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Abstract: The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play a crucial role as pattern-
recognition receptors within the innate immune system. These receptors, present in various cell and
tissue types, serve as essential sensors for viral infections, enhancing the immune system’s capacity
to combat infections through the induction of type I interferons (IFN-I) and inflammatory cytokines.
RLRs are involved in a variety of physiological and pathological processes, including viral infections,
autoimmune disorders, and cancer. An increasing body of research has examined the possibility of
RLRs or microRNAs as therapeutic targets for antiviral infections and malignancies, despite the fact
that few studies have focused on the regulatory function of microRNAs on RLR signaling. Conse-
quently, our main emphasis in this review is on elucidating the role of microRNAs in modulating
the signaling pathways of RLRs in the context of cancer and viral infections. The aim is to establish
a robust knowledge base that can serve as a basis for future comprehensive investigations into the
interplay between microRNAs and RIG-I, while also facilitating the advancement of therapeutic
drug development.

Keywords: innate immune; RLR pathway; microRNAs; viral infection; cancer

1. Introduction
1.1. RLR Signaling
1.1.1. The Structural Characterization of RLRs

RLRs are classified within the DExD/H-box RNA helicase family and encompass
three distinct members, namely RIG-I, melanoma differentiation-associated gene 5 (MDA5),
and laboratory of genetics and physiology 2 (LGP2), which are encoded by the genes
DDX58, IFIH1, and DHX58, respectively. These three proteins exhibit 30% similarity in their
amino acid sequences, particularly in their key domains (RNA helicase, pincer, and CTD
domains) [1]. In general, the central helicase domain and the C-terminal domain of these
RLRs are responsible for their RNA recognition capability [2]. The N-terminal region of
RIG-I and MDA5 contains a tandem caspase recruitment domain (CARD) (Figure 1). This
domain is important for the interaction of these proteins with the adaptor molecule, named
the mitochondrial antiviral signaling protein (MAVS; also referred to as VISA, Cardiff,
and IPS-I). The MAVS protein possesses a solitary CARD domain at its N-terminal region,
which interacts with the N-terminal CARD domain of RIG-I. This interaction prompts the
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assembly of prion-like aggregates of MAVS proteins, subsequently leading to the activation
of the transcription factors nuclear factor kappa B (NF-κB) and interferon regulatory factor 3
(IRF3) [3]. LGP2 is mostly similar to RIG-I and MDA5, with the only difference being that
it lacks the N-terminal CARD.
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MDA5 [4]. Notably, the nucleocapsid proteins of paramyxoviruses effectively shield the 
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[16]. Consequently, the lack of dsRNA detection in paramyxovirus infections by dsRNA 
recognition antibodies is unsurprising [17]. Furthermore, because the nascent genomic 
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limited (>2 kb is regarded as an MDA5 trigger). Additionally, coronaviruses have been 
found to evade detection by MDA5 through 2′-O-methylation of mRNA [18]. However, it 
is evident that future advancements should take into account higher-order RNA structure, 
sequence, and modifications, in addition to length. Notably, recent discoveries regarding 
the biological function of RIG-I in various cellular activities confirm its ability to interact 
with different endogenous RNAs (e.g., microRNA [19], panhandle RNA [20], circRNA 
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Figure 1. RIG-I-like receptor protein domain structure. The three RLRs are DExD/H-box helicase
proteins of type SF2 that contain the conserved domains Hel1 and Hel2 in their core DExD/H-box
helicase domain. The Hel2i insertion domain, essential for RIG-I autoregulation, is located between
the two helicase domains. A broadly conserved C-terminal region is also present in all RLRs (CTD).
A positively charged binding pocket is present only in the CTD of RIG-I to identify 5′-PPP or 5′PP
RNA substrates. Two N-terminal caspase activation and recruitment domains are shared by RIG-I
and MDA5 (CARDs). For interactions with MAVS and the start of downstream antiviral signaling,
several CARDs must be aligned.

1.1.2. The Recognition of RNAs by RLRs

RIG-I primarily detects two main types of RNA: single-stranded RNAs (ssRNAs) with
a triphosphate group (PPP) at their 5′ end, and short double-stranded RNAs (dsRNAs)
(<300 bp) [4–8]. Conversely, MDA5 predominantly recognizes long dsRNAs (>1000 bp) [9,10].
Unlike RIG-I and MDA5, LGP2 lacks the CARD structural domain, rendering it unable to
recognize RNA. However, studies have demonstrated that LGP2 could be involved in coordi-
nating RIG-I and MDA5 [11,12]. Emerging investigations have shed light on the involvement
of LGP2 in the recognition of viral RNA [13,14] and its significant role in self-RNA sens-
ing and RNA silencing [14,15]. Moreover, studies have indicated that RNase L-mediated
degradation of parainfluenza viral products preferentially activates MDA5 [4]. Notably,
the nucleocapsid proteins of paramyxoviruses effectively shield the viral genomic RNA,
safeguarding it from RNase digestion and host proteins like MDA5 [16]. Consequently, the
lack of dsRNA detection in paramyxovirus infections by dsRNA recognition antibodies is
unsurprising [17]. Furthermore, because the nascent genomic RNA is encapsulated, the
dsRNA segment within the replication/transcription complex is limited (>2 kb is regarded
as an MDA5 trigger). Additionally, coronaviruses have been found to evade detection by
MDA5 through 2′-O-methylation of mRNA [18]. However, it is evident that future advance-
ments should take into account higher-order RNA structure, sequence, and modifications,
in addition to length. Notably, recent discoveries regarding the biological function of RIG-I
in various cellular activities confirm its ability to interact with different endogenous RNAs
(e.g., microRNA [19], panhandle RNA [20], circRNA [21], and snRNA [22]). Given that the
majority of viral RNA possesses a 5′-PPP group, the RIG-I receptor primarily recognizes and
distinguishes viral infections [23].

1.1.3. The RLR Signal Transduction

Under normal circumstances, RIG-I/MDA5 remains in an inactive and inhibited state
within the cytoplasm [24,25]. However, during viral infection, RIG-I/MDA5 recognizes
viral RNA, resulting in conformational changes within the RIG-I/MDA5. These conforma-
tional changes facilitate the interaction between RIG-I/MDA5 and MAVS on the surface of
mitochondria [26]. MAVS dimerization then serves as a scaffold to assemble signaling com-
plexes at the outer mitochondrial membrane, attracting molecules such as tumor necrosis
factor receptor-associated factor 6 (TRAF6). Upon recruitment to the receptor-associated
interleukin-1 receptor-associated kinase 1 (IRAK1)-IRAK4-MyD88 (myeloid differentiation
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primary response 88) adaptor protein complex, TRAF6 undergoes lysine 63 (K63)-linked
polyubiquitination. This event promotes the recruitment of downstream regulators like
transforming growth factor-beta-activated kinase 1 (TAK1) and TAK1-binding protein
2/3 (TAB2/3), which in turn activate NF-κB, leading to the production of inflammatory
cytokines [27].

In parallel, linker proteins TRAF family-member-associated NF-κB activator (TANK),
nucleosome assembly protein 1 (NAP1), and, similar to NAP1, TBK1 adaptor (SINTBAD),
are recruited by the TRAF3 bound to MAVS. TANK binding to TANK-binding kinase 1
(TBK1), which is linked to upstream RLR signaling through TANK, leads to the phos-
phorylation of IRF3. Phosphorylated IRF3 (p-IRF3) dimerizes and translocates to the
nucleus to initiate the transcription of the IFN-β gene [28,29]. This process triggers the
expression of antiviral genes; increases the production of pro-inflammatory cytokines and
IFN-I [30,31]; and ultimately collaborates with IFNs, inflammatory cytokines, and other
antiviral products to exert antiviral effects. Conversely, IFN-I can also provide feedback
modulation to the RIG-I signaling pathway. For instance, the IFN-induced long noncoding
RNA, lnc-Lsm3b, competes with viral RNA for binding to RIG-I monomers and serves as
a feedback mechanism to deactivate RIG-I’s innate activity at a later stage of the innate
immune response [32].

1.1.4. Regulation of RLR Signaling by LGP2 and E3 Ubiquitin Ligases

While LGP2 lacks the ability to directly recognize RNA and activate downstream
pathways, it plays a crucial role in the regulation of RLR signaling. LGP2 exerts its
inhibitory effects on the RIG-I-mediated signaling pathway through various mechanisms.
Firstly, the C-terminal RD domain of LGP2 forms a heterodimeric complex with the RD
domain of RIG-I, hindering RIG-I multimerization and thus impeding its recognition of
viral dsRNAs. Also, LGP2 can hinder the interaction between RIG-I and MAVS, attenuating
RIG-I signaling. Furthermore, LGP2 can also dampen RIG-I signaling by inhibiting RIG-I’s
binding to MAVS [33]. Moreover, LGP2 demonstrates the ability to inhibit the activation of
IRF3, a downstream transcription factor of RIG-I, thereby potentially exerting a negative
regulatory effect [34].

Earlier studies have identified several E3 ubiquitin ligases, including Riplet, tripar-
tite motif-containing protein 25 (TRIM25), and ring finger protein 123 (RNF123), which
modulate RIG-I activity [35,36]. Initially, TRIM25 was believed to be crucial for the ubiqui-
tination of RIG-I [37]. However, recent investigations have established that Riplet, rather
than TRIM25, is responsible for RIG-I ubiquitination. To further comprehend the specific
recognition of RIG-I by Riplet and determine the E3 ligase responsible for MDA5 recogni-
tion, future studies are warranted [38,39]. In addition to the regulation of RLR signaling
through LGP2 and E3 ubiquitin ligases, increasing evidence confirms that microRNAs
are also involved in the regulation of RLR signaling [19]. In recent years, there has been
a notable surge in research interest dedicated to exploring the regulation of the RIG-I
signaling system.

1.2. MicroRNAs

The short-length, noncoding RNA molecules referred to as microRNAs (miRNAs) oc-
cur in a size range of 19–25 nucleotides and are reported to regulate the post-transcriptional
silencing of target genes. A single miRNA can target hundreds of mRNAs simultaneously,
thereby affecting the expression of numerous genes that are frequently involved in a func-
tionally interconnected pathway [40]. The majority of miRNAs exist in the form of primary
miRNAs (pri-miRNAs), which are transcribed from DNA sequences and typically range
in length from approximately 300 to 1000 nucleotides. The processing of pri-miRNAs
generates precursor miRNAs (pre-miRNAs), which are approximately 70 to 90 nt in length
and are considered the precursor of microRNA. After being cleaved by the Dicer enzyme,
the pre-miRNA is re-digested to generate mature miRNA of approximately 19~25 nt in
length [41–43] (Figure 2).
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Figure 2. Biological processes of miRNAs. Pri-miRNAs can be formed via the intronic pathway and
the intergenic pathway. Processing of pri-miRNAs produces pre-miRNAs. Pre-miRNAs are cleaved
by the enzyme Dicer and then re-digested to generate mature miRNAs, which can target mRNAs,
resulting in mRNA degradation or translational repression.

Two miRNAs named lin-4 and let-7 have been verified in previous studies to be partially
complementary to the 3′ region of several messenger RNA (mRNA) targets of interest.
The noncoding regions (3′-UTRs) are responsible for the inhibition of protein translation,
thereby inhibiting protein synthesis ultimately [44]. MiR-125b, a human counterpart of lin-4,
along with let-7, are closely linked to cancer development and hold promise as potential
diagnostic and prognostic markers [45,46]. Additionally, microRNAs have been found
to play significant roles in the pathogenesis of cardiovascular diseases (CVDs) [47,48],
cancer initiation and progression [49–51], diabetes [52,53], Alzheimer’s disease [54,55], and
inflammation [56,57]. It is worth noting that cellular miRNAs can serve as biomarkers for
the diagnosis and monitoring of COVID-19 [58–61]. Therefore, microRNAs are considered
novel means of diagnosis, therapy, and prognosis in the context of the above-stated diseases.

2. Regulation of RLR Signaling by microRNAs
2.1. The Regulation of RLR Signaling by microRNAs during Viral Infection
2.1.1. MicroRNAs Targeting RIG-I/MDA5 during Viral Infection

RIG-I and MDA5, which are pivotal upstream molecules of the RLR signaling path-
way, play crucial roles in response to viral infections and relay signals downstream. Ac-
tivation of the RLR signaling pathway triggers the production of IFN-I. The antiviral
effects of IFNs mainly involve the following major pathways: I. Phosphorylation of IFN-
induced proteins and RNA degradation facilitated by the protein kinase R (PKR) kinase
and 2′-5′-oligoadenylate-dependent RNase L; II. RNA editing mediated by IFN-induced
RNA-specific adenosine deaminase (ADAR1) and Mx protein GTPase; III. Induction of
inducible nitric oxide synthase (iNOS2) and major histocompatibility complex class I and
II proteins [62]. Furthermore, the activation of RLR signaling leads to IFN-dependent
and non-IFN-dependent apoptosis of target cells, which is crucial for inhibiting viral
replication [63,64]. MicroRNAs that target RIG-I/MDA5 can modulate RLR signaling and



Biomolecules 2023, 13, 1344 5 of 18

thereby impact viral replication. Therefore, in this section, we provide a comprehensive
summary of the role of microRNAs in viral infections through their targeting of RIG-
I/MDA5 to regulate RLR signaling.

While several proteins have been reported to modulate the RLR pathway and sub-
sequent IFN signal transduction [65,66], studies on the regulation of this pathway by
microRNAs remain limited. The RLR signaling pathway may give rise to certain mi-
croRNAs, such as miR-146a and miR-4661 [67,68], which in turn regulate the expression
or function of various components of the RLR signaling pathway and IFN-I through a
feedback mechanism. Additionally, RIG-I directly regulates the replication of vesicular
stomatitis virus (VSV) in conjunction with miR-582-3p [69]. Furthermore, miR-92a has been
found to diminish the VSV-induced production of IFN-I and promote viral replication in
macrophages by targeting RIG-I [70]. Notably, downregulation of miR-340-5p has been
reported in A549 cells infected with influenza A virus (IAV), and it reduces viral replication
by targeting RIG-I and 2′-5′-oligoadenylate synthetase 2 (OAS2) [71].

Furthermore, miR-136 serves as a RIG-I immune agonist [72]. In general, miR-136
exhibits two functions in regulating host innate immunity against viruses. Another study
reported that miR-4423-3p promoted the replication of the hepatitis C virus (HCV) by
inhibiting the activation of the IFN pathway via RIG-I targeting [73]. However, whether
miR-4423-3p blocks downstream molecules due to RIG-I inhibition only, or whether other
mechanisms are also involved, remains to be investigated. Correspondingly, in response to
viral infection, the host produces miR-485, which targets and destroys the RIG-I mRNA,
decelerating the antiviral response and accelerating viral multiplication. Consequently, the
host suppresses the expression of miR-485, which leads to markedly reduced Newcastle
disease virus (NDV) and H5N1 influenza virus multiplication in mammalian cells. Unex-
pectedly, miR-485 also inhibits the replication of the H5N1 virus by binding to the RNA
polymerase encoded by the H5N1 gene polymerase basic protein 1 (PB1) in a sequence-
specific manner. In addition, miR-485 demonstrates dual selectivity: during elevated levels
of the H5N1 virus, it targets PB1 in the cells, while during low levels of the virus, it targets
RIG-I in the cells [74]. Therefore, miR-485 plays a dual role in preventing inappropriate
antiviral signaling activation and reducing influenza virus infection.

Studies have reported that miR-146a holds potential as a novel biomarker for distin-
guishing between the acute and post-acute phases of COVID-19 [75]. However, a study
reported that the hepatitis B virus (HBV) worsened the HBV infection by causing miR-146a
to target RIG-I and RIG-G (retinoic acid-inducible gene G), thereby facilitating the negative
regulation of the RIG-I signaling pathway [76]. Therefore, it is important to explore whether
SARS-CoV-2 and other viruses are capable of immune escape via miR-146a.

Nevertheless, a fascinating investigation revealed that the Epstein–Barr virus (EBV)-
encoded miR-BART6-3p, which targets RIG-I, promoted viral infection and was linked to the
immune surveillance evasion of EBV [77]. Another correlational study identified miR-218
as a novel virus-induced miRNA that interfered with RIG-I expression and impaired the
production of interferons to promote viral immune escape [78]. These studies suggest that
virus-encoded microRNAs may interact with the host genes to influence the host’s ability to
combat viruses, although the precise underlying mechanism remains unknown to date.

On the other hand, the overexpression of miR-34b-5p inhibited the MDA5 signaling
pathway but not the RIG-I signaling pathway, thereby promoting the proliferation of the
avian leukosis virus subgroup J (ALV-J)-infected DF-1 cells and facilitating the replication
of ALV-J [79]. Recent findings indicate that microRNAs may play a role in regulating RLR
signaling in the miiuy croaker. For instance, miR-203 was ascertained to target the 3′-UTR
of MDA5, which then activated the downstream genes IRF3/7 and ultimately promoted
the production of IFN-I and inflammatory cytokines and prevented the viral infection [80].

2.1.2. Targeting Other Genes of RLR Signaling

Apart from targeting RIG-I/MDA5 to modulate RLR signaling during viral infec-
tions, microRNAs also exhibit similar effects by targeting other molecules within the RLR
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signaling pathway. For example, extensive research has highlighted the functional in-
volvement of miR-33 in cellular metabolism, particularly in the maintenance of cholesterol
homeostasis [81,82]. However, a study confirmed that overexpression of miR-33 impairs
the RIG-I signaling pathway, strengthens the VSV viral load and lethality, and decreases
the production of IFN-I in vitro and in vivo. This is achieved by targeting AMP-activated
protein kinase (AMPK) [83]. Interestingly, cyprinid herpesvirus 3 (CyHV-3) infection
reportedly induced another microRNA named miR-155, which targets AMPK. AMPK
plays a crucial role in impeding the formation of activation aggregates by MAVS, conse-
quently inhibiting the autophagy-mediated elimination of damaged mitochondria, and
disrupting mitochondrial homeostasis. This disruption hinders the effective activation of
MAVS, leading to a reduction in interferon expression. The research demonstrated that
miR-155 exhibited anti-CyHV-3 activity via modulating the AMPK-MAVS-IFN axis and
could, therefore, be utilized in studies focused on designing novel anti-CyHV-3 drugs [84].

Similar to miR-146a, let-7b, a microRNA, has been implicated in various conditions,
including inflammation [85,86], cancers [87,88], and IgA nephropathy [89,90]. However,
a recent study has revealed that let-7b can interfere with HCV infection by targeting
the IκB kinase complex 1 (IKK1 or IKKα), leading to enhanced phosphorylation and
nuclear translocation of IRF3 mediated by RIG-I. This ultimately results in the expression
of IFN-β [91]. These findings suggest that let-7b plays a significant role in multiple disorders
and could serve as a promising therapeutic target for the treatment of these diseases. In the
context of IAV-infected A549 cells, the host protein contactin-1 (CNTN1) promotes viral
replication by directly interacting with miR-200c, thereby inhibiting RIG-I-MAVS-mediated
interferon signaling [92]. Rhabdovirus infection substantially upregulated the expression
of host miR-3570 in Miichthys miiuy macrophages, and the induced miR-3570 promoted
viral replication by targeting and downregulating MAVS [93]. Moreover, RIG-I/TBK1
signaling activation was induced in macrophages against HBV by the hepatic exosomes
with decreased levels of miR-27b-3p. The expression level of miR-27-3p in serum exosomes
shows promise as a potential biomarker for patients with chronic hepatitis B (CHB) [94].
Moreover, enterovirus infection leads to the downregulation of miR-526a, which targets
cylindromatosis (CYLD) and suppresses the RIG-I-dependent innate immune response [95].

A separate investigation demonstrated that the upregulation of miRNA-146a in
macrophages infected with VSV was dependent on both the RIG-I/NF-kB pathways.
This miR-146a encourages VSV replication by targeting IRAK1, IRAK2, and TRAF6 and by
preventing the release of IFN-I that is activated by the virus [67]. On the other hand, the
hepatitis A virus (HAV) partly interferes with RIG-I/MDA5-mediated IFN-I signaling by
targeting the vital adaptor molecule TRAF6 through miR-146a-5p [96]. The afore-stated
study demonstrated that viruses might induce the production of miR-146a to evade host
immune responses. Li et al. reported that miR-9-5p inhibits the replication of enterovirus
71 (EV71) by targeting the NF-κB-mediated innate immune response [97].

Notably, miR-30a inhibits TRIM25 expression and TRIM25-mediated RIG-I ubiquitina-
tion to enhance the replication of coxsackievirus B3 (CVB3) [98]. In addition, miR-202-5p
was also reported to target the TRIM25-mediated ubiquitination of RIG-I and promote red
spotted grouper nervous necrosis virus (RGNNV) infection in zebrafish [99]. Furthermore,
TRIM25 is involved in the regulation of MDA5 expression. MiR-30a and miR-202-5p target
TRIM25 and can activate both RIG-I and MDA5, thereby augmenting the antiviral response.

The miR-302/367 cluster is one of the most studied microRNAs and consists of
five members: miR-367, miR-302a, miR-302b, miR-302c, and miR-302d. The miR-302/367
cluster is widely involved in cellular differentiation and development, tumor progression,
immune regulation, and other biological processes [100,101]. MiR-302b, as a member
of this family, has been shown to control MAVS-mediated antiviral innate immunity by
targeting mutations in the solute carrier family 25, member 12 (SLC25A12) transporter
protein to regulate the mitochondrial metabolism [102]. MiR-302c mediates IAV-induced
IFN-β expression by targeting NF-κB [103]. In addition, miR-302a, another member of
the miR-302/367 cluster, inhibits IRF5 expression by directly targeting the IRF5 3′-UTR,



Biomolecules 2023, 13, 1344 7 of 18

leading to the overexpression of inflammatory cytokines and chemokines [104]. Thus, the
miR-302/367 cluster could serve as a potential regulator of virus-induced cytokine storms
and provide a candidate target for the treatment of viral infections.

The above-stated findings provide fresh insights into how microRNAs are involved in
the regulation of RLR signaling. Therefore, this field of research is of great importance in
the development of novel antiviral therapies in the future.

2.1.3. The Role of microRNAs and RLRs in COVID-19 Sensing

The infection of COVID-19, caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), involves the activation of the host immune response through
the recognition of the viral RNA by RIG-I/MDA5. Consequently, our research focuses on
investigating the involvement of RLR signaling and microRNAs in the infection process.
The two cytoplasmic viral RNA sensors, RIG-I and MDA5, are vital for the immune escape
of SARS-CoV-2. Several coronavirus-encoded proteins have been confirmed to inhibit
the IFN response, although the precise mechanism remains to be elucidated [105,106].
Nonetheless, the SARS-CoV-2 membrane (M) protein might bind RIG-I/MDA5 and limit
the production of IFN-I and IFN-III, which reveals a role for this protein in antagonizing
IFN-mediated innate viral immunity and viral replication [107]. The major protease (Mpro)
of SARS-CoV-2, known as NSP5, has garnered attention as a potential therapeutic target
for COVID-19 treatment. NSP5 exhibits unique cleavage specificity, as it not only cleaves
lengthy viral polypeptides but also targets nucleotide-binding oligomerization-like receptor
protein 12 (NLRP12) and TAB1. This distinct cleavage profile differentiates NSP5 from
known human proteases [108]. During SARS-CoV-2 infection, the nucleoprotein (N protein)
is the most abundant viral protein. It consists of an N-terminal structural domain (NTD)
and a C-terminal structural domain (CTD). These domains are primarily responsible for
RNA binding and are crucial for assembling the viral genome into viral particles [109].
Attractively, the SARS-CoV-2 NSP5 and N protein reduce the formation of antiviral stress
granules (avSGs). NSP5 also disrupts RIG-I signaling by destroying the RIG-I-MAVS com-
plex, thereby reducing the antiviral response [110]. The above results indicate that RLR
signaling (particularly RIG-I and MDA5) is the main pathway through which SARS-CoV-2
escapes the innate immune response of the host.

Previous studies have extensively documented the importance of microRNAs in
viral infections. Two key aspects have been elucidated: Firstly, host microRNAs enhance
the immune response, thereby impacting viral replication. Secondly, viral microRNAs
have been demonstrated to target host immune cells, impeding viral clearance [111,112].
Therefore, the identification of microRNAs that are strongly correlated with SARS-CoV-2
may provide fresh insights into the diagnosis and prognosis of COVID-19, and could
be used as a feasible strategy to develop novel targeted therapies. The upregulation of
miR-146a and miR-155 in the oral cavities of patients with diabetes and periodontitis, as
reported by Jelena R. Roganovic, has been suggested to potentially enhance the expression
of angiotensin-converting enzyme 2 (ACE2) and alter the host’s antiviral response to
the SARS-CoV-2 virus [113]. Nevertheless, further verification is required to confirm
this hypothesis.

In a recent study, a correlation was observed between the upregulation of
hsa_circ_0000479, RIG-I, and IL-6 and the downregulation of has-miR-149-5p, suggesting
that the has-circ-0000479/hsa-miR-149-5p/RIG-I/IL-6 axis may be involved in regulating
the immune response to SARS-CoV-2 [114]. As a whole, the findings imply that overex-
pression of hsa_circ_0000479 may affect the expression of IL-6 and RIG-I via sponging
hsa-miR-149-5p in COVID-19. Sponging refers to the phenomenon where circular RNAs
(circRNAs), which possess multiple miRNA binding sites, act as competitive endogenous
RNAs (ceRNAs) by specifically sequestering miRNAs. This process can be likened to a
sponge absorbing water, as circRNAs “isolate” miRNAs from their target mRNAs, thus
impacting the negative regulation of target mRNAs by miRNAs [115–117]. The regulation
of the expression of IL-6 and RIG-I, which are two genes essential for the immunologi-
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cal response to COVID-19 infection, could impact the severity of COVID-19 symptoms
(Figure 3). Therefore, the hsa-circ-0000479/hsa-miR-149-5p/IL-6 RIG-I axis could serve as
a promising therapeutic target in the treatment of COVID-19.
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expressed hsa_circ_0000479 could modulate the expression of IL-6 and RIG-I through sponging of
hsa-miR-149–5p. On the one hand, activation of the RIG-I signaling pathway promotes the release of
IFN-I, which exerts antiviral effects. On the other hand, the expression level of IL-6 is associated with
lung inflammation and extensive lung injury.

Furthermore, several other microRNAs have been implicated in relation to COVID-19,
including miR-1207-5p [118], miR-320 [119], miR-200c-3p [120], miR-146a [121],
miR-421-5p [122], and let-7b [123], among others. Importantly, microRNAs encoded by
SARS-CoV-2 have the potential to target host cell mRNAs involved in viral replication,
thereby facilitating viral replication and regulating host gene expression [124–126]. The
elucidation of the detailed mechanism underlying this effect may facilitate the development
of microRNA attenuated vaccines against COVID-19.

2.2. Regulation of RLR Signaling by MicroRNAs in Cancer

MicroRNAs in RLR signaling are also involved in regulating cancer development.
Once activated, the RIG-I pathway will induce target cell death through a variety of path-
ways, including endogenous apoptosis, exogenous apoptosis, pyroptosis, and
autophagy [127–129]. MicroRNAs have been established to modulate tumor progression
through the regulation of RLR signaling. Notably, microRNA-545 has been demon-
strated to exert significant effects in various cancers, including breast cancer [130], blad-
der cancer [131], ovarian cancer [132], cervical cancer [? ]olecules-2562947, and other ma-
lignancies [134–136]. However, further investigation demonstrated that the overexpression
or knockdown of miR-545 could promote or inhibit cancer cell proliferation by targeting
RIG-I [137–139]. Moreover, the inhibition of PTEN (phosphatase and tensin homolog), a
tumor suppressor gene frequently mutated, deleted, and functionally inactivated in human
cancers, along with RIG-I, has been shown to enhance the phosphatidylinositol 3-kinase
(PI3K)-protein kinase B (AKT) signaling pathway. This regulation involves the intronic
microRNAs miR-374b and miR-545, which are modulated by the intronic miR-421 [140].
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Therefore, it is inferred that the various loci that regulate the functional components of
tumor progression are relatable. However, little research has been conducted in the area,
and the underlying mechanisms also remain unknown so far; therefore, it is necessary to
explore novel investigations in this aspect of cancer treatment and prognosis research.

2.3. Others

Except for the above two aspects, studies have also reported that certain microRNAs
stimulate the RIG-I signaling pathway to affect IFN-I production. For instance, miR-139
promotes IFN secretion in prostate cancer cells by acting as an immunological agonist of
RIG-I [141]. Moreover, miR-1248 was reported to activate IFN-β through a direct association
with RIG-I and AGO2 (argonaute 2) [142]. Remarkably, miR-145 was transfected into human
mesenchymal stem cells (hBM-MSCs) and human articular chondrocytes (hSCs), where it
could induce immune responses by targeting RIG-I [143].

Similarly, studies have revealed that miR-145-5p, miR-122, and miR-489 can target
MDA5, DAK, and TRAF6, respectively, in the miiuy croaker to modulate the RLR signaling
pathway upon poly(I:C) stimulation [144–146]. These findings offer valuable insights
into the regulatory role of microRNAs in the immune response of fish. A comprehensive
summary of the microRNAs involved in the regulation of the RIG-I signaling pathway, as
discussed in the preceding sections, can be found in Figure 4 and Table 1.

Table 1. MicroRNAs involved in the regulation of RLR signaling pathway, their targets, and results
mentioned in this paper.

MicroRNAs Targets Results Reference

miR-92a RIG-I Lowering VSV-induced production of type I IFN and promoting viral
replication in macrophages [70]

miR-218 RIG-I Impairing interferon production to promote viral immune escape [78]

miR-4423-3p RIG-I Promoting HCV replication [73]

miR-BART6-3p RIG-I Promoting EBV infection Limiting influenza virus infection and
avoiding erroneous antiviral signaling activation [77]

miR-485 RIG-I Inhibiting pancreatic ductal adenocarcinoma growth [76]

miR-545 RIG-I Promoting the proliferation of hepatocellular carcinoma cells; inhibiting
the proliferation and migration of oral squamous cell carcinoma [137–139]

miR-145 RIG-I Inducing immune responses by targeting RIG-I expression [143]

miR-582-3p RIG-I Controlling VSV replication [69]

miR-340-5p RIG-I,
OAS2 Inhibiting IAV replication [71]

miR-146a RIG-I, RIG-G Aggravating HBV infection [76]

miR-34b-5p MDA5 Promoting the proliferation and migration of DF-1 cells and
ALV-J replication [79]

miR-203 MDA5 Negatively regulating RLR signaling pathway [80]

miR-145-5p MDA5 Regulating RLR signaling pathway [144]

miR-122 DAK Inhibiting the expression of MDA5 [145]

miR-30a TRIM25 Regulating type I IFN response and promoting CVB3 replication [98]

miR-202-5p TRIM25 Inhibiting RIG-I-dependent innate immune responses to
RGNNV infection [99]

miR-3570 MAVS Inhibiting the expression of MAVS and promoting the replication
of rhabdovirus [93]

miR-200c CNTN1 Inhibiting the expression of MAVS and promoting the replication of IAV [92]
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Table 1. Cont.

MicroRNAs Targets Results Reference

miR-155 AMPK Inhibiting cyprinid herpesvirus 3 replication via regulating the
AMPK-MAVS-IFN axis [84]

miR-33 AMPK Inhibiting the activation of MAVS through AMPK [83]

miR-489 TRAF6 Negatively regulating TRAF6 and involved in the immune response to
poly(I:C) stimulation [146]

miR-146a-5p
TRAF6,
IRAK1,
IRAK2

Negatively regulating VSV-triggered type I IFN production, thus
promoting VSV replication in macrophages, [96]

let-7b IKKa leading to an increase in IFN-I expression [91]

miR-9-5p NF-κB Restraining EV71 replication [97]
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Figure 4. MicroRNAs regulate the RIG-I-like receptor signaling pathway. RIG-I and MDA5 recognize
a complementary set of viral cytosolic dsRNA ligands. Their activation is tightly regulated by
phosphorylation, ubiquitination, and host proteins such as LGP2. RIG-I and MDA5 signal to MAVS,
and then induce NF-κB and IRF3/7 to enter the nucleus, which promotes the release of type I
IFNs and inflammatory cytokines. The activity of RIG-I and MDA5 can be regulated by several E3
ubiquitin ligases, including TRIM25 and RNF123. The circled ‘P’ indicates phosphorylation, and the
circled ‘Ub’ indicates ubiquitination. MiR-BART6–3p, miR-4423–3p, miR-340–5p, miR-545, miR-145,
miR-146a, miR-218, miR-485, miR-149, miR-92a, and miR-582–3p target RIG-I; miR-34b-5p, miR-203,
and miR-145-5p target MDA5; miR-122 targets DAK to inhibit the expression of MDA5; miR-30a and
miR-202-5p target TRIM25; miR-155 and miR-33 target AMPK; miR-200c targets CNTN1 to regulate
MAVS, while miR-3570 directly targets MAVS; miR-489 and miR-146a-5p target TRAF6; and miR-9–5p
targets NF-κB. MicroRNA let-7b targets IKKα. These microRNAs directly or indirectly regulate the
RIG-I-like receptor signaling pathway to play antiviral, antitumor, or immunomodulatory roles.
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3. Conclusions and Prospects

The present review summarizes several roles that microRNAs play in the regulation
of various physiological processes, such as cell division, apoptosis, etc. During recent years,
numerous microRNAs have been discovered through advancements in high-throughput
sequencing technology. Moreover, the regulatory functions of microRNAs have been
receiving greater attention all over the world. Innate antiviral immune responses are
mainly mediated by RLRs, particularly RIG-I/MDA5. Modulating RLR signaling through
noncoding RNAs presents a promising approach for optimizing the immune response
against viral infections and inhibiting tumor progression. The regulatory role of miRNAs
in RLR signaling primarily involves binding to the 3′ UTR of the mRNAs associated with
RLR signaling, thereby modulating the mRNA levels of target genes and subsequently
influencing protein expression. This, in turn, enhances or suppresses RLR signaling,
leading to the secretion of IFNs and inflammatory cytokines that impact viral replication
and cancer progression. While previous studies have demonstrated the regulatory impact
of microRNAs on RLR signaling, further investigation is required to elucidate the intricacies
of their interactions.

The “energy factories” within the cell, mitochondria are essential organelles in the
metabolic processes of the cell. Studies have demonstrated that the mitochondrial route may
be used by microRNAs to regulate cellular processes. For instance, in adipose tissue, miR-
494-3p directly reduces PGC1 expression and the ensuing mitochondrial biogenesis [147].
MiR-125 promotes the demise of cancer cells via regulating mitochondrial dynamics and
metabolism [148]. Furthermore, overexpression of miR-25 dramatically decreased the
levels of mitochondrial calcium uniporter (MCU) expression, hindered mitochondrial
Ca2+ uptake, and prevented apoptosis in cancer cells [149]. The control of mitochondrial
calcium homeostasis, mitochondrial metabolism, and mitochondrial biogenesis are all
critical processes that are impacted by microRNAs. Targeting the mitochondrial pathway
may be an effective potential strategy for disease treatment.

RIG-I/MDA5 induces antitumor immune responses through the IFN-dependent ac-
tivation of effector T cells. On the other hand, RIG-I/MDA5 also induces cancer cell
apoptosis in an IFN-independent manner. Therefore, targeting RIG-I/MDA5 has several
advantages over conventional cancer therapies. First, RIG-I/MDA5 may be activated using
the corresponding ligands and, therefore, significant tumor-cell-specific apoptosis may be
induced. Second, the expression of RIG-I/MDA5 is also associated with the prognosis
of certain cancers. For instance, liver cancer patients with low RIG-I expression have a
poor prognosis [150], while ovarian cancer patients with high RIG-I expression have a
similar outcome [151]. Although several RIG-I/MDA5 ligands have been employed in
clinical trials, challenges are encountered when attempting to target RIG-I/MDA5 for
cancer treatment. For instance, one challenge is to further optimize the methods to be used
for enabling these ligands to reach the site of the cancer. Another challenge is the difficulty
of controlling the dosage of the ligand. While a high dosage of the ligand that activates
RIG-I/MDA5 may kill the cancer cells, low doses of the ligand may result in low levels of
interferons and pro-inflammatory cytokines, which could accelerate cancer growth. More-
over, the activation of RIG-I/MDA5 could activate the NF-κB signaling pathway, thereby
aggravating inflammation. Activation of RIG-I/MDA5 through endogenous pathways,
such as microRNAs and long noncoding RNAs (lncRNAs), might enable achieving better
effects and could, therefore, serve as a novel strategy for cancer treatment. Unfortunately,
studies so far have not reported any microRNAs that regulate LGP2, another member of
the RLR family.

The emergence of drug resistance to anticancer medications is a major obstacle to
successful treatment. MicroRNAs have gained attention due to their ability to regulate
genes involved in the cellular responses to drugs. Several miRNAs have been identified to
sensitize cancer cells to therapy and serve as biomarkers of drug resistance. For example, a
study investigating the co-delivery of miR-345 and gemcitabine in pancreatic cancer demon-
strated superior outcomes compared with treatment with either miR-345 or gemcitabine
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alone [152]. Similar positive results were observed when combining doxorubicin with
miR-34a for breast cancer treatment [153]. Therefore, the combination of RLR agonists and
microRNAs in tumor immunotherapy may significantly enhance treatment effectiveness,
although further investigation is warranted.

Moreover, microRNAs and RLRs also have distinct roles in SARS-CoV-2 infection.
While microRNAs such as miR-146a, let-7b, and miR-200c have been implicated in medi-
ating RLR signaling during SARS-CoV-2 infection, it remains to be empirically validated
whether these alterations in RLR signaling impact the infection itself.

MicroRNA-based therapies are promising. However, how to deliver microRNAs safely
and effectively to target organs and target cells is the biggest challenge at present. Cur-
rently, the following major delivery modes have been developed, which may help miRNA
therapeutics to move toward clinical application: (I) conjugation [154]; (II) virus-associated
delivery [155]; (III) nanoparticles [156]; and (IV) exosome-associated delivery [157]. These
delivery techniques are now being employed in therapies that have received clinical ap-
proval or are undergoing clinical studies. Due to their low cytotoxicity, low antigenicity,
and capacity to avoid phagocytosis and the endocytosis route, exosomes may be the best
delivery method of these [158,159]. However, dosage continues to be a key restriction in
the area of miRNA therapy. Clinical trials have seldom been able to pinpoint the precise
dose at which RNA treatment is successfully delivered to the cell type of interest.

In conclusion, the immune system utilizes various miRNAs to finely regulate its
functional capacity, maintaining a delicate balance between activation and inhibition.
However, the precise regulatory mechanisms of miRNAs in the RIG-I response are not fully
understood, particularly how these miRNA networks collaboratively optimize the immune
response. A deeper understanding of the miRNA-mediated regulation of RIG-I signaling
will uncover novel therapeutic targets for inflammatory diseases and cancer.
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