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Abstract: The effects of methyl jasmonate (MeJ) on growth and taxoid formation in the cell culture
of Taxus wallichiana were investigated to elucidate the specifics of phytohormone action in dediffer-
entiated plant cells in vitro. The characteristics of the same suspension cell culture were compared
in 2017 (the «young» culture) and in 2022 (the «old» culture)—1.5 or 6 years after culture induction,
respectively. MeJ (100 µM) is added to the cell suspension at the end of the exponential growth phase.
Cell culture demonstrated good growth (dry weight accumulation 10–18 g/L, specific growth rate
µ = 0.15–0.35 day−1) regardless of its «age», cultivation system, and MeJ addition. UPLC-ESI-
MS analysis revealed the presence of C14-hydroxylated taxoids (yunnanxane, taxuyunnanine C,
sinenxane C, and sinenxane B) in the cell biomass. The content of C14-OH taxoids increased from
0.2–1.6 mg/gDW in «young» culture to 0.6–10.1 mg/gDW in «old» culture. Yunnanxane was the
main compound in «young» culture, while sinenxane C predominated in «old» culture. Without
elicitation, small amounts of C13-OH taxoids (<0.05 mg/gDW) were found only in «young» cultures.
MeJ addition to «young» culture had no effect on the content of C14-OH taxoids but caused a 10-fold
increase in C13-OH taxoid production (up to 0.12–0.19 mg/gDW, comparable to the bark of yew
trees). By contrast, MeJ added to «old» culture was not beneficial for the production of C13-OH
taxoids but notably increased the content of C14-OH taxoids (1.5–2.0 times in flasks and 5–8 times
in bioreactors). These findings suggest that hormonal signaling in dedifferentiated yew cells grown
in vitro is different from that in plants and can be affected by the culture’s age. This might be a
result of the high level of culture heterogeneity and constant auto-selection for intensive proliferation,
which leads to the predominant formation of C14-OH taxoids versus C13-OH taxoids and a modified
cell response to exogenous MeJ treatment.

Keywords: plant cell culture; elicitation; paclitaxel; taxuyunnanine C; yunnanxane; sinenxane; plant
secondary metabolism

1. Introduction

Taxane diterpenoids (taxoids), particularly paclitaxel, are plant secondary metabolites
highly valued for their anti-cancer activities [1]. They are mostly obtained from different
species of Taxus spp. (yew), where they are accumulated in small quantities [2]. Efforts
have been made to produce taxoids in cell cultures as an alternative method to harvesting
wild plants; however, there are only a few successful examples of commercial paclitaxel
production using cell suspensions [3,4]. The biotechnological approach to taxoid synthesis
is hampered by the low content of the target compounds in cell cultures as well as the
potential risks of synthesis shift in the course of long-term in vitro cultivation [5].

The problem of low metabolite content in cell cultures is frequently addressed by
chemical elicitation, i.e., adding specific compounds (stress-signaling molecules or pre-
cursors) to culture medium at the latter stages of culture growth, which simulates the
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biosynthesis of secondary metabolites in cells [2,6,7]. One of the most widely used elicitors
is methyl jasmonate (MeJ), a non-specific stress signaling molecule that has the ability to
respond to various stresses, including herbivore and pathogen attacks [8]. The effects of
MeJ and jasmonic acid in plants have been comprehensively studied [9–11]. However,
MeJ’s mode of action might be different in in vitro-grown cell cultures due to their specifics:
dedifferentiation, artificial growth conditions, and the absence of organismic control [12–14].
MeJ has been used for the elicitation of yew cell cultures since the 1990s [4,15,16]. However,
there is evidence that the MeJ effect may be species- and even genotype-specific and vary
depending on cell immobilization and culture conditions, possibly due to a cross-talk
between MeJ and other signaling pathways [17–19].

We previously reported that cell cultures of various yew species, including
Taxus baccata, T. canadensis, T. wallichiana, and two T.×media hybrids, were able to synthesize
both C13-oxygenated/hydroxylated (C13-OH) taxoids (decinnamoyl-taxinine J, taxuspine
F, etc.) and C14-OH taxoids (7β-hydroxy-taxuyunnanin C, sinenxane C, taxuyunnanine
C, 2α,5α,9α,10β,14β-pentaacetoxy-4(20), 11-taxadiene, and yunnanxane) [20,21]. More-
over, while C13-oxygenated/hydroxylated taxoids were detected in callus cell cultures of
T. × media [21], cell cultures maintained for several years produced mainly C14-OH tax-
oids [21,22]. These results are of significant interest for commercial-scale cultivation, which
requires stable qualitative and quantitative content of the desired secondary metabolites.
However, little is known about the potential change in taxoid composition in the cell cul-
tures during continuous maintenance. Further, little or no information is available about the
effect of MeJ treatment on long-term cultured plant cell lines, while such information has
both scientific and practical importance. We hypothesized that the cell culture’s response
to elicitation may change depending on culture age.

The aim of the present study was to investigate the effect of MeJ elicitation on growth
and the ability to synthesize C13-hydrohylated and C14-hydrohylated taxoids of the same
cell culture of Taxus wallichiana at different ages (1.5 and 6 years after induction) during
cultivation in flasks and pilot-scale bioreactors.

2. Materials and Methods
2.1. Plant Material and Culture Conditions

The ell culture of Taxus wallichiana Zucc., line Tw-bbg/B5-NB-pvp, used in this study
was induced in January 2016 from a plant growing in the Minsk Botanical Garden of
the National Academy of Sciences (Minsk, Belarus). Suspension culture was obtained
from callus culture in June 2016 [23]. This cell line was yellow-colored and composed of
small cell aggregates and individual cells. The aggregates consisted of meristem-like and
parenchyma-like cells, predominantly of round shape. Cell culture was maintained in
250-mL and 500-mL flasks filled with, respectively, 40 mL and 80 mL of liquid nutri-
ent medium composed of B5 [24] mineral salts, 1.0 g/L polyvinylpyrrolidone (PVP),
0.5 mg/L nicotinic acid, 0.1 mg/L thiamine, and 0.1 mg/L pyridoxine vitamins, 2 mg/L
α-naphthalene acetic acid (NAA), and 0.3 mg/L 6-benzylaminopurine (BAP). Cultures
were grown on an orbital shaker (90 rpm) at 26 ± 0.5 ◦C and 75% relative air humidity in
darkness. For subculturing, 1 mL or 2 mL of the packed volume of the cell suspension was
transferred to a fresh medium every 28 days.

Bioreactor cultivation was performed in 20-L bubble-type glass bioreactors of our
own design (Institute of Plant Physiology of RAS, Moscow, Russia) with a 15-L working
volume and in a 75-L bioreactor Electrolux-El-75 (Sweden) with a 50-L working volume. All
bioreactors were operated in a semi-continuous mode, which was maintained by collecting
a portion of cell suspension and simultaneously feeding fresh medium into the bioreactor
at the beginning of the stationary phase of each subcultivation cycle. Cultivation was
performed at 26 ± 0.5 ◦C in darkness; air supplied varied from 0.1 to 1.0 v/vpm depending
on the growth phase of the cell culture. The initial density of cell suspension for bioreactor
cultivation was 2–3 g dry weight (DW) per L medium.
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2.2. Elicitation of Young and Old Cultures with Methyl Jasmonate (MeJ)

Elicitation experiments were performed in two series: in 2017 (1.5 years after culture
induction) and in 2021–2022 (5–6 years after culture induction).

The first experiments were performed between May and July 2017. By this time, the
culture was relatively «young» and had passed through five subculture cycles of callus and
twelve cycles of suspension culture. In flask culture, MeJ at a final concentration of 100 µM
(the concentration was chosen based on literature data [15]) was added to cell culture on
day 21 of cultivation (the end of the exponential growth phase). In 20-L bioreactors, MeJ at
a final concentration of 100 µM was added in the second cycle of cultivation at the end of
the exponential growth phase (48th day of cultivation, 18th day from the beginning of the
subculture cycle). The stock solution of MeJ (Sigma, Burlington, MA, USA) was prepared
using methanol.

In 2021–2022, the second series of experiments was performed to compare the effect
of MeJ on «young» and «old» cell cultures. By this time, the cell culture was 6-years-old
and had passed through more than 70 subcultivation cycles. In this series of experiments,
cultivation was performed in flasks and in 20- and 75-L bioreactors. MeJ was on day 19 in
flasks and on day 17 in a 75-L bioreactor.

The influence of MeJ on cell culture growth and the production of taxoid diterpenoids
was assessed as described below.

2.3. Growth Assessment

To assess the growth and physiological state of cell cultures in flasks and bioreactors,
fresh weight (FW) and DW of cell biomass and cell viability were recorded periodically
during the cultivation cycle as described earlier [23,25]. For FW evaluation, 10–15 mL
aliquots of cell suspension were pipetted on paper filters, and the culture medium was
removed under vacuum. The cell biomass was washed three times with distilled water
under vacuum and weighted. Dry weight was recorded after ai-drying of cell biomass to a
constant weight at 60 ◦C.

Growth index, specific growth rate, doubling time, economic coefficient, and produc-
tivity were calculated as previously described [20,23,25].

Cell viability was determined by staining with 0.025% Evans blue [23,25] as the
percentage of cell aggregates composed of colorless (living) cells. A minimum of 250 cell
aggregates were examined in each of the three replicates.

2.4. Analysis of Taxoid Diterpenoids in Cell Biomass

Taxoid diterpenoids were analyzed in the dry cell biomass by the UPLC-ESI-MS.
Sample preparation for qualitative and quantitative analysis of taxoids was carried out
according to previously published methods [20–22].

UPLC-ESI-MS (structural identification of diterpenoids): The structural identifica-
tion of the compounds was performed as previously described [20–22]. The C13- and
C14-hydroxylated taxoids were identified based on comparison of their chromatographic
behavior and mass spectra (positive ions) with the standard samples and the literature
data [21,26–28], as well as the interpretation of their mass spectra [20–22]. The follow-
ing commercial reference samples of C13-hydroxylated taxoids were used: 7-xylosyl-10-
deacetyltaxol, 10-deacetyltaxol, taxusin (ChromaDex, Los Angeles, CA, USA), cephaloman-
nine, baccatin III, 10-deacetyl baccatin III, paclitaxel (Sigma Aldrich, Burlington, MA, USA),
13-acetyl-9-dihydrobaccatin III, and taxinin M (TRC, North York, Toronto, ON, Canada).

UPLC-ESI-MS (quantitative analysis): The analysis was performed using an Agilent
1260 Infinity instrument (Agilent Technologies, Santa Clara, CA, USA) equipped with
a mass-selective detector (6100, Agilent Technologies, Santa Clara, CA, USA). Column:
Poroshell 120 EC-C18 (100 mm × 3 mm, 2.7 µm, Agilent, Santa Clara, CA, USA). The
column temperature was set at 43 ◦C, the mobile phase flow rate was 0.5 mL/min, and the
injection volume was 0.5 µL. A 0.05% (v/v) solution of formic acid in water (solvent A)
and acetonitrile (solvent B) was used as the mobile phase. Chromatographic separation
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was carried out in gradient elution mode. During the analysis, the composition of the
mobile phase changed as follows (B, % by volume): 0–1 min—41%, 1–3 min—41→55%,
3–11 min—55%, 11–13 min—55→85%, and 13–17 min—85%. The analysis was performed
in the positive ion detection mode (m/z range 100–1300, fragmentor 70). Ionization source
parameters were the following: quadrupole temperature 100 ◦C, carrier gas (nitrogen) tem-
perature 250 ◦C, nitrogen supply rate (spraying gas) 13 L/min, nitrogen pressure 2484 Torr,
capillary voltage 4.0 kV. Quantitative determination of the content of individual taxoids
was carried out by external calibration against standard samples of paclitaxel (Sigma,
Burlington, MA, USA), 2α,5α,9α,10β,14β-pentaacetoxy-4(20), 11-taxadiene (previously
isolated in our laboratory [20]), or taxusin (ChromaDex, Los Angeles, CA, USA). Under the
described analytical conditions, the relative standard deviation of the taxoid retention times
did not exceed 1%. In the working concentration range (5.5–277.7 µg/mL, 3.6–71.4 µg/mL,
and 0.7–72.2 µg/mL for paclitaxel, 2α,5α,9α,10β,14β-pentaacetoxy-4(20), 11-taxadiene, and
taxusin, respectively), the taxoid calibration curves were approximated by straight lines
with coefficients of determination (R2) above 0.98. The relative standard deviation of taxoid
peak areas did not exceed 10%.

2.5. Statistical Analysis

Data on growth assessment and the analysis of taxoids are presented as mean values
with standard deviations recorded for the triplicates (three flasks or three fixed-size samples
of cell suspension collected from bioreactors) for each data point. STATISTICA10 software
(StatSoft©, Moscow, Russia) was used for processing the data.

3. Results
3.1. Effect of MeJ on the Growth and Biosynthetic Characteristics of the «Young» (1.5-Year-Old)
Suspension Cell Culture of T. wallichiana in Flasks and Bioreactors
3.1.1. Effect of MeJ on the Growth of the «Young» Suspension Cell Culture in Flasks and
Bioreactors

Growth curves and main growth parameters of «young» suspension cell culture of
T. wallichiana in flasks are shown in Figure 1a and Table 1. The culture demonstrated rapid
growth without a noticeable lag phase. The growth curve had a standard S-shape with a
typical difference between FW and DW at the end of the subcultivation cycle, indicating
significant hydration of the cells. Cell viability remained high (95–97%) during 28 days
of cultivation and decreased to 82–85% by the end of the subculture cycle (Figure 1a). In
addition, during the subcultivation cycle, minor step-like fluctuations in both fresh and dry
weights were recorded (Figure 1a).

The addition of MeJ at a final concentration of 100 µM had almost no effect on the
growth characteristics and viability of the cell culture (Figure 1a), but resulted in a signifi-
cant (almost 1.5-fold) reduction of cell hydration by the end of the subcultivation cycle.

Figure 2a and Table 2 present the growth curves and main growth parameters of the
suspension cell culture of T. wallichiana grown in bioreactors.

The growth characteristics of the cell culture remained high during bioreactor cul-
tivation. A minor decrease in the growth index recorded during bioreactor cultivation
compared to flasks may be due to the high initial density of the cell culture. The addition
of MeJ (final concentration 100 µM) had no effect on cell viability or maximum biomass
accumulation during the same subculture cycle. Some increase in FW and DW accumula-
tion was observed in the next subculture cycle following MeJ treatment. Interestingly, MeJ
treatment slightly reduced cell hydration at the end of the next subcultivation cycle (cycle 3
in Figure 2a), as reflected by the lower difference between FW and DW.

3.1.2. Effect of MeJ on Accumulation of Taxoid Diterpenoids in the «Young» Suspension
Cell Culture in Flasks and Bioreactors

The UPLC-ESI-MS chromatograms of taxoid diterpenoids detected in the dry biomass
of the «young» T. wallichiana cell suspension culture grown in flasks and bioreactors are
presented in Figure 3 and Supplementary Figure S1. The MS spectra of the peaks corre-
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sponding to paclitaxel on UPLC-ESI-MS chromatograms are presented in Supplementary
Figure S2.
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Figure 1. Growth curves of Taxus wallichiana suspension cell culture in flasks with and without MeJ
elicitation: (a) the «young» culture (experiment performed in 2017); (b) the «old» cultures (experiment
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addition (final concentration 100 µM) to cell suspension. MeJ—culture elicited with methyl jasmonate;
DW—dry weight (g/L); FW—fresh weight (g/L); V—viability (%).

Table 1. Growth parameters of the «young» and «old» Taxus wallichiana suspension cell cultures
grown in flasks without elicitation.

Growth Parameter

I µ, day−1 τ, Days Mmax, g/L Y P, g/(L × day)

«Young» culture (experiment performed in 2017)

Calculation
based on FW 16.9 0.22 3.1 173.2 n/a n/a

Calculation
based on DW 10.2 0.21 3.3 12.7 0.33 0.39

Calculation
based on the
cell number

5.3 0.17 4.1 n/a n/a n/a

«Old» culture (experiment performed in 2021)

Calculation
based on FW 4.4 0.27 2.6 168.2 n/a n/a

Calculation
based on DW 4.9 0.25 2.8 10.5 0.29 0.44

I—growth index; µ—specific growth rate; τ—doubling time; Mmax—maximum biomass accumulation; Y—
economic coefficient; P—productivity; n/a—not applicable; FW—fresh weight; DW—dry weight.

The biomass of the suspension cell culture of T. wallichiana contained diterpenoids
of the taxane series belonging to the structural type of taiwanxan (14-hydroxylated tax-
oids): sinenxane B, sinenxane C, taxuyunnanine C, 2α,5α,9α,10β,14β-pentaacetoxy-4(20),
11-taxadiene, yunnanxane, and an isomer of 7-hydroxy-2,5,10,14-tetra-acetoxy taxadiene.
Under standard conditions in flasks, the dominant compounds were the C14-OH taxoids
taxuyunnanine C and yunnanxane. C13-OH taxoids (paclitaxel) were also detected, but
only in small amounts. The quantitative content of the main detected taxoids is shown in
Table 3.
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Table 2. Growth parameters of the «young» and «old» Taxus wallichiana suspension cell cultures
grown in 20-L or 75-L bioreactors, calculated based on dry weight.

Growth Cycle *
Growth Parameter

I µ, day−1 τ, Days Mmax, g/L Y P, g/(L × day)

«Young» culture, 20-L bioreactor (experiment performed in 2017)

1 4.6 0.26 2.7 11.7 0.32 0.32

2 4.3 0.21 3.3 10.5 0.30 0.30

3 (MeJ elicitation) 3.1 0.19 3.6 17.5 0.39 0.62

«Old» culture, 75-L bioreactor (experiment performed in 2021)

4 4.0 0.21 3.3 13.1 0.33 0.26

5 3.7 0.13 5.8 11.5 0.28 0.29

6 (MeJ elicitation) 3.2 0.16 4.9 9.47 0.21 0.28

* According to Figure 2a,b. I—growth index; µ—specific growth rate; τ—doubling time; Mmax—maximum
biomass accumulation; Y—economic coefficient; P—productivity.

The addition of MeJ to the suspension cell culture caused a significant change in
the composition of taxoids. As a result of MeJ action, paclitaxel content in cell biomass
increased almost 10-fold, from 0.02 mg/gDW to 0.19 mg/gDW. Seven days after MeJ
treatment (28–31 days of cultivation), the paclitaxel content reached almost 0.02% DW,
which is comparable to its content in intact yew plants [29]. At the same time, the content
of C14-OH taxoids (taxuyunnanine C and yunnanxane) changed insignificantly.

The results of taxoid analysis in the biomass of T. wallichiana cell suspension cultured
in a 20-L bioreactor were comparable to those for flask culture (Figure 3, Table 3).

These results are in agreement with the literature [28,30,31] and suggest that cell
culture of T. wallichiana grown in a bioreactor accumulated mainly C14-hydroxylated
taxoids (taxuyunnanine C and yunnanxane), but their content was slightly lower compared
to culture in flasks. The synthesis of paclitaxel in the cell culture was detected at the
moment of adding MeJ (at the 48th day). At day 52, four days after adding MeJ, paclitaxel
content reached 0.06 mg/gDW. Seven days after elicitation (at the 55th day of culturing),
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paclitaxel content was doubled at 0.11 mg/gDW, which was comparable to its level in
intact T. wallichiana (Table 3). It is important that the paclitaxel content increase occurred in
the next cycle of cultivation following elicitation and reached 0.15 mg/gDW by the end of
the experiment.
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Table 3. Taxoid content in the biomass of the «young» suspension culture of Taxus wallichiana grown
in flasks and a 20-L bioreactor (experiment performed in 2017).

Variant Days of Culture
Taxoid Content, mg/gDW

Yunnanxane 1

(C14-OH Taxoid)
Taxuyunnanine C 1

(C14-OH Taxoid)
Paclitaxel

(C13-OH Taxoid)

Flasks, control
28 0.77 0.53 0.02
31 1.22 0.56 0.05

Flasks, MeJ
28 0.95 0.51 0.19
31 1.02 0.65 0.18

20-L bioreactor, control
14 0.04 0.13 -
28 0.12 0.02 -
45 0.08 0.09 -

20-L bioreactor, MeJ
(48 days of culture)

48 0.13 0.12 -
52 0.15 0.13 0.06
55 0.27 0.23 0.11
77 0.36 0.34 0.15

Tree bark 2 - - 0.13
1 Yunnanxane and taxuyunnanine C contents were determined by the calibration curves for taxusin or
2α,5α,9α,10β,14β-pentaacetoxy-4(20), 11-taxadiene. 2 Bark from the trunk of a Taxus wallichiana tree (Central
Botanic Garden of the National Academy of Sciences of Belarus, Minsk).
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The presence of C14-hydroxylated taxoids (taxuyunnanine C and yunnanxane), which
were synthesized both before and after the addition of MeJ, was also recorded in the
T. wallichiana cell culture grown in the bioreactor. The content of these compounds increased
as a result of MeJ elicitation. For example, 7 days after elicitation (the 55th day of culture),
the total content of C14-hydroxylated taxoids was 0.45 mg/gDW, while on day 77 of
cultivation, it was 0.70 mg/gDW.

Our results confirm the predominant accumulation of C14-OH taxoids compared with
other groups of taxoids in the suspension cell culture of T. wallichiana, regardless of the
cultivation system (flask or bioreactor). However, the composition and ratio of individual
taxoid compounds were different from those in plants. In particular, baccatin III (C13-OH
taxoid) was not detected in T. wallichiana cell culture.

3.2. Effect of MeJ on the Growth and Byosynthetic Characteristics of the «Old» (6-Year-Old)
Suspension Cell Culture of Taxus wallichiana in Flasks and Bioreactors
3.2.1. Effect of MeJ on the Growth of the «Old» Suspension Cell Culture in Flasks
and Bioreactors

When a 6-year-old suspension cell culture was grown in flasks and bioreactors, its
growth characteristics resembled those recorded for the «young» culture (Figure 2, Table 2).
A minor decrease in the growth index compared to «young» cultures may be due to a
higher initial inoculum density. Interestingly, the culture preserved the step-wise growth
curve observed for the «young» culture (Figure 2), but, due to the increase in the lag phase,
the growth decrease was recorded at 2–5, 10–12, and 14–16 days of cultivation.

Similar to the experiments performed in 2017, the addition of MeJ (final concentration
100 µM) had little effect on culture growth characteristics in both flasks and bioreactors.
Moreover, we observed the same effect of MeJ on reducing cellular hydration: in the control
without elicitation, the ratio of FW to DW at the stationary growth stage was 1.4–1.5 times
higher than in the variant with elicitation, which coincides with the results of the first
experimental series performed in 2017 (Figure 2).

In 2021–2022, additional experiments were performed to upscale the cultivation of the
suspension cell culture from 20-L to 75-L bioreactors. In these experiments, cell suspensions,
after being cultured in 20-L bioreactors for two cycles, were inoculated into a 75-L bioreactor
and grown for an additional four cycles of 14–28 days each (Figure 2a). The cell culture
demonstrated good growth during all culture cycles in both 20-L and 75-L bioreactors.
The growth characteristics were comparable to those recorded during cultivation in flasks
and 20-L bioreactor cultivation of «young» cell culture in 2017 (Figure 2, Table 2). During
the first three cultivation cycles in a 75-L bioreactor, the culture was adapting to the new
cultivation conditions, so MeJ was added to the cell suspension in the fourth cultivation
cycle on day 17, at the end of the exponential growth phase.

3.2.2. Effect of MeJ on Accumulation of Taxoid Diterpenoids in the «Old» Suspension Cell
Culture in Flasks and Bioreactors

MeJ was added to the «old» culture on day 19 of culture in flasks and on day 17 of
bioreactor cultivation. In both flasks and bioreactors, C14-hydroxylated taxoids were found
in significant amounts (Figures 4 and 5). Synenxane C was the predominant compound
regardless of the addition of MeJ; its content varied by more than 10-fold depending on culti-
vation system, from 0.55 mg/gDW (bioreactor, day 0, without elicitation) to 6.66 mg/gDW
(flasks, day 12 after MeJ treatment). The content of yunnanxane ranged from zero to
0.1 mg/gDW. It is noteworthy that in the 2017 experiments, yunnanxane was quantitatively
the predominant taxoid, with the content reaching 1 mg/gDW, while the “old” culture
synthesized sinenxan C as the main compound. Elicitation with MeJ significantly increased
yunnanxane content from 0–27 µg/g in the control culture to 40–100 µg/gDW in the culture
with elicitation.
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Figure 5. C14-hydroxylated taxoids content in cell biomass of the «old» suspension culture of
Taxus wallichiana cultured in a 75-L bioreactor before (day 0) and after addition of MeJ. Methyl
jasmonate (final concentration of 100 µM) was added on day 17 of culture cycle 4. Sinenxan C,
yunnanxane, and taxuyunnanine C contents were determined by the calibration curve for taxusin.

The effect of MeJ on the formation of C13-hydroxylated taxoids in the “old” culture was
minor, and they were found in the cell biomass only in trace amounts. During cultivation
in flasks, paclitaxel content on the 7th day after elicitation did not exceed 3.5 µg/gDW
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(Supplementary Figure S3). It is worth noting that, in addition to paclitaxel, other C13-
hydroxylated taxoids appeared in trace amounts in the cell culture: 10-deacetyltaxol, 13-
acetyl-9-dihydrobaccatin III, baccatin III, and cephalomannine. None of these compounds
was detected in the control (not MeJ-treated) culture in flasks.

When cell suspension was cultured in a 75-L bioreactor, addition of MeJ resulted in
the formation of trace amounts of C13-hydroxylated taxoids, but their composition was
different from that in flasks. Interestingly, trace amounts (less than 3.5 µg/gDW) of the
C13-OH compound, 10-deacetylbaccatin III, were found in culture on day 17 of culture
cycle 4, that is, before the addition of MeJ, and remained until the end of the cultivation
cycle. This compound was only found in a bioreactor culture. At the same time, paclitaxel
and baccatin III were not found until the 14th day of cultivation after the addition of MeJ.

4. Discussion

Plant secondary metabolites perform a vital role in plant signaling and response to
environmental conditions, including biotic and abiotic stresses, interactions with other
plants, pollinators, and predators [9]. Taxoid diterpenoids are produced by a number of
yew species as a part of their defense system against bark-colonizing fungi and oomycetes
and are effective against the most widespread and important pathogens of conifers [32,33].
In medicine, these compounds are highly valued for their unique anti-tumor activities [3].
Although multiple studies have explored the use of yew cell culture to produce taxoids,
these efforts are still hampered by the low content of the target compounds, particularly
paclitaxel, in the cell cultures compared to plants [9].

Elicitation with MeJ is one of the most popular ways to stimulate the biosynthesis of
the desired secondary metabolites in plant cell cultures. For example, it was effective in
increasing the production of ecdysteroids in the cell cultures of Ajuga turkestanica [34] and
ginsenosides in the cell cultures of Panax notoginseng [35]. In 1996, Yukimune et al. first
reported that elicitation with MeJ improved the accumulation of paclitaxel and baccatin
III (C13-OH taxoids) in Taxus spp. suspension cell cultures [15]. Since then, several Taxus
species have been shown to be responsive to MeJ treatment. For example, MeJ induced the
production of paclitaxel in the suspension cultures of T. cuspidata [36] and T. canadensis [17].
In T. canadensis, MeJ added to the culture medium increased paclitaxel production to 48.3
mg/L and baccatin III production to 53.6 mg/L compared to 0.4 mg/L of each of these
compounds in control (non-elicited) cell culture [37]. In the work by Ketchum et al. [38],
the greatest accumulation of paclitaxel in the cell cultures of T. canadensis and T. cuspidata
occurred when MeJ was added to cultures at a final concentration of 200 µM on day 7 of
the culture cycle. The concentration of paclitaxel increased in the extracellular (cell-free)
medium to 23.4 mg/L per day within 7 days following elicitation. In cell culture of T.
baccata, the addition of MeJ combined with lauryl alcohol stimulated a 2-fold increase in
paclitaxel production without affecting culture growth characteristics [39].

Similarly, in the present study, production of C13-OH toxoids, including paclitaxel, in
«young» cell cultures of T. wallichiana increased both in flasks and bioreactors in response
to MeJ treatment, while culture growth and cell viability remained at a high level. Hence,
the effect of MeJ on «young» cell culture of T. wallichiana was comparable to that in cell
cultures of other yew species. The results are in agreement with the literature [28,30,31] and
indirectly support the assumption of different regulation of the formation or accumulation
of C13- and C14-hydroxylated taxoids in yew cells in vitro.

Other taxoids present in young cell cultures of T. wallichiana in this study were the
C14-OH taxoids yunnanxane and taxuyunnanine C. Our earlier study revealed that cell
cultures of different Taxus species and hybrids are able to produce C14-OH taxoids that
accumulate in both cell biomass and culture medium [20].

It is noteworthy that nearly all studies referenced herein were performed using rela-
tively young (recently induced) cell cultures. In this regard, it was interesting to compare
taxoid synthesis and the effect of MeJ on the same cell culture after several years of in vitro
maintenance by periodic subcultures.
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The composition of taxoid diterpenoids in the cell culture of T. wallichiana notably
changed after 6 years of cultivation. In the «old» culture, sinenxane C and taxuyunnanine C
became predominant compounds, in contrast to «young» culture, which produced mostly
yunnanxane and taxuyunnanine C in comparable amounts. In addition, the «old» cell
culture reacted differently to MeJ treatment. By contrast to «young» cell culture, in the
6-year-old cell culture, MeJ increased the production of C14-OH taxoids sinenxane C and
taxuyunnanine C but did not lead to the appearance of C13-OH paclitaxel. These results
agree with the literature’s findings. For example, McKee et al. [19] reported that MeJ
treatment of T. cuspidata and T. canadiensis cell lines producing paclitaxel led to an increase
in the content of this compound. By contrast, MeJ could not induce paclitaxel synhesis
in the cell lines that did not accumulate its UPLC-detectible levels before elicitation [19].
MeJ differently affected growth and taxoid (taxol, 10-deacetylbaccatin III, baccatin III,
10-deacetyltaxol, and cephalomannine) accumulation in cell culture of T. globosa depending
on cell immobilization [39]. Interestingly, in the present study, MeJ induced the appearance
of paclitaxel in the «young» culture but had only a minor effect on the content of C14-OH
taxoids. By contrast, in the «old» culture, production of C14-OH taxoids was significantly
affected by MeJ elicitation.

Several studies, including ours, demonstrated successful cultivation of taxoid-producing
yew cell cultures in bioreactors of different volumes [3,21]. In the present study, the effect of
MeJ was clearly related to culture age rather than a cultivation system (flasks or bioreactors).
In both «young» and «old» cell suspensions, the responses to MeJ observed in bioreactor
cultures resembled those in flasks. Therefore, flask cultivation could be effectively used for
the initial screening as well as the elucidation of elicitation effects in yew cell cultures prior
to scaling up the growth process to a more expensive bioreactor cultivation [20].

The response of the cell culture to treatment with plant growth regulators and elicitors
may be different from that in plants due to the different physiology of plant cell culture as
a population of undifferentiated cells lacking organismic control [13]. Our findings suggest
that the response to MeJ treatment in the same cell culture depends on many factors and
may change in the course of cultivation. Hormonal signaling in dedifferentiated yew cells
grown in vitro is different from that in plants and changes with culture age. This might be
a result of the high level of heterogeneity of cells in vitro and their constant auto-selection
for proliferative intensity, which leads to the predominant formation of C14-OH taxoids
versus C13-OH taxoids and a modified cell response to exogenous MeJ treatment. These
observations may have important implications for the commercial production of both
C14-OH and C13-OH taxoids, including paclitaxel, using cell culture technology. For
example, some biotechnological companies, e.g., Phyton Biotech (https://phytonbiotech.
com/, accessed 30 March 2023), claim on their website that they use cryopreservation in
liquid nitrogen instead of periodic subcultures to ensure long-term preservation of the
biosynthetic abilities of the productive cell lines.

5. Conclusions

T. wallichiana cell culture grown in flasks and bioreactors is a promising source of
taxoids of different structural groups (C13-OH and C14-OH). Our results demonstrated
that the composition of taxoids and cell responses to MeJ treatment depend on culture age
rather than a cultivation system. «Young» cell culture can produce both C13-OH taxoids
(including paclitaxel) and C14-OH taxoids. In addition, the content of C13-hydroxylated
taxoids in a «young» cell culture may be significantly increased by elicitation with MeJ. By
contrast, cell culture maintained in vitro for the long term (over 5 years, «old» culture) tends
to produce predominantly C14-OH taxoids regardless of the cultivation system (flasks
or bioreactors). MeJ treatment of the «old» culture stimulated accumulation of C14-OH
but could not enhance biosynthesis of C13-OH taxoids. C14-hydroxylated taxoids can be
successfully used in the treatment of various diseases, including metabolic syndromes and
oncology. Hence, cell culture of T. wallichiana can be used as a source for different taxoid
groups depending on culture age.

https://phytonbiotech.com/
https://phytonbiotech.com/
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biom13060969/s1, Figure S1: UPLC-ESI-MS chromatograms (extracted
ion chromatograms for m/z 854.3 corresponding to [M+H]+ for paclitaxel) of methanolic extracts
from the biomass of Taxus wallichiana suspension cell culture and solutions of standard samples of
paclitaxel: (a) a sample of paclitexel isolated from the bark of T. cuspidata; (b) a methanolic extract from
biomass of T. wallichiana «young» suspension cell culture, flasks, 28 days, control without elicitation;
(c) a methanolic extract from biomass of T. wallichiana «young» suspension cell culture, flasks, day 28,
7 days after MeJ elicitation (final concentration 100 µM); (d) a paclitaxel standard sample purchased
from Sigma (USA). Axes: X—time, min; Y—detector signal, relative intensity, %. Figure S2. MS
spectra (positive ions) of the peaks corresponding to paclitaxel on UPLC-ESI-MS chromatograms
of methanolic extracts from the biomass of Taxus wallichiana suspension cell culture and solutions
of standard samples of paclitaxel in Figure S1: (a) a sample of paclitexel isolated from the bark of
T. cuspidata; (b) a methanolic extract from biomass of T. wallichiana «young» suspension cell culture,
flasks, 28 days, control without elicitation; (c) a methanolic extract from biomass of T. wallichiana
«young» suspension cell culture, flasks, day 28, 7 days after MeJ elicitation (final concentration of
100 µM); (d) a paclitaxel standard sample purchased from Sigma (USA). Axes: X—m/z; Y—detector
signal, relative intensity, %. Figure S3. UPLC-ESI-MS chromatograms (extracted ion chromatograms
for m/z 876.3 corresponding to [M+Na]+ for paclitaxel) of methanolic extracts from the biomass
of Taxus wallichiana «old» suspension cell culture and solution of paclitaxel standard sample: (a) a
paclitaxel standard sample purchased from Sigma (USA); (b) a methanolic extract from biomass of
T. wallichiana suspension cell culture, flasks, day 28, 7 days after MeJ elicitation (final concentration of
100 µM); (c) a methanolic extract from biomass of T. wallichiana suspension cell culture, flasks, day 28,
control without elicitation. Axes: X—time, min; Y—detector signal, relative intensity, %.
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