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Abstract: Asthma has reached epidemic levels, yet progress in developing specific therapies is slow.
One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets.
Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and
to propose endotype-specific treatments. This review focuses on protein glycosylation as a process
activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss
known and relevant glycoproteins whose functions control disease development. The key role of
glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair,
justifies our interest and research in the field of glycobiology. Altering the glycosylation states of
proteins contributing to asthma can change the pathological processes that we previously failed to
inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying
LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in
human diseased lungs, and its pathological role has been demonstrated by both genetic and pharma-
cological approaches. We propose that studying the glycosylation pattern and enzymes involved in
glycosylation in asthma can help in patient stratification and in developing personalized treatment.
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1. Introduction

Asthma is a complex condition that is widely acknowledged as a heterogeneous
disorder, previously classified into “allergic” and “intrinsic” subtypes [1]. Based on the
significant advancements in understanding asthma, this two-type categorization is an
oversimplification [2]. Still, the mechanism of the disease can be described as T-helper-2-
associated asthma (Th-2 form) or no Th-2 type. Th-2-associated asthma usually develops
during childhood and can be prompted by early contact with common environmental
allergens, for example, animal dander or pollen [3]. Allergen presentation leads to T cell
activation and polarization into the Th-2 type, which produces IL-4, IL-5, and IL-13. These
cytokines and T cells further support IgE-allergen-specific antibody production by B cells
and the influx and accumulation of eosinophils in the airway wall [4]. In contrast, non-
allergic asthma typically develops in adulthood and is often linked to factors such as obesity,
aging, and smoking. This type of asthma seems to involve the dysregulation of multiple
pathways and can be difficult to treat [5]. Based on symptoms, asthma can be classified as
mild, moderate, or severe, each of which requires specific treatment [6]. When intensive
treatment fails to relieve symptoms and poses a life-threatening risk, then the patients deal
with severe asthma, which can develop in both children and adults. Therefore, treatments
that consider cellular and molecular mechanisms are necessary to control symptoms and
reduce attacks, especially in severe cases of asthma.

The primary methods of asthma diagnosis still involve patient questionnaires, allergy
testing, and lung-function-based criteria, which are typically sufficient for most patients
who respond positively to modern standard therapy [7]. The conventional way of describ-
ing disease makes asthma a good case for studies developing molecular patterns of each

Biomolecules 2024, 14, 513. https://doi.org/10.3390/biom14050513 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom14050513
https://doi.org/10.3390/biom14050513
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://doi.org/10.3390/biom14050513
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom14050513?type=check_update&version=1


Biomolecules 2024, 14, 513 2 of 18

subset, which can personalize treatments. In cases of severe asthma, a patient’s condition
may not improve, even with intensive treatment, which often results in death [8,9]. Despite
attempts to subtype asthma, its complexity makes classification difficult, carrying the risk
of inappropriate therapy, especially for patients with severe symptoms [10]. Therefore, it is
crucial to find additional diagnostic markers that reflect the complex mechanism of this
disease [11]. Discovering biomarkers would also provide valuable information about the
individual mechanism of the asthma stage and the main cellular players of each patient,
enabling the development of a personalized approach to managing and treating their
asthma effectively. Although protein glycosylation patterns have been used as biomarkers
in diseases such as diabetes [12,13], they have not been extensively utilized in asthma.
This review aims to outline a strong rationale for studying glycosylation in asthma to
better understand the disease mechanism and help assign it to the appropriate subtype and
treatment regime.

2. Protein Glycosylation
2.1. Definition of Protein Glycosylation

Protein glycosylation, one of the most ancient and complex post-translational mod-
ifications, encompasses N-linked glycosylation and O-linked glycosylation, collectively
affecting over 50% of known proteins [14]. It plays critical roles in various biological
processes, including protein folding, stability, trafficking, recognition, cell adhesion, ligand
binding, and signaling [15]. Moreover, it can modulate protein–protein interactions and
influence the immunogenicity of proteins. The dysregulation of protein glycosylation has
been implicated in various diseases [16,17], including asthma [14]. This modification is
crucial for the structure, stability, and function of many crucial proteins in living organisms.
N-linked glycosylation relates to glycans that are covalently linked to the protein via the
nitrogen atom of the asparagine residues within the consensus sequence Asn-X-Ser/Thr
(where X can be any amino acid except proline) [18], while O-linked glycosylation involves
the oxygen atom of the serine or threonine. Unlike N-linked glycosylation, O-linked gly-
cosylation does not require a consensus sequence, rendering it more variable and less
predictable. O-GlcNAcylation is a dynamic modification that involves the reversible attach-
ment of a monosaccharide to serine or threonine residues of proteins. The majority of the
process of protein glycosylation occurs in the endoplasmic reticulum and Golgi apparatus,
as well as the cytoplasm. This is due to the availability of substrates and the presence
of appropriate enzymes. Protein glycosylation is influenced by a number of regulatory
mechanisms available [19] as well as the overall energetic state of a cell as it affects the
availability of metabolic precursors required for this process [20].

Protein glycosylation is regulated by metabolic flux and influenced by altered gly-
colysis, which is commonly implicated in immune cell activation and proinflammatory
functions [21]. The hexosamine biosynthetic pathway (HBP), responsible for synthesizing
substrates utilized in N-glycosylation, plays a significant role in regulating glycolysis. This
regulation occurs because both pathways share the initial steps of converting glucose to
glucose-6-phosphate and fructose-6-phosphate. As glycolysis rapidly converts glucose to
produce adenosine triphosphate (ATP), glycosylation, facilitated by the HBP pathway, is
closely linked to the energy status of the cell [22,23].

2.2. Building Blocks of Glycosylation

The synthesis of glycans in humans is a dynamic and highly regulated process that
involves the coordinated action of numerous enzymes and substrates within various cellular
compartments [24,25]. The dysregulation of glycan synthesis can lead to various diseases
and disorders, highlighting the importance of understanding the mechanisms underlying
glycan biosynthesis. Glycans are synthesized through both enzymatic and non-enzymatic
pathways, and they primarily occur in the endoplasmic reticulum (ER) and Golgi apparatus
of cells [26,27].
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The building blocks for glycan synthesis are activated nucleotide sugars, which are
synthesized in the cytoplasm of the cell. These nucleotide sugars serve as donors of
specific sugar residues for glycan synthesis [28]. For example, UDP-glucose, UDP-galactose,
GDP-mannose, and UDP-N-acetylglucosamine are common nucleotide sugars used in
glycan biosynthesis. Further glycan synthesis from oligosaccharides typically begins in
the ER, where the initial steps involve the transfer of a preassembled oligosaccharide
precursor (usually a lipid-linked oligosaccharide) onto specific asparagine residues of
nascent polypeptide chains. This process, known as N-linked glycosylation, involves the
action of glycosyltransferases and oligosaccharyltransferase enzymes [29]. Following the
initial glycan attachment, further processing and elongation of the glycan chains occur
as the proteins move through the Golgi apparatus. Various glycosyltransferases and
glycosidases located in different compartments of the Golgi catalyze the addition and
removal of sugar residues, leading to the generation of diverse glycan structures.

It is interesting to note that enzymes with primary roles that are not directly connected
to N-glycan modification and localized outside the ER can also introduce changes in protein
glycosylation. Glycan substrates are commonly found alone or as part of glycoproteins in
association with the surface or cytosol of cells that are critical for lung function, namely ep-
ithelial cells and macrophages. In particular, LacNAc (N-acetyllactosamine) and LacdiNAc
are common glycan structures present in glycoproteins specific for asthma, such as mucin
and immunoglobulins (IgG and IgA) [30].

2.3. Pathways Driving Protein Glycosylation

The glycosylation process involves different types of enzymes, including two major
groups, namely glycosyltransferases, which play a role in the biosynthesis of glycans, and
glycosidases, which hydrolyze glycosidic bonds and remove monosaccharide units during
the maturation of glycans. Furthermore, glycans can undergo additional modification
of sugar units via a range of several enzymes, such as sulfotransferases, phosphotrans-
ferases, O-acetyltransferases, O-methyltransferases, pyruvyl transferases, and phospho-
ethanolamine transferases [31]. These huge groups of enzymes, encoded by around 1% of
mammalian genes, have previously been described comprehensively [32,33].

The number of enzymes involved in glycosylation is still growing as the new functions
of well-described proteins are being discovered. Chitotriosidase (CHIT-1) activity and
expression are elevated and implicated in various inflammatory disorders, including lung
diseases, and recently, they have also been linked with glycosylation [34,35]. CHIT1 con-
tributes to macrophage polarization [36], a process detrimentally linked to asthma [37–40],
as well as a complex pathway driving airway remodeling [41–44]. Another interesting
enzyme regulating the process of glycosylation is fucosyltransferase 2 (H blood group), or
FUT2 [45]. Fucosylation was shown to be associated with greater airway disease severity,
and a knockout of FUT2 significantly reduced lung epithelial fucosylation, attenuated
eosinophilic inflammation, and decreased airway hyperresponsiveness in HDM-induced
asthma models [46]. Notably, FUTs are also expressed by proinflammatory macrophages
and neutrophils, and the expression of FUTs increases upon myeloid cell activation and
correlates with the level of proinflammatory cytokines, including TNF [47]. In addition to
fucosylation, the modification of glycoproteins by sialidases can also affect the accumulation
of immune cells during asthmatic lung inflammation [14].

2.4. Glycosylation in Asthma

Chronic inflammation leading to airway remodeling is the main feature of many
autoimmune and metabolic disorders, including asthma. Recent studies have described
alterations of glycosylation in many pathophysiological conditions; however, mechanistic
insights are still lacking [16]. Changes in protein glycosylation contribute to disease
pathogenesis through the modulation of biological processes, which we detail in the
sections below (Figure 1). Many of them include molecular pathways and fine-tuning
inflammatory responses that are integral to the development of asthma [48]. Therefore, we
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discuss specific subsets of immune cells affected by an altered glycosylation status and
explain how these changes influence their functions in pathological processes.
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Figure 1. Changes in protein glycosylation shape the immune cells’ function and trafficking in asthma.
The activation of Th-2 lymphocytes by dendritic cells (DC) leads to cytokine production and Th-2
cell expansion. IL-13 prompts the overgrowth of smooth muscle cells (SMCs), modifies functions
of alveolar macrophages (MAs), and leads to the fucosylation of epithelial surface proteins. Due
to the immune response, the hyperproduction of mucus occurs and affects the MUC5AC/MUC5B
ratio. At the same time, IL-4 supports B cells in antibody production, which are also modified by
glycans. Chemokine production increases the influx of myeloid cells, including monocytes (MOs)
and neutrophils (NEUs). Modification by glycosylation receptors affects the cell’s trafficking (CD44
and Mac-1), function (TCR and CD25), and metabolism (Glut1).

The glycolysation state illustrates the condition of cells infiltrating the lungs affected
by asthma [48]. In fact, more research in the field of glycobiology should allow us to track
immune cell migration and determine their origin. Altered glycosylation can significantly
modify leukocyte circulation and cell metabolism, initiate a shift toward proinflammatory
functions, and trigger the secretion of proinflammatory immunoglobulins, ultimately lead-
ing to the development of various chronic inflammatory diseases [14]. The dysregulation
of glycosylation, hypersialylation, and hyperfucosylationas is implicated as the glycosigna-
ture of inflammation is associated with the altered activity of key enzymes in metabolic
pathways [49]. In fact, the availability of glycans and sugar precursors and the activity of
enzymes that participate in glycosylation determine the metabolic pathways that regulate
the primary functions of immune cells.

Modifications of glycosylation observed in asthma are diverse and strongly depend
on a particular subset of immune cells. Based on the phenotype and mechanisms involved
in asthma, recent publications indicate a new classification in endotypes: type 2-low, type
2-high, and type 2-ultra-high asthma [2]. Type 2-ultra-high asthma, when compared to
type 2-high asthma, has been described as a very severe, eosinophilic type and is resistant
to corticosteroid treatment [2]. Type 2-high and type 2-ultra-high asthma again involve
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IL-4, IL-5, and IL-13, while type 2-low asthma, due to the lack of biomarkers, is described
as a type with different mechanisms of disease, including IL-1β, IL-6, or neutrophil in-
filtration [50]. Neutrophils develop extracellular traps as well as granules containing
myeloperoxidases and elastase that are cytotoxic for epithelial cells and contribute to in-
flammation and damage to lung tissue [51]. Non/low-type 2 asthma is associated with
a poor response to corticosteroids. The term “severe asthma” is not precisely defined
and can vary between different sources [9,52]. Nonetheless, it generally refers to patients
who have limited responses to treatment and usually fall into the high/ultra-high and
other/low type 2 late-onset asthma groups. The course of the disease is therefore related to
the type of cells activated and infiltrating the lung tissue—which are processes regulated
by glycosylation. Glycosylation changes can precede immune infiltration; in fact, human
epithelial cell culture experiments have shown that glycan changes can arise in the absence
of immune cells [48]. The initial pathologic response to asthma-inducing irritants occurs
at the interface of major airways and is characterized by changes in cellular glycosylation
that drive immune infiltration to the bronchi [48]. One of the key interactions involved
in the immune cell influx is the binding of leukocytes sialyl Lewis X (sLeX) glycans with
selectins presented on the endothelial cells. The inhibition of this binding by an anti-sLeX
monoclonal antibody significantly impairs eosinophil circulation and exerts therapeutic
effects in a murine model of allergen-induced asthma [53]. Moreover, the percentage of
sLeX and CCR4+ memory Th lymphocytes are elevated in the blood of patients with asthma,
and the number of 6-sulfoLeX-positive Th lymphocytes correlate with the eosinophil count
and IgE level [54]. These studies suggest that sialyl glycans have a significant role in the
pathogenesis of asthma.

3. Key Glycoproteins in Asthma

Tracking glycosylation changes can help us understand the progression of inflamma-
tory diseases, including asthma (Figure 1). One of the pathognomonic features of asthma
is the hyperproduction of mucus, which is built with glycoproteins [55,56]. Moreover,
asthmatic mucus is built by mucins, among which MUC5AC (Table 1) is also heavily
fucosylated by FUT2 [57,58]. It was reported that MUC5AC is overproduced in asthma,
while MUC5B is related to lung homeostasis and defense [59,60]. When the production of
MUC5AC exceeds that of MUC5B, then it is usually associated with pathologic airway mea-
sures such as small airway abnormalities, airway obstruction, and increased exacerbation
frequencies [59,61–63]. Indeed, the widely reported asthma-associated changes in epithelial
glycosylation concerns fucosylation, specific alterations in terminal β-linked galactose,
N-glycan branching, total GlcNAc, sulfated galactose, and poly-N-acetyl-lactosamine (poly-
LacNAc). However, the exact mechanism of glycan inductions has not yet been clearly
determined.

Table 1. Key enzymes/lectins dysregulated in asthma and their glycoprotein substrates.

Enzyme/Lectin
Class

Glycan-
Modifying

Enzyme
Catalyzed Reaction Key

Glycoprotein Enzyme/Lectin Class

Fucosyltransferases
(FUTs) FUT2

transfers L-fucose from a
GDP-fucose to the terminal

galactose on both O- and
N-linked glycans, i.e., residues

on the mucin-type glycan
chains

MUC5AC

Activation of mucin 5AC (MUC5AC)
signaling pathway regulating the

function of asthmatic airway smooth
muscle cells (ASMCs) and participating
in asthmatic airway remodeling [62,63]
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Table 1. Cont.

Enzyme/Lectin
Class

Glycan-
Modifying

Enzyme
Catalyzed Reaction Key

Glycoprotein Enzyme/Lectin Class

FUT8

catalyzes the transfer of fucose
from GDP-fucose to the

innermost GlcNAc in an α1-6
linkage

TGF-β1 and
SPARC

Core fucosylation catalyzed by FUT8 is
essential for TGF-β binding to TGF-β

receptors [64]; loss of core-fucosylation
of SPARC impairs collagen binding and

contributes to COPD [65]

Sialyltransferases
(STs) ST6GAL1

catalyzes the transfer of sialic
acid from the transfer of

CMP-sialic acid to
galactose-containing substrates

IL6, MUC4β,
EGFR

Sialylation of Muc4beta n-glycans by
St6gal1 orchestrates human airway

epithelial cell differentiation associated
with type-2 inflammation [66]

St6gal1 and Alpha2–6 sialylation
regulates IL-6 expression and secretion

in chronic obstructive pulmonary
disease [67]

α2,6 sialylation promotes EGFR
signaling by facilitating receptor

oligomerization and recycling [68]

ST3GAL3

transfers sialic acid from
CMP-NeuAc in α-2,3 linkage,

preferentially to
Galβ1-3GlcNAc, but also to

Galβ1-4GlcNAc and
Galβ1-3GalNAc termini on

glycoproteins and glycolipids

MUC5B
Endogenous airway mucins carry

glycans that bind Siglec-F and induce
eosinophil apoptosis [69]

Sialidases (Sas) NEU1

hydrolyzes α-(2→3)-, α-(2→6),
and α-(2→8)-glycosidic

linkages of terminal sialic
residues

CD44
TLR1-4,
ICAM-1,
SCD15
FCRy

A crucial role of sialidase Neu1 in
hyaluronan receptor function of CD44

in T helper type 2-mediated airway
inflammation of murine acute asthmatic

model [70,71]; NEU1 participates in
regulation of cell signaling by

desialylating plasma membrane
receptors [72]

Lectins Galectin3
the specific binding of

β-galactosides; cross-linking of
N-acetyllactosamine (LacNAc)

of cell surface receptors

IgE New regulatory roles of galectin-3 in
high-affinity IgE receptor signaling [73]

Galectin9 IgE

Galectin-9 is a high affinity IgE-binding
lectin with anti-allergic effect by
blocking IgE-antigen complex

formation [74]

Glycans are present on the surfaces of the key entities responsible for inflammatory
response, such as adhesion molecules, secreted immunoglobulins, and proteins of the
acute phase [16]. Moreover, proinflammatory cytokines, by regulating the expression
of glycosyltransferases and the substrate availability required for glycan biosynthesis,
can change the composition of glycans [75]. The hallmark of the induction of an allergic
lung inflammation event is the activation of the IL13-STAT6 axis, which is responsible
for the induction of the expression of FUT2 [48,76,77]. In particular, FUT2 was originally
described as an enzyme that controls the ability to secrete ABO blood group antigens in
body fluids [78]. The functional nonsense mutation of FUT2 was revealed as the main
determinant of secretor/non-secretor status for ABO antigens [79]. The ABO antigens are
expressed on various mucosal surfaces, such as the bronchial epithelium, oral mucosa,
and gastrointestinal tract, and when secreted, they increase the risk of early childhood
asthma [79].
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Fucosylation is a form of glycosylation which is well associated with asthma [48].
In a house dust mite (HDM)-induced asthma model the severity of diseases correlated
with increased α1,2-linked fucose residues, while a knockout of Fut2 exhibited reduced
asthma features [76]. The translational confirmation of the relevance of fucosylation has
been described on a sulfated sialyl-LewisX antigen (Sulfo-sLeX), which includes Fuc-α1,3-
GlcNAc and a sulfate on the Gal and/or GlcNAc, and has been reported to be increased
on peribronchial venules and capillaries [80]. FUT2 is also implicated in C3a complement
accumulation, modulating the influx of C3a anaphylatoxin receptor-expressing monocytic-
derived dendritic cells (Mo-DCs) in the lungs [76]. Since MO-DCs may present allergens to
Th-2 lymphocytes [81], promote T cell stimulation via the OX40 ligand [82], and produce
proinflammatory chemokines such as CCL2 and CCL24 (eotaxin 2), the role of FUT2 in
MO-DC accumulation is significant in asthma [83].

Mo-DCs are antigen-presenting cells with the ability to take up antigens in the periph-
ery and expose them to T cells to drive lung inflammation [81]. The surfaces of Mo-DCs
are covered with glycoproteins decorated predominantly with sialylated glycans, which
are regulated during their differentiation and affect Mo-DC functions [84]. DC maturation
in the presence of proinflammatory stimuli results in a significant downregulation of the
expression and activity of ST6GAL1 and ST3GAL4, which may cause a phenotype switch
to inflammatory DCs [85,86]. Interestingly, the role of ST6GAL1 is very relevant in asthma
since it plays a critical role in the sialylation of MUC4β in epithelial dysfunction associated
with T2-high asthma [66]. Therefore, ST6GAL1 represents a potential target of a specific
sialylation pathway in asthma. In fact, the increased expression of both ST6GAL1 and
ST3GAL4 was associated with increased goblet and basal-activated cell factors under-
lying asthmatic susceptibility [87]. While the presence of sialic acids has a tolerogenic
effect on DCs, fully desialylated DCs exhibit increased MHC expression, secretion of
pro-inflammatory cytokines, phagocytosis, and activation of T cells [88]. Endogenous siali-
dases, such as neuraminidase 1 and 3 (NEU1 and NEU3), contribute to the desialylation
of cells [89–91]. In summary, glycosylation pathways controlling both the activation and
attenuation of the inflammatory phenotype of DCs have been identified.

It was proposed that modification in cellular glycosylation attracts activated leuko-
cytes to immunogen exposure in the bronchi [92]. Specifically, NEU1 catalyzes the removal
of sialic acid and plays an important role in the regulation of signaling in immune cells, in-
cluding activated T cells [93]. It has been demonstrated that an abnormally high expression
of Neu1 correlates with increased immune responses in human respiratory diseases [94–96].
NEU1 upregulates the activity of CD44 by increasing hyaluronic acid binding in CD4+

lymphocytes [72]. CD44 is a cell adhesion molecule that participates in lymphocyte rolling
over inflamed endothelium; specifically, the process of cellular infiltration into asthmatic
lungs is critical for the disease’s flares. Moreover, it was shown that not only sialidases,
but also the general alternation of the glycosylation of CD44 significantly increases the
recognition of its ligands [71,97]. Since adhesion molecules are one of the main proteins
implicated in leukocyte trafficking, the glycolytic modification of CD44 impacts Th-2 cell
migration and significantly implicates the pathogenesis of acute asthma [48,70,98,99].

T cells, specifically Th-2 cells, play a crucial role in asthma [100]. N-glycosylation
of T cells, which significantly affects their functions, is controlled by galectins [101,102].
Gal-1 and Gal-3 preferentially bind to branched N-glycans containing the LacNAc mo-
tif found on CD7, CD45, CD43, and TCR, which leads to the inhibited migration and
apoptosis of T cells [103]. Beta-1,6-N-acetylglucosaminyltransferase V (MGAT5) is an en-
zyme that catalyzes the biosynthesis of N-linked glycans and ligands for galectins [104,105].
MGAT5 expression in T cells is altered in many chronic inflammatory diseases, and MGAT5-
modified N-glycans have been shown to have a key role in the regulation of allergic airway
inflammation [106]. In addition, the IL-10-induced expression of MGAT5 in CD8+ T cells
promotes the establishment of persistent chronic inflammation [107].

CD25, the subunit of IL2R, is a T cell receptor that is relevant in asthma and a therapeu-
tic target which is heavily N- and O-glycosylated [108,109]. Altered N-glycan branching
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decreases the surface expression of CD25, which results in the inhibition of IL-2 bind-
ing [110,111]. N-glycan branching is not the only feature that influences T cell functions.
Gal-1 preferentially kills proinflammatory Th-1 cells over anti-inflammatory Th-2 and Treg
cells. The latter is explained by the fact that Th-2 and Treg cells have a higher expression of
ST6GAL1, which is responsible for the synthesis of terminal α2,6-sialic acids, compared
with Th1 cells, and are thus protected from galectin-mediated apoptosis [112].

An important glycosylation trait of T cells that is altered in chronic inflammation is
fucosylation, which plays a crucial role in the migration of T cells to the site of inflammation
by facilitating and regulating interactions of selectins and their ligands [113]. The TCR
receptor—the one that revolutionized immunotherapy, brought checkpoint inhibitors and
CAR T cells to the clinic, and it requires core-fucosylated N-glycans for its proper activation
and function [114]. TCR activation is mediated by the Alpha-1,6-fucosyltransferase FUT8,
and it is crucial for T cell differentiation into different linages, which shape the pathology
of asthma [115]. Core fucosylation is required for the expression of programmed cell death
receptor 1 (PD-1), which attenuates TCR signaling [116,117]. PD-1 function is crucial for
maintaining T cell homeostasis in allergic diseases, including asthma [118,119], where its
expression is regulated, presenting a therapeutic option [120,121].

B cells are yet another important cell type in asthma—specifically due to their secretion
of immunoglobulins (Igs), which are the major executive glycoproteins of the humoral
adaptive immune response. All human Ig classes are N-glycosylated, with N-glycans
affecting the structural stability and conformation of Igs as well as their effector functions.
The N-glycosylation of IgG affects its structure and function, causing a potential risk of
developing asthma [122]. Moreover, a strong association was reported between increased
offspring airway inflammation and pro-inflammatory IgG glycosylation patterns in mothers
and offspring [123]. Authors propose that the IgG glycosylation status is an important
parameter that should be included in future clinical studies [123].

Another important antibody type in asthma is IgE, which is best known for its role
in allergic immune responses. Specifically, IgE binds to high-affinity IgE receptors (FcϵRI)
expressed on the surfaces of basophils and mast cells—effector cells of the allergic reaction—
triggering release of histamine, lipid mediators, and pro-inflammatory cytokines [124].
IgE is the most glycosylated immunoglobulin, as it has seven N-glycosylation sites [125].
Interestingly there is a single N-glycosylation site at Asn394, which is critical for the IgE-
mediated initiation of the allergic cascade, and the complete deglycosylation of Asn394 can
actually alter the secondary IgE structure, abolishing FcϵRI binding and the subsequent IgE-
mediated allergic reaction [126,127]. This specific site controlling the allergic inflammatory
cascade represents an attractive therapeutic opportunity. The binding of another heavily
glycosylated antibody, IgA, to FcϵRI can inhibit IgE-mediated asthma [128]. Moreover, in
the serum collected from severe patients with asthma, lower levels of IgA were observed
in comparison to the healthy controls [129,130]. The whole IgE glycosylation process is
endogenously controlled by galectins, namely Gal-3 [131] and Gal-9 [74]. Gal-3 can cross-
link IgE and FcϵRI via their N-glycans and trigger allergic reactions, while Gal-9 reduces
them by blocking the formation of the IgE-antigen complex [74,131]. Another method of
glycoregulating IgE functions is the removal of terminal sialic acid on IgE N-glycans, which
attenuate the degranulation of effector cells and subsequent allergic reactions [132].

Severe steroid-resistant asthma is mostly defined by neutrophil presence and neu-
trophilic marker profiles. Previous trials of antineutrophilic agents have failed because
enrolled patients were not specifically chosen for these targeted treatments [133]. This
happened because of a lack of proper biomarkers for Th-2 and a low population subset.
N-glycosylation has been shown to contribute to important effector functions of neutrophils,
such as the extravasation, phagocytosis, degranulation, and formation of neutrophil ex-
tracellular traps (NETs) [134]. Neutrophils express the N-glycosylated MAC-1 integrin,
which regulates their trafficking, phagocytosis, and interaction with other cells [134]. The
neutrophil MAC-1 surface has decreased sialylation and increased the Lewis x structure
[Lex, Galbeta1-4(Fucalpha1-3)GlcNAc] (the Lex motif) and high mannose content in chronic
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inflammation [135]. The Lex motif expressed on MAC-1 mediates binding to DC-SIGN
expressed on DCs, thus providing an indirect link between innate and adaptive immu-
nity. Other myeloid cells, such as monocytes and macrophages, also express MAC-1,
but since they lack the Lex motif, this trait is exclusively dependent on neutrophils [136].
This is a great example of how carbohydrate decoration offers specificity for therapeutic
interventions aimed at preventing lung damage mediated by dysregulated neutrophil
trafficking.

Chitotriosidase—An Emerging Glycoenzyme Linked to the Pathology of Asthma and Interstitial
Lung Diseases

Despite the lack of endogenous chitin synthesis, mammalian genomes encode CHIT1,
which is a biomarker of various diseases including asthma [137]. Original functions and
conventional thinking about chitinase ascribed the role of CHIT1 to an ancient host defense
against chitin-containing pathogens, directly promoting inflammation and modulating
tissue remodeling and fibrosis [138]. CHIT1 is an ancient enzyme found in humans that
belongs to the family of chitinases. In humans, CHIT1 is primarily produced by activated
macrophages [139]. It is one of the most abundant chitinase enzymes found in humans
and plays a role in immune defense mechanisms. Elevated levels of chitotriosidase in
blood serum or other bodily fluids can be indicative of various conditions associated with
increased macrophage activity, including asthma. Here, we discuss in detail all of the
endogenous substrates for CHIT1, including glycans, in the context of asthma, which we
believe far better reflect physiologically relevant substrates for CHIT1 in diseases.

Larsen [34] reported that mammalian-like glycans, namely GlcNAc-containing dis-
accharides and oligosaccharides, can serve as substrates for CHIT1. The enzyme showed
activity on LacdiNAc-TMR, an epimer of chitobiose, with a turnover of 0.4 s−1, which is
comparable to the natural substrates pNP-chitotriose (0.5 s−1) and pNP-chitobiose (1.5 s−1).
LacNAc-TMR, containing an N-acetyl group at the reducing end, was also a substrate
but with a slower turnover (0.003 s−1). Interestingly, at higher concentrations of pNP-
(GlcNAc)2, the 50 kDa recombinant enzyme displayed substrate inhibition, indicating
reverse reactivity—known as transglycosylation. This is an important observation since,
during inflammation, high concentrations of substrates for CHIT1 are present, accom-
panied by induced glycolysis, protein glycosylation, and glycan synthesis. Their study
suggests that CHIT1 is capable of altering glycosylation associated with diseases, including
asthma [34]. CHIT1, by acting on LacNAc-containing substrates, can potentially contribute
to disease pathogenesis by altering the glycosylation pattern via either hydrolysis or trans-
glycosylation on specific glycoside bonds [140,141]. Taking into consideration the fact that
CHIT1 activity was shown to be elevated along with CCL18 in the model for allergic airway
inflammation in asthma, these findings shed a new light on the role of chitinolytic enzymes
in lung disease [142].

The relevance of the pathological role of CHIT1 in asthma was demonstrated by
pre-clinical models with genetically modified mice lacking CHIT1 [143,144]. CHIT-1 is
a marker of chronically activated macrophages, and recent data coming from unbiased
omics experiments verified these findings. CHIT1 came up as one of the top hits in an atlas
of pulmonary fibrosis created using single-cell RNA sequencing (scRNAseq) of fibrotic
lungs from patients with ILDs and from healthy lungs. CHIT1 expression was restricted
to a subset of macrophage clusters specific to fibrotic lungs and was not present in the
healthy tissue [145]. In another single-cell sequencing and spatial transcriptomics study
conducted on granulomas from patients with sarcoidosis, CHIT1 expression was found on
proinflammatory macrophages in the center of granulomas [146]. These recent findings
demonstrate the therapeutic potential of targeting CHIT1 in all disorders with chronic
inflammation, including asthma as a perfect example [147–149].
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4. Glycoenzyme Inhibitors Are Promising for the Treatment of Asthma

The potential of using specific glycoenzyme inhibitors as a promising therapeutic
avenue for the management of asthma has not been fully explored, but it is justified by
the presence of clinical-stage drugs targeting glycoenzymes in diseases like cancer and
fibrosis [150,151]. In Table 1, we provide examples of the glycoenzymes implicated in the
inflammatory pathways characteristic of asthma pathogenesis.

4.1. Inhibition of Chitotriosodase-1 (CHIT1)

There are a number of known chitinase inhibitors that have been developed in recent
years, including numerous potent natural-product-derived inhibitors, such as the pseu-
dosaccharide allosamidin and its derivatives [152], as well as cyclic peptides like argifin
and argadin [153]. However, the practical application of these compounds for in vitro or
in vivo studies was hindered by their high molecular weights, complex chemistry, and poor
pharmacokinetic profiles. Nevertheless, small-molecule chitinase inhibitors, exemplified
by Wyeth 1 or bisdionin C, do not have sufficient potency to show effects in vivo [154,155].
OATD-01, which was derived the hit compound Wayeth1, is the most potent and advanced
inhibitor of CHIT1. It demonstrated pharmacological efficacy in a chronic HDM-induced
lung inflammation model [41]. The anti-inflammatory effects of OATD-01 were manifested
by the reduction in CD45 cells in bronchoalveolar lavage fluid (BALF) along with decreased
chitinolytic activity in both the BALF and serum. Notably, OATD-01 mitigated airway
remodeling by inhibiting the CHIT1-mediated active release of TGFβ1, subsequently re-
ducing Th-2-dependent IL-13 production and subsequently decreasing collagen deposition
in the extracellular space. Attenuated airway remodeling, which is characteristic of se-
vere asthma, is explained by the cross-talk between CHIT1-producing macrophages and
lung fibroblasts [41]. OATD-01 is currently in phase II clinical trials for lung sarcoidosis
(NCT06205121).

4.2. Inhibition of Fucosyltransferases 2 and 8

Developing inhibitors for FUTs presents a promising strategy that has been verified so
far in cancer models [156,157]. Clinical and preclinical progress is limited by the absence of
crystal structures for certain FUTs, the complex transition state of FUT reactions, and the
relatively low binding affinity for acceptor ligands [158].

4.3. Inhibition of Sialyltransferases (STs) ST6GAL1 and ST3GAL3

Currently, data come from studies using global sialylation inhibitors or inhibitors
targeting other sialyltransferase isoforms in preclinical models of asthma or related airway
diseases. Thus far, most inhibitors aim to modulate the overall sialylation levels rather than
specifically targeting ST6GAL1 [66] or ST3GAL3 [69], which have potential applicability in
asthma treatment.

4.4. Inhibition of Sialidase NEU1 and NEU3

Research focused on targeting sialidases is currently at the early stages of preclinical
development [159–162]. In most instances, sialidase inhibitors have been suggested to
imitate the transition state that arises during sialoside hydrolysis. The first transition-state
analogue sialidase inhibitor, DANA (Neu5Ac2en), was designed to mimic the oxocarbe-
nium ion-like transition state [163]. Analogues of DANA with specificity toward influenza
viral neuraminidases display inhibitory activity and selectivity toward human isoforms
NEU1–NEU4. C9-pentylamide analogues of DANA display moderate inhibitory activity
against NEU1 in in vitro and in vivo models [164,165], and C5-hexanamido-C9-acetamido
analog od DANA showed a highly improved potency with a Ki of 53 ± 5 nM and 330-fold
selectivity [166]. C9-triazolyl DANA derivatives exhibited remarkably increased inhibitory
activity for NEU3 [167].
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4.5. Inhibition of Galectins

Glycosylation inhibitors may modulate the activity of glycan-binding proteins (lectins)
involved in immune cell interactions and inflammatory signaling pathways, providing
additional therapeutic targets for asthma treatment. Several compounds have been in-
vestigated as potential galectin inhibitors for the treatment of asthma and fibrotic lung
diseases [168]. These inhibitors aim to modulate galectin binding activity and downstream
inflammatory processes, potentially offering therapeutic benefits in asthma management.
Several galectin-targeted therapies have entered clinical trials for indications, including
cancer and cardiovascular and fibrotic diseases. The structures of inhibitors include carbo-
hydrate mimetics, especially lactose-derived compounds described in detail in two recent
reviews [169,170].

5. Conclusions

It is necessary to consider glycosylation during the development of therapies for
asthma. Although we focused on the potential implications of CHIT1 inhibition in the
context of asthma severity and airway remodeling, other enzymes hold therapeutic promise
for glycosylation regulation, such as galectins, NEU1, and FUT2. Moreover, the broader
implications of alterations in N-glycosylation patterns within specific cell subsets or protein
groups are in the early stages of development and hold promise as potential markers
for diagnosing asthma and other respiratory diseases [171]. Certain cell-specific proteins,
whose dysregulation in glycosylation should be collectively monitored, could become fu-
ture markers for the diagnosis, risk assessment, and severity verification of asthma [54,172].
Research on glycosylation alterations in asthma should help to stratify patients into distinct
subsets for which we should be able to provide new personalized treatment.
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