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Abstract: Background: Glioblastoma (GBM) is the most common brain tumor with an overall survival
(OS) of less than 30% at two years. Valproic acid (VPA) demonstrated survival benefits documented
in retrospective and prospective trials, when used in combination with chemo-radiotherapy (CRT).
Purpose: The primary goal of this study was to examine if the differential alteration in proteomic
expression pre vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition
of VPA as compared to standard-of-care CRT. The second goal was to explore the associations between
the proteomic alterations in response to VPA/RT/TMZ correlated to patient outcomes. The third
goal was to use the proteomic profile to determine the mechanism of action of VPA in this setting.
Materials and Methods: Serum obtained pre- and post-CRT was analyzed using an aptamer-based
SOMAScan® proteomic assay. Twenty-nine patients received CRT plus VPA, and 53 patients received
CRT alone. Clinical data were obtained via a database and chart review. Tests for differences in
protein expression changes between radiation therapy (RT) with or without VPA were conducted for
individual proteins using two-sided t-tests, considering p-values of <0.05 as significant. Adjustment
for age, sex, and other clinical covariates and hierarchical clustering of significant differentially
expressed proteins was carried out, and Gene Set Enrichment analyses were performed using the
Hallmark gene sets. Univariate Cox proportional hazards models were used to test the individual
protein expression changes for an association with survival. The lasso Cox regression method and
10-fold cross-validation were employed to test the combinations of expression changes of proteins
that could predict survival. Predictiveness curves were plotted for significant proteins for VPA
response (p-value < 0.005) to show the survival probability vs. the protein expression percentiles.
Results: A total of 124 proteins were identified pre- vs. post-CRT that were differentially expressed
between the cohorts who received CRT plus VPA and those who received CRT alone. Clinical factors
did not confound the results, and distinct proteomic clustering in the VPA-treated population was
identified. Time-dependent ROC curves for OS and PFS for landmark times of 20 months and
6 months, respectively, revealed AUC of 0.531, 0.756, 0.774 for OS and 0.535, 0.723, 0.806 for PFS for
protein expression, clinical factors, and the combination of protein expression and clinical factors,
respectively, indicating that the proteome can provide additional survival risk discrimination to that
already provided by the standard clinical factors with a greater impact on PFS. Several proteins of
interest were identified. Alterations in GALNT14 (increased) and CCL17 (decreased) (p = 0.003 and
0.003, respectively, FDR 0.198 for both) were associated with an improvement in both OS and PFS.
The pre-CRT protein expression revealed 480 proteins predictive for OS and 212 for PFS (p < 0.05), of
which 112 overlapped between OS and PFS. However, FDR-adjusted p values were high, with OS (the
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smallest p value of 0.586) and PFS (the smallest p value of 0.998). The protein PLCD3 had the lowest
p-value (p = 0.002 and 0.0004 for OS and PFS, respectively), and its elevation prior to CRT predicted
superior OS and PFS with VPA administration. Cancer hallmark genesets associated with proteomic
alteration observed with the administration of VPA aligned with known signal transduction pathways
of this agent in malignancy and non-malignancy settings, and GBM signaling, and included epithelial–
mesenchymal transition, hedgehog signaling, Il6/JAK/STAT3, coagulation, NOTCH, apical junction,
xenobiotic metabolism, and complement signaling. Conclusions: Differential alteration in proteomic
expression pre- vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition
of VPA. Using pre- vs. post-data, prognostic proteins emerged in the analysis. Using pre-CRT data,
potentially predictive proteins were identified. The protein signals and hallmark gene sets associated
with the alteration in the proteome identified between patients who received VPA and those who did
not, align with known biological mechanisms of action of VPA and may allow for the identification
of novel biomarkers associated with outcomes that can help advance the study of VPA in future
prospective trials.

Keywords: glioma; radiation; proteomic; valproic acid; HDAC inhibitor

1. Introduction

Glioblastoma (GBM) is the most common and the most aggressive brain tumor [1].
The current standard of care involves maximal surgical resection followed by concurrent
radiation therapy (RT) and temozolomide (TMZ), followed by adjuvant TMZ [2]. The
prognosis in GBM remains poor, with an overall survival (OS) of less than 30% at two years.
Several therapies [3] have been studied to improve outcomes beyond the chemoirradiation
(CRT) Stupp regimen, which was the first to result in improvement in OS by adding TMZ to
RT [2]; however, while some benefits were described in some, none of these attempts have
made an appreciable impact on OS. Valproic acid (VPA) has been one of the agents studied
in this context, given its use as an antiepileptic agent in glioma patients who often present
with seizures. Its activity as an HDAC inhibitor [4–6], its use as an antiepileptic agent [7–9],
its association with improvement in survival [7,8,10–13], as well as its value given the
cost of care [14], have made VPA an attractive agent of study [15–18] and the subject of
several reviews [19–21]. Several studies have revealed potential anti-tumor effects via
several cancer hallmark pathways, including angiogenesis, DNA repair, stemness, cellular
reprogramming, apoptosis, and the epithelial-to-mesenchymal transition [22–25], including
synergism in conjunction with TMZ [26,27]. The precise mechanisms of action that may
underlie possible improvements in outcomes have, however, remained ill-defined even
as a relationship between VPA dose [9,22,28,29] and duration [30] emerged that may well
explain discordant outcome results in meta-analyses [11,31] given the use of seizure dose
VPA as compared to high-dose VPA [17] and treatment duration as well as evolving seizure
management over time transitioning from VPA to increase use of Levetiracetam [9,31–33].
The addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM in
our previous phase II trial was well tolerated, resulted in a favorable toxicity profile, had
no late effects (neurological, pain, and blood/ bone marrow toxicity and mostly grade
1/2 and only two grade 3/4 toxicities), and improved outcomes (median OS 29.6 months
(range: 21–63.8 months) [15–17]. The analysis of the proteomic alteration signatures post
chemoirradiation in conjunction with OS was previously described [34]. In this study,
we aimed to determine whether differential alteration in proteomic expression pre- vs.
post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA
to CRT, and if present, link proteomic alteration to both OS and PFS, and the biological
mechanisms of action of VPA via prognostic and predictive protein signals.
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2. Materials and Methods
2.1. Patients

Twenty-nine patients who received concurrent valproic acid (VPA) were compared to
53 patients who received CRT alone. All patients had pathology-proven GBM (diagnosed
2005–2013) and were enrolled on NCI NIH IRB-approved protocols. The patients who
received concurrent high-dose VPA were treated on the open-label, NCI NIH phase 2 study
(NCT00302159). To be included in this analysis in the VPA class, the patients needed to
have received ≥1 week of VPA as per the original analysis [17] and have biospecimen
obtained amenable to proteomic analysis. Patients who received CRT alone needed to
have documented tissue diagnosis of glioblastoma and have received standard of care
concurrent chemoirradiation defined as 59.4–60 Gy in 30–33 fractions with concurrent
TMZ on natural history protocols (NCT00027326, NCT00083512). Blood biospecimens
obtained before and after CRT completion were included in the study. In the patients who
received VPA, this was initiated one week before the first day of RT at 10 to 15 mg/kg/day
and subsequently increased up to 25 mg/kg/day over the week before RT. Analysis of
their initial outcomes and late toxicity was previously published [15–17]. Serum samples
were screened using the multiplexed, aptamer-based approach (SOMAScan® assay) to
measure the relative concentrations of 7596 protein targets (7289 human) for changes
in expression using approximately 150 ul of serum [35,36]. Clinical data (age, gender),
tumor characteristics (location, MGMT methylation status), management-related factors
(extent of resection), radiation therapy volumes (GTV T1, GTV T2), recursive partitioning
analysis score (RPA) [37], and outcomes (PFS, OS) were obtained or derived (RPA) from the
protocol database and electronic health record with GTV T1, GTV T2, generated per ICRU
report 83 [38] obtained from the radiation therapy treatment planning (contoured on the T1
gadolinium sequence of the MRI scan employed for RT planning per standard guidelines).

2.2. SomaLogic SOMAScan® Assays

Serum samples were obtained before initiation of CRT (average seven days, range
(0 to 23)) and following completion of CRT (average seven days, range (−1 to 30)) with
the time between pre- and post-sample acquisition averaging 49 days (range 27–83 days).
Following the acquisition, samples were frozen at −80 for an average of 3442 days (range
800–5788 days) and then defrosted and screened using the aptamer-based SOMAScan®

proteomic assay technology for changes in the expression of 7000+ protein analytes [35,36].
SOMAScan® data were filtered to remove non-human and non-protein targets, resulting in
7289 aptamers targeting 6386 unique gene symbols. RFU values reported by SOMAScan®

were log2-transformed.

2.3. Data Process

There were 7596 proteins on the chip. We selected 7289 human proteins for the subse-
quent analyses. There were 82 patients with data before CRT (PRE) and post-completion
of CRT (COT (Completion of Treatment)). Log base 2 (COT/PRE) represented the protein
expression change between after-treatment and pre-treatment conditions.

2.4. Class Comparisons

Tests for differences in clinical characteristics and protein expression changes between
CRT with or without VPA were conducted using two-sided t-tests, considering p-values
of <0.05 as significant. Adjustment for age, sex, and other clinical covariates was performed
separately when appropriate. The Benjamini and Hochberg method was used to estimate
the false discovery rate [39]. Hierarchical clustering of significant differentially expressed
proteins was carried out using BRB-ArrayTools Dynamic Heatmap [40].

2.5. Gene Set Enrichment Analysis

Fifty Cancer Hallmark gene sets were downloaded from MSigDB. Gene Set Enrichment
analyses were performed in BRB-ArrayTools [40]. The Kolmogorov–Smirnov (KS) tests
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are applied separately to each of the 50 gene sets. A gene set is considered significant if its
corresponding KS re-sampling p-value is below the specified threshold (p-values < 0.05).
GSEA with adjustments for age and sex were performed.

2.6. Survival Analysis

In the previous iteration of proteomic sample analysis in this cohort, univariate and
multivariate Cox analysis was carried out for OS [34]. This iteration aimed to examine
potential differential protein alteration pre- vs. post-CRT, seeking to define protein ex-
pression between patients who received VPA and those who did not. Univariate Cox
proportional hazards models were fit to test individual protein expression change levels for
association with both OS and PFS. Regression coefficients from these models were tested
using a two-sided Wald test, considering p-values < 0.05 as significant. First, we examined
the association between the expression of individual proteins and survival in unadjusted
and adjusted analyses. Using protein expression changes above and below 0 Kaplan–Meier
survival curves were plotted using the R statistical package [41].

Two models were employed to examine whether alteration in the protein expression
with the administration of VPA can provide additional survival risk discrimination to
that already provided by the standard covariates and, if so, to evaluate how much risk
discrimination power the protein expression can add to the clinical covariates. To test
the combinations of expression changes of proteins that could predict survival, we used
the Lasso Cox regression method [42,43] implemented in BRB-ArrayTools [40]. To avoid
overfitting due to the initial supervised selection of proteins to define the prognostic index,
we used 10-fold cross-validation. A log-rank statistic is computed to assess whether the
association of expression data to survival data is statistically significant. The significance
of the log-rank statistics is determined by the permutation test. In the combined model,
permutation test is performed by shuffling expression profiles while preserving survival
data and covariates. Cross-validated Kaplan-Meier curves and log-rank statistics are
generated, yielding a p-value that assesses whether expression data significantly enhances
risk prediction compared to covariates. Cross-validated time-dependent ROC curves
were employed for the model containing standard covariates and including both standard
covariates and protein expression to evaluate whether the expression data provide more
accurate predictions than those provided by standard clinical covariates in the case without
separate test data [44].

Based on the pre-CRT protein measurement, predictiveness curves were plotted for
each significant protein that is predictive for VPA response (p-value < 0.005) to show the
survival probability vs. the protein expression percentiles [45]. Based on the cross point
of the predictiveness curves, any new samples/patients would thus be evaluated for the
superior response given the addition of VPA treatment. Furthermore, Kaplan–Meier curves
were generated for both VPA groups using the stratified data in the low-/high-score cohorts
in OS and PFS, respectively.

In summary, this study primarily focused on analyzing protein expression changes
induced by treatment, with the exception of predictive protein identification using the
pre-CRT measurement. The data analysis workflow is visually represented in Figure 1B
and the models with mathematical formulas are available as supplementary materials in
Supplementary File S1.
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Figure 1. (A) Patient cohort breakdown by gender, methylation status and valproic acid (VPA)
administration. (B) Data analysis workflow.

3. Results
3.1. Clinical Features Comparison between VPA and Non-VPA Cohort

Twenty-nine patients received VPA, and 53 received CRT alone (Figure 1A). MGMT
methylation status was 9/29 (31%) vs. 12/53 (23%) methylated, 8/29(28%) vs. 23/53(43%)
unmethylated, and 12/29(41%) vs. 18/53(34%) unknown, for VPA vs. non-VPA cohorts,
respectively (Figure 1A) and MGMT methylation status was not statistically significant
between the two cohorts (Table 1). VPA patients were statistically different from non-VPA
patients with respect to age, extent of resection KPS, RPA, and RT technique (Table 1), with
VPA patients being younger (mean age 52 vs. 58, but similar range 31–71), enriched in GTR
resection status and fewer biopsies and superior KPS and RPA.
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Table 1. Clinical covariate comparison of patients who received concurrent CRT vs. patients who
received CRT plus VPA.

VPA Administration No Yes p-Value
Total cohort n = 82 (%) 53 (64.6) 29 (35.4)

Age (mean (SD)) 58.06 (10.54) 52.34 (9.60) 0.018
Age Range 31–70 31–71

Gender = Male (%) 39 (73.6) 21 (72.4) 1
Location

Periventricular or Cortical = Periventricular (%) 22 (41.5) 6 (20.7) 0.097
Hemisphere 0.614

Left 23 (43.4) 15 (51.7)
Right 29 (54.7) 14 (48.3)
Both 1 (1.9) 0 (0.0)

Extent of Resection 0.04
GTR 15 (28.3) 16 (55.2)
STR 31 (58.5) 12 (41.4)

Biopsy 7 (13.2) 1 (3.4)
MGMT status 0.361

methylated 12 (22.6) 9 (31.0)
unmethylated 23 (43.4) 8 (27.6)

unknown 18 (34.0) 12 (41.4)
KPS 0.014

60–80 14 (26.4) 3 (10.3)
90 24 (45.3) 12 (41.4)

100 10 (18.9) 14 (48.3)
Unknown 5 (9.4) 0 (0.0)

RPA 0.019
3 5 (9.4) 9 (31.0)
4 29 (54.7) 17 (58.6)
5 16 (30.2) 3 (10.3)

Unknown 3 (5.7) 0 (0.0)
RT volumes
GTV T1 (cc) 0.437

<20 cc 13 (24.5) 11 (37.9)
20–40 cc 19 (35.8) 9 (31.0)
>40 cc 21 (39.6) 9 (31.0)

GTV T2 (cc) 0.152
<10 cc 8 (15.1) 0 (0.0)

10–50 cc 13 (24.5) 8 (27.6)
50–100 cc 15 (28.3) 8 (27.6)
>100 cc 17 (32.1) 13 (44.8)

RT Technique <0.001
3D 15 (28.3) 9 (31.0)

IMRT 18 (34.0) 20 (69.0)
Arc 20 (37.7) 0 (0.0)

3.2. Clinical Factors Survival and Progression-Free Survival Analysis

In the VPA cohort, MGMT methylation status and RPA were statistically significant for
OS. On univariate analysis, MGMT unmethylated status and RPA class 4 were associated
with adverse outcomes (HR 3.2 and 2.86, respectively) (Supplementary Table S1). RPA was
the only clinical feature statistically significant for PFS.
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When combining VPA and non-VPA cohorts on Cox regression analysis (Supplemen-
tary Table S2, Figure S1) age, RPA, MGMT status, GTV T1, cortical vs. periventricular
location, either hemisphere vs. bilateral disease, tumor location, and the administration of
VPA were statistically significant for OS. The administration of VPA resulted in superior OS
(p = 0.011) in Kaplan–Meier analysis (Supplementary Figure S2A). Age, BMI, RPA, MGMT
status, cortical vs. periventricular location, tumor location, and the administration of VPA
were statistically significant for PFS. The administration of VPA resulted in superior PFS
(p = 0.015) in Kaplan–Meier analysis (Supplementary Figure S2B).

3.3. Differentially Expressed Proteins VPA vs. No VPA

The protein signal was not affected by the time in the freezer from collection to analysis
(Supplementary Figure S3 showing a signal for proteins GALNT14 and SKP1). Differentially
expressed proteins were examined between two classes: patients who received CRT alone
(class 0) and patients who received CRT plus VPA (class 1) (Figure 2, Table 2). One hundred
twenty-three proteins were identified that were altered pre- vs. post-CRT between the two
classes. T-test results for the number of significant proteins between classes were adjusted
for the impact of clinical covariates (Table 2). Similar numbers of significantly differentially
expressed proteins were identified when adjusting for clinical variables compared to the
unadjusted model (row #1) except for tumor location, wherein multiple categories were
present with few samples in each category. Overall, this indicates that the results are
globally not confounded by clinical covariates, including MGMT status (the last two rows),
which are very similar (57 vs. 59) (Table 2). Hierarchical clustering of the 124 differentially
expressed proteins revealed distinct proteomic clustering in the VPA-treated population
(Figure 3, Supplementary Figure S4A,B display the gene names for the top (Figure S4A) and
bottom cluster (Figure S4B), respectively) with significance level unadjusted p < 0.001 and
FDR-adjusted p-value below 0.058 for all identified proteins (Supplementary File S2). Of
the proteins statiscally significant for OS (GALNT14, CCL17, CTSV, ACP6, BMP6, SLITRK6,
MSTN, NPTX1, ICAM4, SLITRK5), the top 10 displayed in Table 3 sorted in ascending order
by OS FDR (all proteins displayed in Supplementary File S2), GALNT14 and CCL17 were
the only two proteins with an FDR of 0.198 (Table 3). For PFS, GALNT14, ACP6, FBLN7,
ALB, SLITRK5, TLNRD1, GNS, FCGRT, STAP1 and PRTG were stastically significant; the
FDR, however, was 0.232 or higher for all proteins (Table 3, Supplementary File S2).

Table 2. The number of significant proteins in different class comparisons adjusted by clinical covariates.

Class Comparison Class 0 Class 1 Adjusted by # of Significant Proteins (p < 0.001)
VPA VPA = 0 (53) VPA = 1 (29) 124
VPA VPA = 0 (53) VPA = 1 (29) age (>65) 109
VPA VPA = 0 (53) VPA = 1 (29) sex 128
VPA VPA = 0 (53) VPA = 1 (29) GTV-T1 (median) 127
VPA VPA = 0 (53) VPA = 1 (29) Resection type 134
VPA VPA = 0 (53) VPA = 1 (29) KPS 110
VPA VPA = 0 (53) VPA = 1 (29) RPA 108
VPA VPA = 0 (53) VPA = 1 (29) Radiation Technique 89
VPA VPA = 0 (53) VPA = 1 (29) GTV-V2 (median) 125
VPA VPA = 0 (53) VPA = 1 (29) Infiltration 104
VPA VPA = 0 (52) VPA = 1 (29) Hemisphere 120
VPA VPA = 0 (51) VPA = 1 (28) BMI (median) 114
VPA VPA = 0 (53) VPA = 1 (29) Location 83
VPA with known MGMT VPA = 0 (35) VPA = 1 (17) 57
VPA with known MGMT VPA = 0 (35) VPA = 1 (17) MGMT 59
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Table 3. Top 10 protein signals significant for overall survival (OS) and progression-free survival (PFS) by p-value based on the results from 124 significantly
differentially expressed proteins from the comparison of patients treated with CRT plus VPA vs. CRT alone.

Symbol Name EntrezID Fold-Change Mean
log2(COT/PRE) OS p-Value OS FDR OS HR PFS p-Value PFS FDR PFS HR

CCL17 C-C motif chemokine ligand 17 6361 1.620 −0.004 0.003 0.198 1.513 0.024 0.232 1.363

GALNT14
polypeptide

N-acetylgalactosaminy-
ltransferase 14

79623 0.780 0.186 0.003 0.198 0.407 0.004 0.232 0.388

CTSV chathepsin V 1515 1.160 −0.088 0.009 0.285 3.647 0.024 0.232 3.031

ACP6 acid phosphatase 6,
lysophosphatidic 51205 0.810 0.184 0.011 0.285 0.408 0.007 0.232 0.378

BMP6 bone morphogenetic protein 6 654 0.850 0.134 0.012 0.285 0.344 0.027 0.240 0.369

MSTN myostatin 2660 0.850 0.089 0.019 0.304 0.277 0.093 0.339 0.424

SLITRK6 SLIT and NTRK like family
protein 6 84189 0.770 0.116 0.021 0.304 0.494 0.194 0.496 0.729

ICAM4 intercellular adhesion molecule 4
(Landsteiner-Wiener blood group) 3386 1.240 −0.267 0.027 0.304 2.002 0.039 0.246 1.806

NPTX1 neuronal pentraxin 1 4884 0.870 0.050 0.029 0.304 0.286 0.280 0.504 0.615

SLITRK5 SLIT and NTRK like family
protein 5 26050 0.720 0.229 0.031 0.304 0.542 0.013 0.232 0.475
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3.4. Survival Models for OS and PFS

To evaluate whether clinical covariates can predict survival, three statistically signif-
icant clinical variables identified in the univariate analysis, i.e., age, GTV-T1, and VPA,
were included in a multivariate Cox model for overall OS and PFS, respectively (Supple-
mentary Table S2 and Figure S1). The other covariates not retained were RPA (“unknown”
status was significant), MGMT status (unknown in 34% and 41% of the non-VPA and VPA
cohorts, respectively), hemisphere vs. bilateral disease, and location (too few samples in
each category). To examine whether protein expression provides additional survival risk
discrimination to that already provided by the three clinical covariates, protein signals
identified as significantly differentially expressed between VPA and non-VPA (Supplemen-
tary File S2) were included in survival models for OS and PFS and Lasso regression was
used to build the survival risk prediction models. Landmark times were selected based on
the clinically observed and published literature median survival and progression times for
GBM [46–48]. Cross-validated time-dependent ROC curves for OS and PFS for landmark
times of 20 months and 6 months, respectively, were generated revealing AUC of 0.0.531,
0.756, 0.774 for OS and 0.535, 0.723, 0.806 for PFS for protein expression, clinical covariates
and the combination thereof, respectively, indicating improved risk discrimination power
with the addition of protein expression to the clinical covariates. A more significant impact
on PFS as compared to OS was observed (Figure 4). As shown in Supplementary Figure S5,
the cross-validated Kaplan–Meier curves and log-rank tests indicated that protein-only
models were not statistically significant for OS or PFS, clinical covariates were significant
for both OS and PFS, and combined models versus covariates only model were not signifi-
cant for PFS or OS (Supplemental Figure S5). GALNT14, ACP, SLITRK5 and CCL17 were
associated with both OS and PFS (Table 3). Among the above four proteins, GALNT14 was
retained in univariate Cox proportional hazard models with an increased pre- vs. post-CRT
value associated with improved OS and PFS (Table 3, Figure 5). We experimented with a
survival model employing GALNT14 without other protein signals; however, this did not
improve AUC (Supplementary Figure S6).
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Figure 5. Kaplan–Meier curves for overall survival (OS) (A) and progression-free survival (PFS)
(B) by difference in GALNT14 expression pre- vs. post-completion of chemoirradiation.

3.5. Protein Signals Predictive of VPA Response

The pre-CRT protein expression was analyzed for predictive proteins and, with p < 0.05,
revealed 480 proteins associated with OS and 212 associated with PFS, of which 112 overlapped
between OS and PFS (Supplementary File S3). PLCD3, VARS1, CYREN and KIR2DL4 emerged
as predictive protein signals with p < 0.005 for both OS and PFS. For PLCD3, a higher score
predicting superior OS and PFS with VPA administration (p < 0.0005) and a robust differential
survival probability vs. the protein expression percentiles (Figure 6).
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3.6. Pathway Analysis

Cancer hallmark genesets associated with VPA administration were analyzed. They
identified several pathways related to the signal transduction pathways of VPA in malig-
nancy and non-malignancy settings as well as tumor proliferation and migration, including
the epithelial–mesenchymal transition (EMT), hedgehog signaling, Il6/JAK/STAT3, co-
agulation, NOTCH, apical junction, xenobiotic metabolism, and complement signaling
(Supplementary Table S3). EMT had the most significant number of matched proteins (150).

4. Discussion

The ability to evaluate proteomic changes in a cohort of patients, such as the one in
this study, represents a unique opportunity to analyze the impact of an additive component
to the standard-of-care CRT by, in this case, examining the effect of VPA administered
as part of a prospective protocol. We have previously shown that the patient population
treated with concurrent VPA in this trial [17] had superior outcomes as compared to those
described in the literature [15] and in modern-day trials [46–48], with an acceptable toxicity
profile [16]. We have previously reported on the global proteomic alteration identified
pre- vs. post-CRT in GBM [34]. The current analysis aims to define the effect of VPA
administration on the proteome pre- vs. post-CRT in GBM compared to patients who
received standard-of-care CRT alone.

In this study, we identified differential proteomic expression between patients who
received CRT and those who received CRT plus VPA with 124 proteins differentially
expressed, indicating that the effects of VPA provide a sufficiently enriched proteomic
signal. We note that the sample size employed in this study [49,50] compares favorably
with previous studies of similar scope [51], aligning with the design of similar studies that
employ large-scale data [52] (Supplementary Table S4). We also note that serum sample
acquisition before and after CRT is feasible despite the time range from collection to analysis
(2003–2015), with time spent in storage ranging from 2 to 15 years. The proteomic signal
remains robust, unaffected by storage, and significantly altered to capture intervention
with VPA and CRT. The analysis of the proteomic signal revealed that protein expression
was distinctly clustered in the patients who received VPA. This is interesting given that
although this is a large-scale proteomic data set, it still represents only a tiny subset of
the proteome overall, and it is presumably impacted by innumerable competing factors:
clinical factors, medications, and other factors that have yet to be proteomically defined.

We found that in the OS and PFS models, the proteomic signal conferred additive risk
discrimination power as compared to the proteome or the clinical data in isolation, and this
was more pronounced for PFS in the context of VPA treatment. This is logical given that
the signal alteration resulted from pre- vs. post-CRT proteome, which would more likely
impact PFS since it represents a “closer” outcome endpoint to sample acquisition compared
to OS, which occurs later. OS is also subject to multiple other factors, including further
resection, additional systemic management, patient performance status, and comorbidities.
It should also be noted that the ability to capture and interpret progression as an endpoint is
limited and, thus, PFS remains flawed with clinical information limited by inconsistencies
(clinical, radiographic, or both); hence, presumably, PFS remains relatively insensitive.
Based on this analysis, employing proteomic alteration with validation in larger cohorts
may be possible to identify more robust signals and better predict progression.

The GALNT14 protein was identified in both protein and protein-plus-covariate mod-
els, and was significant for both OS and PFS, with an increase following CRT and VPA
treatment, measured as an improvement in OS and PFS and thus prognostic for both.
GALNT14 is a member of the polypeptide N-acetylgalactosaminyltransferase (GALNT)
family comprised of enzymes that catalyze mucin-type O-glycosylation of proteins. Al-
terations in components of this family have been associated with several hallmarks of
cancer, including migration, proliferation, and treatment resistance [53,54]. GALNT14 has
been expressed in multiple cancers altering several biological functions, and was recently
described as an emerging marker capable of predicting outcomes [53]. Previous data
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have shown that GALNT14 correlates with Apo2L/TRAIL sensitivity in pancreas cancer,
non-small-cell lung cancer, and melanoma cell lines, with overexpression increasing re-
sponse to treatment by leveraging O-glycosylation to mediate apoptosis-initiating protease
caspase-8 [55], decreasing resistance to apoptosis. The impact of altered O-glycosylation
by members of the GALNT family is wide-ranging, as recently described in genome-wide
analyses, and under- and over-expressed genes likely exhibit different effects on different
cancers [54]. The role of GALNT14 in glioma has not been described, nor has its role as
part of the human proteome and, thus, requires more research and validation. However,
alternation in this protein in our study appears to correlate to the administration of VPA
and survival. VPA, as noted, impacts multiple signaling pathways [21], and its mechanism
as a radiation modifier has yet to be fully understood. Our study is the first to connect
GALNT14, an emerging oncologic marker, to VPA administration, GBM biology, and the
human proteome. Additional markers were identified (Supplemental material File 4). CTSV
(Cathepsin V), ACP6 (Acid phosphatase 6, lysophosphatidic), BMP6 (Bone morphogenetic
protein 6), MSTN (Myostatin), SLITRK6 (SLIT and NTRK like family member 6), ICAM4
(Intercellular adhesion molecule 4 (Landsteiner-Wiener blood group), NPTX1 (Neuronal
pentraxin 1) and SLITRK5 (SLIT and NTRK like family member 5). All these proteins have
relevance to cancer (Supplemental material File 4), while BMP6, MSTN, SLITRK5 and 6
and ICAM4 and NPTX1 have specific relevance to GBM with, in the case of SLTGK5 and 6
and NPTX1 having been linked to neural tissue and neurodegeneration respectively.

PLCD3 emerged as one of the most statistically significant predictive proteins by
p-value for both OS and PFS, in addition to VARS1, CYREN, KIR2DL4 all with p < 0.005
for both OS and PFS. PLCD3 had a higher value before CRT associated with the improved
outcomes with the administration of VPA, and this bears further investigation, as do the
additional predictive proteins identified in this study. Several predictive proteins identified
have connections to known pathways in cancer, including PLCD3 (phospholipase C delta3),
VARS1 (Valyl-tRNA synthetase 1), CYREN (Cell cycle regulator of NHEJ), KIR2DL4 (Killer
cell immunoglobulin-like receptor 2DL4) and SKP1(S-phase kinase-associated protein 1),
and have a direct link to GBM [56,57] (Supplemental File 4). PLCD3 connects to PI3K
(Phosphatidylinositol-4,5-bisphosphate 3-kinase) and EGFR, which are both critical in
GBM, with PI3K signaling exhibiting heterogeneous signaling that is the subject of ongoing
investigation [58,59]. Notably VARS1 may relate to seizure presentation and management
in the context of GBM, while CYREN likely relates to radiation and chemotherapy man-
agements given its association with non homologous end joing DNA repair pathways.
KIR2DL4 has been implicated in cancer in relationship to the immune microenviroment
and is subject to evolving mangement avenues for targeted cancer immunotherapy (Sup-
plemental File 4). SKP1 is the most significant predictive protein for OS and a transcription
regulator with significant connections to molecular pathways in cancer and GBM specifi-
cally [60,61]. In its interaction with β-transducin repeat-containing E3 ubiquitin-protein
ligase (β-TrCP), itself a substrate recognition subunit for the Skp1-Cullin1-F-box protein E3
ubiquitin ligase, it has been implicated in tumorigenesis and regulation of pathways with
β-TrCP suppressing progression and cell migration in glioma. It has also been reported
to induce chromosome instability via cyclin E1 in other cancers [62]. Additional proteins,
including AGR3, APPL1, CCL17, CLU, and FBLN7, are all supported by data in GBM, with
their role an ongoing research interest [63–67].

The statistically significant proteins identified in this study and hallmark gene sets
associated with the alteration in the proteome observed between patients who received
CRT plus VPA and those who received CRT alone align with known biological mechanisms
of action of VPA as an HDACi [21], including effects on apoptosis [28,68], DNA repair and
damage response [23], signaling via Notch and TGF [30], BMP [69,70], NF-κB and STAT3 [6]
(Figure 7, Supplementary Figure S7) [71]. Understanding the effect of VPA by exploiting
observed proteomic alteration may allow for understanding the benefit observed with its
administration in glioma patients and identifying novel biomarkers that can help advance
the study of VPA in future prospective trials to improve outcomes.
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on 24 July 2023 [71]).

This study’s limitations include the small cohort and retrospective nature of the study,
given the comparison with patients who did not receive VPA and were not treated on
trial. The outcomes were superior to real-world data and thus may not be representative.
The data set was missing MGMT in 37% of patients, and IDH status was unavailable.
The data can not be validated with additional cohorts since no such cohorts are treated
with high-dose VPA and available proteome, and large-scale proteomic data are lacking.
Moreover, while adjusting for clinical covariates in the prognostic models, the potential
interactions among these covariates were not incorporated. This omission could introduce
bias if significant interactions exist and are associated with survival outcomes. Future
directions include building prediction models wherein we will explore several techniques
to mitigate class imbalance [72]. There are also additional impacts of other factors on the
proteome, including steroids, thrombosis, and medications that are not captured in the
clinical classification, and these can impact the analysis and interpretation. We also do not
know if the changes in the proteome stem from the tumor or from normal tissues, or if the
changes observed are representative of cause or effect.

5. Conclusions

Differentially expressed proteins were identified in a large-scale proteomic panel car-
ried out before and post-completion of CRT with the addition of high-dose VPA. GALNT14
and CCL17 were identified as potential prognostic markers based on their expression
changes between pre- and post-treatment proteomic profiles. Additionally, PLCD3, SKP1,
VARS1, CYREN, and KIR2DL4 were found to be potentially predictive biomarkers solely
from the expression levels in the pre-treatment proteomic profile. Those findings were sup-
ported by existing data in cancer with several proteins specifically reported on in GBM with

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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growing associations to treatment resistance or response. The predictive and prognostic
ability following measurement in serum in GBM patients with the addition of VPA to the
standard-of-care CRT is novel, as is the identification of several proteins that, collectively
or individually, may be explored as biomarkers. Predictive markers may point to biological
risk groups that may benefit from administering VPA to result in superior outcomes. Given
these findings, VPA benefits from additional studies in prospective trials.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/biom13101499/s1. File S1: Survival models with mathematical formulas;
File S2: The 124 differentially expressed proteins in the VPA-treated population; File S3: Pre-CRT
protein expression analyzed for predictive proteins showing the 112 proteins overlapped between OS
and PFS; File S4: Additional identified proteins in the reanalysis post data correction; Figure S1: Forest
plot for covariates for overall survival (OS) and progression free survival (PFS); Figure S2: KM curves
for OS (A) and PFS (B) for the administration of VPA; Figure S3: Protein signal vs. time in freezer from
collection to analysis in days for. (A) GALNT14, statistically significant for OS and PFS in Cox analysis
and survival. (B) SKP1, predictive for response to VPA in prediction model; Figure S4: Figure 3
displayed as the two separate zoom-in figures with gene names to represent the top (A) and bottom
(B) clusters of proteins in the original heatmap; Figure S5: Kaplan Meier curves for survival (OS) (A-C)
and progression free survival (PFS) (D–F) with patient population risk stratified (high(red), low (blue))
by protein expression (A,D), covariates (B,E) and combination of protein expression and covariates
(C,F) Protein data is based on the results from 124 significantly differentially expressed proteins from
class comparison between patients treated with CRT and concurrent VPA vs CRT. Figure S6: Time-
dependent ROC curve for overall survival (OS) (A) and progression free survival (PFS) (B) prediction
model based on GALNT14; Figure S7: GALNT14 and CCL17, the two proteins associated with OS
with FDR 0.104 with potential function between two major signaling pathways driven by TGF and NF-
κB. (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis)
accessed on 24 July 2023 [71]; Table S1: Patient characteristics table and cox regression analysis of
clinical covariates in the VPA cohort; Table S2: Cox analysis for overall survival (OS) and progression
free survival (PFS) with hazard ratio and p-value for VPA and no VPA patients.; Table S3: Cancer
Hallmark GeneSets associated with Valproic acid (VPA) administration; Table S4: Results of online
sample size calculation tool to calculate the minimum sample size for PFS and OS. References [73–92]
were cited in Supplementary Materials.
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Abbreviations

CRT Concurrent Chemoirradiation
EMT Epithelial–Mesenchymal Transition
GBM Glioblastoma
GTV T1 Gross Tumor Volume on T1 Gadolinium-Enhanced MRI Sequence
GTV T2 Gross Tumor Volume on T2 FLAIR Signal Sequence
MGMT O6-Methylguanine-DNA Methyltransferase
OS Overall survival
PFS Progression-Free Survival
RPA Recursive Partitioning Analysis
RT Radiation Therapy
TMZ Temozolomide
VPA Valproic Acid
WHO World Health Organisation
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65. Korbecki, J.; Kojder, K.; Simińska, D.; Bohatyrewicz, R.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. CC Chemokines in a
Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of the Ligands of Receptors CCR1, CCR2, CCR3, and CCR4. Int. J.
Mol. Sci. 2020, 21, 8412. [CrossRef]

66. Autelitano, F.; Loyaux, D.; Roudières, S.; Déon, C.; Guette, F.; Fabre, P.; Ping, Q.; Wang, S.; Auvergne, R.; Badarinarayana, V.;
et al. Identification of novel tumor-associated cell surface sialoglycoproteins in human glioblastoma tumors using quantitative
proteomics. PLoS ONE 2014, 9, e110316. [CrossRef]

https://www.R-project.org/
https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1093/bib/bbr001
https://www.ncbi.nlm.nih.gov/pubmed/21324971
https://doi.org/10.7326/0003-4819-154-4-201102150-00006
https://doi.org/10.1001/jama.2017.18718
https://www.ncbi.nlm.nih.gov/pubmed/29260225
https://doi.org/10.1016/S1470-2045(14)70379-1
https://doi.org/10.1016/S1470-2045(17)30517-X
https://doi.org/10.1038/tpj.2010.87
https://doi.org/10.1002/gepi.202
https://www.ncbi.nlm.nih.gov/pubmed/12112246
https://doi.org/10.3390/ijms21041491
https://www.ncbi.nlm.nih.gov/pubmed/32098271
https://doi.org/10.18632/oncotarget.10042
https://www.ncbi.nlm.nih.gov/pubmed/27322213
https://doi.org/10.1038/nm1627
https://www.ncbi.nlm.nih.gov/pubmed/17767167
https://doi.org/10.1002/stem.1120
https://www.ncbi.nlm.nih.gov/pubmed/22553175
https://doi.org/10.1016/j.ccell.2021.01.006
https://www.ncbi.nlm.nih.gov/pubmed/33577785
https://doi.org/10.3389/fonc.2017.00312
https://doi.org/10.3390/cancers14143506
https://www.ncbi.nlm.nih.gov/pubmed/35884571
https://doi.org/10.3892/ol.2017.6533
https://doi.org/10.1186/1476-4598-14-2
https://doi.org/10.3390/cancers12030531
https://www.ncbi.nlm.nih.gov/pubmed/32106628
https://doi.org/10.21037/atm-22-526
https://www.ncbi.nlm.nih.gov/pubmed/35280380
https://doi.org/10.1042/BST20160191
https://www.ncbi.nlm.nih.gov/pubmed/28620038
https://doi.org/10.3390/ijms21218412
https://doi.org/10.1371/journal.pone.0110316


Biomolecules 2023, 13, 1499 19 of 20

67. de Vega, S.; Kondo, A.; Suzuki, M.; Arai, H.; Jiapaer, S.; Sabit, H.; Nakada, M.; Ikeuchi, T.; Ishijima, M.; Arikawa-Hirasawa,
E.; et al. Fibulin-7 is overexpressed in glioblastomas and modulates glioblastoma neovascularization through interaction with
angiopoietin-1. Int. J. Cancer 2019, 145, 2157–2169. [CrossRef]

68. Thotala, D.; Karvas, R.M.; Engelbach, J.A.; Garbow, J.R.; Hallahan, A.N.; DeWees, T.A.; Laszlo, A.; Hallahan, D.E. Valproic acid
enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma
cells. Oncotarget 2015, 6, 35004–35022. [CrossRef]

69. Raja, E.; Komuro, A.; Tanabe, R.; Sakai, S.; Ino, Y.; Saito, N.; Todo, T.; Morikawa, M.; Aburatani, H.; Koinuma, D.; et al. Bone
morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells. Oncogene 2017, 36,
4963–4974. [CrossRef]

70. Talwadekar, M.; Fernandes, S.; Kale, V.; Limaye, L. Valproic acid enhances the neural differentiation of human placenta derived-
mesenchymal stem cells in vitro. J. Tissue Eng. Regen. Med. 2017, 11, 3111–3123. [CrossRef]

71. Krämer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics
2014, 30, 523–530. [CrossRef]

72. Tasci, E.; Zhuge, Y.; Camphausen, K.; Krauze, A.V. Bias and Class Imbalance in Oncologic Data-Towards Inclusive and Trans-
ferrable AI in Large Scale Oncology Data Sets. Cancers 2022, 14, 2897. [CrossRef] [PubMed]

73. Xia, Y.; Ge, M.; Xia, L.; Shan, G.; Qian, J. CTSV (cathepsin V) promotes bladder cancer progression by increasing NF-κB activity.
Bioengineered 2022, 13, 10180–10190. [CrossRef]
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