), and due to the fact that the number of DEGs in
TCGA was significantly higher than that found in our data, the following were possible
causes: (1) HCC and paracancerous tissues were taken from the same group of HCC
patients who shared a history of cirrhosis. Comparatively, the HCC and paracancerous
tissues in TCGA are not identical. This may also be the cause of the relatively significant
discrepancy in the cirrhosis group, which was compiled from the remaining 8 patients.
(2) Paracancerous tissues were gathered close to the site of the tumor, which could be
influenced by satellite lesions, taking into account the impaired liver function of cirrhotic
HCC patients.

Abnormality in FAM was proved to participate in the progression of multiple cancers,
including lung cancer, ovarian cancer and HCC [20–22]. Cancer cells can redirect metabolic
pathways to meet energy demands through the regulation of FAM [23]. A variety of FAM-
related genes were confirmed to influence the proliferation and metastasis of the HCC
cell. For example, CD147 reprogrammed FAM in HCC cells through Akt/mTOR/SREBP1c
and P38/PPARα pathways [20], while ACADM was reported to influence HCC via aber-
rant CAV1/SREBP1 signaling [24]. Several FAM-related gene prognostic signatures have
been established, which contributed to the understanding and therapies of HCC [25,26].
FAM was also known to participate in chronic liver diseases and may influence cirrhosis
progression [27]. For instance, CPT1A, a FAM-related gene, was reported to be critical
in the activation of hepatic stellate cells and was implicated in the development of liver
cirrhosis via fatty acid oxidation [28]. It was also reported that the level of fatty acid in
erythrocyte membrane had a relationship with HCC risk in cirrhotic patients, indicating the
function of FAM in HCC development [29]. However, the specific role of FAM in cirrhosis
to HCC process, especially in transcriptome level, remained unclear. In our research, we
identified FAM to play a key role in cirrhotic HCC development via RNA-sequencing and
multiple bioinformatics analyses, which contributed to the understanding of the molecular
mechanism among FAM, cirrhosis and HCC.

The significant role of metabolism reprogramming, including FAM, in tumor-immune
microenvironment has been confirmed in previous studies [30,31]. Abnormal metabolism
features of tumor cells cause hypoxia and nutrient depletion in tumor microenvironment,
thus influence the composition and function of the infiltrated immune cells [32,33]. Our
results supported this conclusion, as the risk scores calculated by a FAM-related signature
were significantly related with immune infiltrate. We also revealed that several immune-
related genes were differently expressed in two subgroups, indicating genes in the signature
may act as targets for immune therapy of HCC in the future.

Long non-coding RNA (lncRNA) participates in the biological process through multi-
ple ways, including regulating protein-coding RNA. Abnormal changes in lncRNA may
influence the development of different kinds of cancers, including HCC [34]. Recent studies
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verified the critical role of lncRNA in HCC biology [35–37]. To explore lncRNA related with
FAM and its influences in HCC development, we identified continuous changing lncRNAs
from cirrhosis to HCC, and a FAM-related lncRNA-mRNA network was established by
correlation analysis. LncRNA in this network had a potential ability in regulating FAM
process and HCC development.

3 of the 5 genes in the signature were reported to be associated with HCC. ACSL4
(acyl-CoA synthetase long chain family member 4) is a ferroptosis-related gene and is
closely involved in the progression of multiple cancers, such as breast cancer, ovarian
cancer and glioma [38–40]. In HCC, ACSL4 was reported to promote cell growth and
metastasis via the c-Myc/SREBP1 pathway and ERK/FBW7/c-Myc axis [41,42]. ACSL4
was also identified as a predictive biomarker of sorafenib sensitivity in HCC [43]. ME1
(malic enzyme 1) encodes a NADP-dependent enzyme that generates NADPH for fatty
acid biosynthesis. In gastric cancer, ME1 promotes cell growth and metastasis by regulating
NADPH homeostasis [44]. In addition, changes in phosphorylation and acetylation of
ME1 can also affect colorectal tumorigenesis [45]. ME1 was detected as a biomark for
HCC by several bioinformatic studies [46,47], and its function in proliferation, migration,
and invasion has been confirmed in the HCC cell line [48]. GPD2 (glycerol-3-phosphate
dehydrogenase 2) participates in the glycolysis process and ferroptosis defense, and is
reported to affect the mitochondrial energy metabolism and the stemness in the HuH7 cell
line [49,50]. NCAPH2 encodes one of the non-SMC subunits of the condensin II complex,
which plays an essential role in mitotic chromosome assembly. It was identified as a novel
driver gene in cervical cancer by a comprehensive analysis research [51]. The role of GPD2
and NCAPH2 in HCC progress is still unclear and needs more research.

Alcohol dehydrogenase (ADH) is a metabolizing enzyme family, which participates
in alcohol metabolism by transforming ethanol to acetaldehyde. Change of enzymes in
this family is reported to have an effect on HCC prognosis [52]. As a member of the ADH
family, ADH1C is involved in the development of several cancers. In colorectal cancer,
ADH1C is reported to inhibit progression through the serine metabolic pathway [53], and is
a protective factor for CRC patients via bioinformatics analysis [54]. Previous studies have
uncovered that ADH1C is downregulated in HCC, and overexpression of ADH1C indicates
better prognosis for HCC patients according to bioinformatics analyses [55,56]. In addition,
ADH1C was identified in a study to be a key gene in tumor microenvironments in HCC [57],
and in consideration of its role as an important regulator of intestinal inflammation [58],
the effect of ADH1C in immunity deserves further consideration. Most researches about
ADH1C in HCC stopped at bioinformatics analyses. In our study, we verified the expression
of ADH1C in HCC via IHC, revealing that ADH1C was differently expressed both in
mRNA and protein level. Afterwards, we confirmed the ability of ADH1C in inhibiting
cell migration and proliferation by silencing it in the HCC cell line. In addition, Oil red O
staining was performed in Huh7, HepG2 and HCCLM3 to check the function of ADH1C in
the fatty acid metabolism. No discernible change was found in our assay, which indicated
that though ADH1C was involved in the Fatty Acid Degradation (hsa00071) Pathway and
classified as a FAM-related gene, it may only have a small direct impact on the fatty acid
content of HCC cell lines. Our experiments laid the foundation for further study on ADH1C
in HCC.

In this study, we filtered DEGs in developing the process of cirrhotic HCC by com-
bining the self-building RNA-sequencing database with public databases. However, there
are still some limitations in our study. Cell experiments were only performed on ADH1C,
and the functions of other genes in the signature still need to be verified. In addition,
the detailed mechanism of ADH1C in HCC development remains unclear, which will be
explored in our future work.

5. Conclusions

In summary, we described the genetic changes in the transition from cirrhosis to
cirrhotic HCC by RNA-sequencing and identified the fatty acid metabolism as a key
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pathway in this process. A FAM-related gene signature was established for prognosis of
cirrhotic HCC, and the function of ADH1C, a gene in this signature, was verified via cell
experiments. Our study revealed the molecular relationship among FAM, cirrhosis and
HCC at the transcriptome level.
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//www.mdpi.com/article/10.3390/biom13010141/s1, Figure S1: Kaplan-Meier survival curves of
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of FAM-related DEGs. Table S2: Correlation between FAM-related genes and lncRNAs; Table S3:
Differently expressed lncRNA.
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