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Abstract: Dilated cardiomyopathy (DCM) encompasses various acquired or genetic diseases sharing
a common phenotype. The understanding of pathogenetic mechanisms and the determination of the
functional effects of each etiology may allow for tailoring different therapeutic strategies. MicroRNAs
(miRNAs) have emerged as key regulators in cardiovascular diseases, including DCM. However, their
specific roles in different DCM etiologies remain elusive. Here, we applied mRNA-seq and miRNA-
seq to identify the gene and miRNA signature from myocardial biopsies from four patients with DCM
caused by volume overload (VCM) and four with ischemic DCM (ICM). Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for differentially
expressed genes (DEGs). The miRNA–mRNA interactions were identified by Pearson correlation
analysis and miRNA target-prediction programs. mRNA-seq and miRNA-seq were validated by
qRT-PCR and miRNA–mRNA interactions were validated by luciferase assays. We found 112 mRNAs
and five miRNAs dysregulated in VCM vs. ICM. DEGs were positively enriched for pathways related
to the extracellular matrix (ECM), mitochondrial respiration, cardiac muscle contraction, and fatty
acid metabolism in VCM vs. ICM and negatively enriched for immune-response-related pathways,
JAK-STAT, and NF-kappa B signaling. We identified four pairs of negatively correlated miRNA–
mRNA: miR-218-5p-DDX6, miR-218-5p-TTC39C, miR-218-5p-SEMA4A, and miR-494-3p-SGMS2.
Our study revealed novel miRNA–mRNA interaction networks and signaling pathways for VCM
and ICM, providing novel insights into the development of these DCM etiologies.

Keywords: dilated cardiomyopathy; ischemic cardiomyopathy; volume overload; microRNA;
etiology; RNA sequencing

1. Introduction

Dilated cardiomyopathy (DCM) is characterized by an enlarged and dysfunctional
left ventricle [1] that encompasses various etiological causes [2]. Globally, this condition
is the most common cause of heart failure (HF) and heart transplantation [3]. Ischemic
cardiomyopathy (ICM) is one of the most common types of DCM. Although ICM and DCM
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can lead to similar symptoms of HF, evidence suggests that distinct DCM etiologies may
produce different structural and/or functional phenotypes and may respond differently
to therapy [4–6]. Aortic regurgitation is a valve disease characterized by the inadequate
closure of the aortic valve during diastole, resulting in reverse blood flow from the aorta
to the left ventricle [7]. Chronic valve regurgitation causes left-ventricle volume over-
load, leading to a left-ventricle dilatation that remains silent for a long period of time [8].
However, AR patients suddenly progress towards symptoms and HF after this long stable
period [9]. Despite the worse prognosis associated with HF due to ICM, current therapies
are relatively indifferent to the disease’s etiology. This reflects an incomplete understanding
of the biological mechanisms contributing to HF. Hence, a better understanding of the basic
pathological mechanisms of distinct DCM etiologies could provide new insight into diverse
mechanisms and pave the way for new precision medicine strategies.

MicroRNA (miRNAs) are small endogenous non-coding RNAs that negatively regu-
late gene expression at the posttranscriptional level. Mechanistic studies have indicated
that miRNAs regulate mRNA expression by partially or complementary binding to the
complementary sites in the 3′-untranslated regions (3′UTR), inducing mRNA degradation
and translational repression [10]. A single miRNA can target a cluster of protein-coding
genes, and a single gene can be targeted by many miRNAs [11,12]. miRNAs show unique
expression patterns in different cells, tissues, developmental stages, and disease stages.
Their influence on gene regulation is key to understanding biological processes in complex
diseases [13]. In this regard, an increasing number of studies have demonstrated that
miRNAs play a crucial role in various DCM etiologies and have been suggested as potential
therapeutic targets [14–17]. In addition, it has been shown that specific miRNA expression
profiles exist for cardiomyopathies of diverse etiologies [18–22].

Prior studies have demonstrated distinct transcriptome signatures between ICM and
DCM hearts by RNA-seq [23,24]. However, the differential miRNA and mRNA pattern
expression between different DCM etiologies to distinguish etiology-specific molecular
pathways, particularly in human tissue models, are scarce. Li et al. analyzed the paired
miRNA–mRNA expression profiles of ICM and non-ICM from data downloaded from gene-
expression and hybridization-array data repositories (GEO ID: GSE46224) [25]. However,
some patients in both cohorts also presented with valve diseases such as pulmonic valve
regurgitation, mitral valve regurgitation, AR, and tricuspid valve regurgitation.

In the present study, we aim to determine the mechanisms of miRNA regulation in two
distinct DCM etiologies. For this purpose, we used RNA sequencing (RNA-seq) and small
RNA-seq to identify etiology-specific transcriptome signatures in myocardial biopsies from
volume overload DCM (VCM) and ICM patients without any valve disease. Furthermore,
we analyzed the miRNA–mRNA interactome in order to reveal a previously unknown
pathway regulating VCM and ICM progression.

2. Materials and Methods
2.1. Study Population

The study was carried out on myocardial samples from patients undergoing surgery at
the Puerta del Mar, Cádiz University Hospital, Spain, after obtaining ethical authorization
(133/2019). The population was distributed into two groups: volume overload cardiomy-
opathy, VCM (n = 9), and ICM (n = 6). The ICM cohort included patients with a history of
acute myocardial infarction or significant coronary-artery stenosis (left main artery greater
than 50% or any major coronary artery greater than 75%) [26]. The VCM cohort included
patients with severe AR that fulfilled the criteria for aortic valve replacement [9,27]. The
etiology was determined by two independent cardiologists. None of the patients had
familial DCM criteria, additional cardiovascular disease, or any inflammatory, tumor, or
infectious disease that could influence our results. All subjects were older than 18 years
of age. Complete clinical information, including family and personal history, symptoms
of HF, and pharmacological information, was obtained from each patient. Transthoracic
echocardiogram and electrocardiogram were performed on all individuals. All patients
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underwent coronary-artery catheterization prior to surgery as recommended by the Euro-
pean Society of Cardiology guidelines [9]. Only 4 VCM and 4 ICM samples were used for
mRNA-seq and 4 VCM and 3 ICM samples for miRNA-seq due to technical issues. The
entire population of samples was used to validate the sequencing results.

2.2. Myocardial Tissue Collection

Human left ventricular transmural core biopsies were collected by experienced car-
diothoracic surgeons at the Puerta del Mar Hospital University. Samples were obtained
from 15 patients undergoing valve-replacement surgery or coronary-artery bypass grafting.
After entering extracorporeal circulation and performing aortic clamping, the anterior
descending coronary artery and the interventricular septum were located. A disposable
18 G/15 cm biopsy needle (Quick-core, Cook Medical, Bloomington, IN, USA) was used
to extract the ventricular biopsy as described [28]. Samples were biopsied from the left
anterolateral free wall between the anterior descending coronary artery and the marginal
oblique, close to the apex. No complications were observed during this technique. Cardiac
tissue samples were collected, frozen in liquid nitrogen, and stored at −80 ◦C.

2.3. RNA Isolation and qRT-PCR

All qRT-PCR experiments followed MIQE guidelines [29]. Total RNA was extracted
and purified by using TRI Reagent (Sigma-Aldrich, St. Louis, MO, USA) according to the
manufacturer’s instructions, followed by DNase treatment and purification using RNA
clean and a concentrator-5 kit (Zymo Research, Irvine, CA, USA). RNA was quantified using
a Qubit RNA High-Sensitivity Assay kit in the Qubit® 2.0 Fluorometer (Life Technologies,
Carlsbad, CA, USA). mRNA was reverse-transcribed employing a PrimeScript RT reagent
Kit (Takara, Shiga, Japan) following the manufacturer’s instructions. Relative quantification
of mRNA levels was executed using forward and reverse primers at 100 nM each (primer
pairs shown in Table 1) and iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA,
USA). The mRNA levels were normalized to GAPDH and ß-ACTIN. For miRNA expression
analysis, 5 ng of RNA were reverse-transcribed using a miRCURY LNA RT Kit (Qiagen,
Hilden, Germany) and amplified with hsa-miR-106b-3p (339306, Qiagen), hsa-miR-193b-5p
(339306, Qiagen), hsa-miR-218-5p (339306, Qiagen), hsa-miR-487b-3p (339306, Qiagen), and
hsa-miR-494-3p (339306, Qiagen) miRCURY LNA miRNA PCR primer set and a miRCURY
LNA SYBR Green PCR Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instruction. All qRT-PCRs were performed on a CFX96 Real-Time PCR system (Bio-Rad,
Hercules, CA, USA). The miRNA expression was normalized against U6 snRNA (v2) and
a 5S rRNA miRCURY LNA miRNA PCR primer set, and data were analyzed using the
2−∆∆Ct algorithm.

Table 1. Quantitative real-time polymerase chain reaction primer pair sequence.

Gene Forward Reverse

DDX6 5′-AATACTGAACTATGGACCTATGAGCA-3′ 5′-TTGCAGGGCTCACACTAGG-3′

SEMA4A 5′-TGGGGACTACTCTGCCTACTACA-3′ 5′-GGGTTACTCTGCTCCATGTCA-3′

SGMS2 5′-AGCACGTGCACAGCTTCA-3′ 5′-GTCCACGGGTGAAACAGC-3′

TTC39C 5′-TCTGGACAAGTACAATGCTGAGA-3′ 5′-TAAGCTTCGCTGCACAGGT-3′

GAPDH 5′-AGCCACATCGCTCAGACAC-3′ 5′-AATACGACCAAATCCGTTGACT-3′

ß-ACTIN 5′-TGTGGCATCCACGAAACTACC-3′ 5′-CTCAGGAGGAGCAATGATCTTGAT-3′

2.4. RNA-Seq Analysis and Bioinformatics

The quality and integrity of the total RNA were controlled on the Agilent Technolo-
gies 2100 Bioanalyzer. Standard-specific mRNA sequencing (mRNA-seq) libraries were
generated using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina using
the NEBNext Poly(A) mRNA Magnetic Isolation Module (New England Biolabs, Ipswich,
MA, USA), and single-end libraries were sequenced on an Illumina SE75 Platform with
an output of ~70 M reads per sample. Standard miRNA libraries were generated using
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the NEXTFLEX small RNA-seq kit v3 (Perkin Elmer, Waltham, MA, USA), and single-end
libraries were sequenced on an Illumina SE75 Platform with an output of ~20 M reads
per sample.

For trimming and aligning raw data, fastq sequence reads were uploaded to the
European version of the Galaxy platform [30]. Reads were trimmed with the Trim Ga-
lore software (Galaxy Version 0.6.7+galaxy0) and aligned to the built-in human reference
genome, Dec. 2013 (GRCh38/hg38), with the RNA STAR Gapped-read mapper (Galaxy
Version 2.7.10b+galaxy3) [31]. For gene-expression analyses, bam files were downloaded
from the Galaxy server and further analyzed with the different RStudio packages down-
loaded from the Bioconductor website (http://bioconductor.org, accessed on 2 March 2023).
Reads were assigned to genes by means of the “featureCounts” function of the “Rsub-
read” package, version 2.10.5. [32] and annotation files human release 43 (GRCh38.p13)
(https://www.gencodegenes.org/human/release_43.html, accessed on 2 March 2023) and
Chromosomal coordinates of Homo sapiens microRNAs (https://www.mirbase.org/ftp/
CURRENT/genomes/hsa.gff3, accessed on 2 March 2023) for mRNA and miRNA anal-
ysis, respectively. Only the mapped reads were used to calculate gene expressions. The
library size of each experimental point ranged from 58,431,140 to 76,443,844 sequences
and from 7,530,361 to 27,506,550 sequences for mRNA and miRNA analysis, respectively.
The differential gene-expression analyses were performed with package ‘DESeq2’ version
1.36.0 [https://doi.org/10.1186/s13059-014-0550-8, accessed on 2 March 2023]. All the gene
comparisons with a p value < 0.05 and an abslog2 fold change (FC) > 0.5 were considered
differentially expressed under the experimental conditions. For miRNA–target transcript
interaction network analysis, first, we computed Pearson correlation coefficients for all
miRNA–mRNA couples available in each group of samples (VCM and ICM). The next step
consisted of intersecting the significant negative correlations with the predicted miRNA–
mRNA potential interactions from DIANA-microT and ElMMo PITA databases [33,34].
In addition, in order to minimize the false-positive ratio, the information from experi-
mentally validated miRNA–mRNA target pairs extracted from TarBase and miRTarbase
databases was also implemented [35,36]. This experimental approach is similar to the
one carried out by Vila-Casadesús et al. (2016) [37] previously. Functional enrichment
analyses and Gene Set Enrichment Analysis (GSEA)-based [38] Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were conducted with the
“clusterProfiler” package version 3.6.0. [39,40]. The gene sets with a p-value < 0.05 were
considered overrepresented under the experimental conditions.

2.5. Luciferase Reporter Assay

Dual-luciferase reporter assay was performed as described previously [41].
DDX6, TTC39C, SEMA4A, and SGMS2 3’UTR fragments were PCR-amplified and

cloned into the pMIR-REPORT vector. The 3T3 fibroblasts (ATCC) were cultured with
DMEM (Gibco, Waltham, MA, USA) supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin and seeded overnight at 50–60% confluence in 24-well plates. Then,
the cells were co-transfected using Lipofectamine 3000 (Thermo Fisher Scientific, Waltham,
MA, USA) with 100 ng of the luciferase vector carrying the 3’UTR fragment and 50 nM of
the mirVana mimics has-miR-218-5p or has-miR-494-3p (4464066, Thermo Fisher Scientific,
Waltham, MA, USA), along with 300 ng of pcLux vector control for internal normalization.

PCR-based site-directed mutagenesis was performed using the Bio-Rad iPROOF PCR kit.
Primers, including MD218_DDX6_Fw (5′-GTCCCTCTTAAACCACAGAC-3′), MD218_DDX6_Rv
(5′-GTCTGTGGTTTAAGAGGGAC-3′), MD218_SEMA4_Fw (5′-CTCAAGAGCAGAGAGA-3′),
MD218_SEMA4_Rv (5′-TCTCTCTGCTCTTGAG-3′), MD494_SMGS2_Fw (5’-ACACTGCAGCTG
CCAC-3’), and MD494_SMGS2_Rv (5’-GTGGCAGCTGCAGTGT-3’). The underlined nucleotides
are referenced to nucleotides changed in site-directed mutagenesis and were used to introduce
mutations into the sequence complementary to seed sequences of miR-218 and miR-494 within
the 3′ UTRs of DDX6, SEMA4, and SMGS2, respectively. Each luciferase assay was carried out in
triplicate and repeated in at least three distinct biological samples to obtain representative means.

http://bioconductor.org
https://www.gencodegenes.org/human/release_43.html
https://www.mirbase.org/ftp/CURRENT/genomes/hsa.gff3
https://www.mirbase.org/ftp/CURRENT/genomes/hsa.gff3
https://doi.org/10.1186/s13059-014-0550-8
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Luciferase activity was measured 18 h after transfection by using the Pierce Gaussia
Luciferase Flash Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) and normal-
ized to pcLux vector control by using the Pierce Cypridina Luciferase Flash Assay Kit
(Thermo Fisher Scientific, Waltham, MA, USA). In all cases, transfections were carried out
in triplicate.

2.6. Statistical Analysis

Data are expressed as mean ± SEM, and n denotes the number of replicates for each
experiment. Outliers were identified through the Rout method, using a Q = 1%. The
normal distribution of each variable was verified with the Shapiro–Wilk test. Statistical
differences (p < 0.05) between the experimental groups were assessed using a two-tailed,
unpaired Student’s t test for Gaussian distributions. For non-Gaussian distributions,
a Mann–Whitney non-parametric test was used [42]. All the statistical analyses were
performed using GraphPad Prism 9.0 software (San Diego, CA, USA).

3. Results
3.1. Baseline Characteristics

The baseline characteristics of the 15 patients with DCM included in this study are shown
in Table 2. The ICM cohort included six patients (mean age, 66.33 ± 7.84 years; all male
patients) while the VCM group comprised nine patients (mean age, 63.67 ± 11.78 years; one
female). There were no significant differences in the echocardiographic variables, such as
left-ventricle ejection fraction, dilated left ventricular end-diastolic diameter, left ventricular
end-systolic diameters, and left atrial dimension.

Table 2. Baseline patient characteristics of the ICM and VCM groups. ICM: ischemic cardiomyopathy;
VCM: volume overload cardiomyopathy; LVEF: Left-ventricle ejection fraction; LVEDD: left-ventricle
end-diastolic diameter; LVESD: Left-ventricle end-systolic diameter; LA: left-atrium diameter.

Variable ICM (N = 6) VCM (N = 9) p-Value

Age (years), means ± SD 66.33 ± 7.84 63.67 ± 11.78 0.637
Sex (male, %) 100 88.89 0.699

LVEF (%) 38 ± 15.87 48.13 ± 10.88 0.164
LVEDD (mm) 60.33 ± 2.16 60 ± 5.15 0.885
LVESD (mm) 44 ± 2.16 44.13± 7.62 0.969

LA (mm) 47.50 ± 2.65 52 ± 5.61 0.092
High blood pressure (%) 66.67 88.89 0.574

Dyslipidemia (%) 66.67 55.56 0.975
Diabetes Mellitus (%) 50 66.67 0.519
ACEI/ARAII (y/n, %) 83.33 77.77 0.792

Diuretics (y/n, %) 83.33 88.89 0.757
Calcium antagonist (y/n, %) 16.67 22.22 0.792

Statins (y/n, %) 83.33 77.78 0.792
Ezetrol (%) 16.67 22.22 0.792

Metformin (%) 33.33 33.33 >0.999
Metformin/IGP4 (%) 16.67 22.22 0.792

Insulin (%) 16.67 22.22 0.792
Aspirin (y/n, %) 100 22.22 0.003
Beta-blocker (%) 83.33 77.78 0.792

3.2. VCM and ICM Have Distinct mRNA and miRNA Expression Profiles

To investigate the mRNA expression differences between DCM etiologies, we per-
formed RNA-seq on left ventricular tissue from four VCM and three ICM patients (Figure 1).
We used principal component analysis (PCA) to visualize sample clustering for the most
variably expressed genes, and no outliers were observed. PCA indicated that the VCM
samples are plainly different from the ICM ones based on mRNA profiling (Figure 2A).
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The filtered RNA-seq read set identified 18,975 genes and 583 miRNAs. In total,
111 genes were differentially expressed between VCM and ICM, with an abslog2 fold
change (FC) > 0.5 using a 5% false discovery rate (FDR) (Supplementary Table S1). Of
those genes, 75 were upregulated and 36 were downregulated in VCM relative to ICM
(Figure 2B,C).

We also analyzed the miRNA profile by miRNA-seq to investigate the differential
expression between these distinct etiologies of DCM. No outliers were observed in the
miRNA expression profile in a PCA. According to the PCA, the miRNA expression charac-
terization of the VCM samples differed significantly from that of ICM biopsies (Figure 2D).
After sequencing analysis, 634 miRNAs from all myocardial samples were identified. The
most highly expressed miRNA in all the myocardial samples was miR-1-3p (Supplemen-
tary Table S2). Differential expression analysis identified five miRNAs to be differentially
expressed between VCM and ICM (abslog2 FC > 0.5; FDR ≤ 0.05) (Supplementary Table S3).
Whereas miR-218-5p, miR-487b-3p, and miR-494-3p were upregulated, miR-106b-3p and
miR-193b-5p were downregulated in VCM compared to ICM, respectively (Figure 2E,F).

To identify pathways related to each DCM etiology, we performed pathway-enrichment
analysis on the differentially expressed genes in our study. We ranked genes in order from
increasing to decreasing abslog2-fold expression changes in VCM vs. ICM. Then, GO
and KEGG pathway analyses based on GSEA were performed to evaluate key molecules
and pathways contributing to each DCM etiology. The most enriched GO terms accord-
ing to the gene ratio and categorized by the cellular component (CC), biological process
(BP), and molecular function (MF) are shown in Figure 3A–I and Supplementary Ta-
bles S4–S6. GO analysis revealed extracellular matrix (ECM)-, mitochondria respiration-
and immune-response-related pathways as the main terms involved in CC, BP, and MF
(Figure 3A–I). In CC, collagen trimmer, cytochrome complex, and ionotropic glutamate
receptor complex were among the most upregulated pathways in VCM compared to ICM
(Figure 3B), whereas cytolytic granule, endocytic vesicle lumen, and T-cell receptor complex
were among the most downregulated pathways (Figure 3C). In BP, collagen biosynthetic
process, mitochondrial respiratory chain complex I assembly, and regulation of calcium



Biomolecules 2024, 14, 524 7 of 19

ion-dependent exocytosis were among the most positively enriched pathways in VCM
related to ICM (Figure 3D,E), whereas cytokine production involved in immune response,
interleukine-1 (IL-1) beta production, and T-cell differentiation were among the most
negatively enriched pathways (Figure 3D,F). Finally, calcium-dependent protein binding,
ECM structural constituent, glutathione transferase activity, and NADH dehydrogenase
(ubiquinone) activity were among the most positively enriched pathways in VCM related to
ICM (Figure 3G,H), whereas 1-phosphatidylinositol-3-kinase regulator activity, chemokine
binding, and immune-receptor activity were the most negatively enriched pathways in
MF (Figure 3G,I). On the other hand, the results of the KEGG pathway analysis showed
that cardiac muscle contraction, fatty acid degradation, and oxidative phosphorylation,
among others, were positively enriched in VCM when compared to ICM (Figure 4A,B),
whereas B cell receptor, JAK-STAT, and NF-kappa B signaling pathways, among others,
were negatively regulated with VCM (Figure 4A,C).
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Figure 2. Exploratory analysis of paired miRNA and mRNA expression in heart samples. (A) 3D
principal components analysis plot, based on correlation matrix, for mRNA expression in VCM (n = 4)
and ICM (n = 4) tissue samples. (B) Heatmap of the top-50 most differentially expressed mRNAs
sorted by absolute FC (all of them having FDR < 0.05). (C) Volcano plot of the mRNAs, highlighting
in gray those not statistically significant, with FDR > 0.05 and absolute FC > 1.42 (abslog2FC > 0.5), in
blue those with FDR < 0.05 but absolute FC > 1.42 (abslog2FC > 0.5), in green those with absolute
FC > 1.42 (abslog2FC > 0.5) but FDR > 0.05, and in red those with FDR < 0.05 and absolute FC > 1.42
(abslog2FC > 0.5). (D) 3D principal components analysis plot, based on correlation matrix, for miRNA
expression in VCM (n = 4) and ICM (n = 3) tissue samples. (E) Heatmap of the only 5 differentially
expressed miRNAs sorted by absolute FC (all of them having FDR < 0.05). (F) Volcano plot of the
miRNAs highlighting in gray those not statistically significant with FDR > 0.05 and absolute FC > 1.42
(abslog2FC > 0.5), in green those with absolute FC > 1.42 (abslog2FC > 0.5) but FDR > 0.05 and in red
those with FDR < 0.05 and absolute FC > 1.42 (abslog2FC > 0.5).
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Figure 3. Gene Ontology (GO) Gene Set Enrichment Analysis (GSEA) between VCM and ICM groups.
(A) Bar plot for cellular component (CC) analysis ranked by Normalized Enrichment Score (NES).
(B) Gseaplot for “collagen trimer”, “cytochrome complex”, and “ionotropic glutamate receptor”
upregulated GO terms showing the running score and preranked list of GSEA and its association of
phenotype in CC analysis. (C) Gseaplot for “cytolytic granule”, “endocytic vesicle lumen”, and “T cell
receptor complex” downregulated GO terms showing the running score and preranked list of GSEA
and its association of phenotype in CC analysis. (D) Bar plot for biological process (BP) analysis
ranked by Normalized Enrichment Score (NES). (E) Gseaplot for “collagen biosynthetic process”,
“mitochondrial respiratory chain complex I assembly”, and “regulation of calcium ion-dependent
exocytosis” upregulated GO terms showing the running score and preranked list of GSEA and its
association of phenotype in BP analysis. (F) GSEA plot for “cytokine production involved in immune
response”, “interleukin-1 beta production”, and “T cell differentiation” downregulated GO terms
showing the running score and preranked list of GSEA and its association of phenotype in BP analysis.
(G) Bar plot for molecular function (MF) analysis ranked by Normalized Enrichment Score (NES).
(H) GSEA plot for “calcium-dependent protein binding”, “extracellular matrix structural constituent”,
“glutathione transferase activity”, and “NADH dehydrogenase (ubiquinone) activity” upregulated
GO terms showing the running score and preranked list of GSEA and its association of phenotype
in MF analysis. (I) GSEA plot for “1-phosphatidylinositol-3-kinase regulator activity”, “chemokine
binding”, and “immune receptor activity” downregulated GO terms showing the running score
and preranked list of GSEA and its association of phenotype in MF analysis. NES: normalized
enrichment scores.
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five miRNAs connected to 19 genes (Figure 5A). Of the 22 miRNA–transcript pairs, 13 
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Afterward, we performed a Pearson correlation between the selected miRNAs and genes. 
This identified four negatively correlated miRNA–target transcript pairs, miR-218-5p-
DDX6, miR-218-5p-TTC39C, miR-218-5p-SEMA4A, and miR-494-3p-SGMS2 (R < −0.7 and 

Figure 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) Gene Set Enrichment Analysis (GSEA)
between VCM and ICM groups. (A) Bar plot for KEGG analysis ranked by Normalized Enrich-
ment Score (NES). (B) GSEA plot for “Cardiac muscle contraction”, “Fatty acid degradation”, and
“Oxidative phosphorylation” upregulated KEGG terms showing the running score and preranked
list of GSEA and its association of phenotype. (C) GSEA plot for “B cell receptor signaling path-
way”, “JAK-STAT signaling pathway”, and “NF-kappa B signaling pathway” downregulated KEGG
terms showing the running score and preranked list of GSEA and its association of phenotype.
NES: normalized enrichment scores.

3.3. miRNA–Target Transcript Interaction Network

In order to identify miRNA–target pairs that could be playing an active role in the
two etiologies of DCM, we focused on those miRNAs that were differentially expressed
between VCM and ICM. We selected miRNA–target pairs from three prediction tools
(DIANA-microT, ElMMo, and PITA,) and from databases that list experimentally vali-
dated miRNA–target pairs (TarBase and miRTarbase) (Table 3). We identified 22 miRNA–
target transcript pairs. The resulting miRNA–target transcript interaction network consists
of five miRNAs connected to 19 genes (Figure 5A). Of the 22 miRNA–transcript pairs,
13 miRNA–transcript interactions have been previously experimentally validated (Table 3).
Afterward, we performed a Pearson correlation between the selected miRNAs and genes.
This identified four negatively correlated miRNA–target transcript pairs, miR-218-5p-
DDX6, miR-218-5p-TTC39C, miR-218-5p-SEMA4A, and miR-494-3p-SGMS2 (R < −0.7
and p-value < 0.05) (Figure 5B), of which only miR-218-5p-DDX6 has been previously
experimentally validated (Table 3).
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Table 3. miRNA–target pairs from three prediction tools, -DIANA-microT, ElMMo and PITA-, and
from databases that list experimentally validated miRNA–target pairs (TarBase and miRTarbase).

Database Mature Mirna acc Mature Mirna ID Target Symbol Target Entrez Target Ensembl Type Pubmed ID Score

mirtarbase MIMAT0000275 hsa-miR-218-5p ATM 472 ENSG00000149311 validated 23212916
mirtarbase MIMAT0002816 hsa-miR-494-3p BCL2 596 ENSG00000171791 validated 24960059
mirtarbase MIMAT0000275 hsa-miR-218-5p DDX6 1656 ENSG00000110367 validated 23212916
mirtarbase MIMAT0000275 hsa-miR-218-5p GOLGA3 2802 ENSG00000090615 validated 23212916
mirtarbase MIMAT0002816 hsa-miR-494-3p REST 5978 ENSG00000084093 validated 23446348
mirtarbase MIMAT0000275 hsa-miR-218-5p KCNK6 9424 ENSG00000099337 validated 23313552
mirtarbase MIMAT0000275 hsa-miR-218-5p ARSG 22901 ENSG00000141337 validated 23622248
mirtarbase MIMAT0000275 hsa-miR-218-5p MB21D2 151963 ENSG00000180611 validated 23212916

tarbase MIMAT0000275 hsa-miR-218-5p REST 5978 ENSG00000084093 validated 20371350
tarbase MIMAT0003180 hsa-miR-487b-3p SGMS2 166929 ENSG00000164023 validated 24038734
tarbase MIMAT0002816 hsa-miR-494-3p CPNE1 8904 ENSG00000214078 validated 25653011
tarbase MIMAT0004672 hsa-miR-106b-3p SCPEP1 59342 ENSG00000121064 validated 22291592

diana_microt MIMAT0000275 hsa-miR-218-5p DUSP5 1847 ENSG00000138166 predicted 0.992
diana_microt MIMAT0002816 hsa-miR-494-3p SGMS2 166929 ENSG00000164023 predicted 0.978
diana_microt MIMAT0002816 hsa-miR-494-3p INPP4B 8821 ENSG00000109452 predicted 0.889
diana_microt MIMAT0002816 hsa-miR-494-3p GATAD2B 57459 ENSG00000143614 predicted 0.85

elmmo MIMAT0000275 hsa-miR-218-5p TTC39C 125488 ENSG00000168234 predicted 0.712
elmmo MIMAT0000275 hsa-miR-218-5p SEMA4A 64218 ENSG00000196189 predicted 0.63
elmmo MIMAT0000275 hsa-miR-218-5p SORL1 6653 ENSG00000137642 predicted 0.533
elmmo MIMAT0002816 hsa-miR-494-3p GATAD2B 57459 ENSG00000143614 predicted 0.505
elmmo MIMAT0002816 hsa-miR-494-3p SORL1 6653 ENSG00000137642 predicted 0.504

diana_microt MIMAT0004767 hsa-miR-193b-5p PLXDC1 57125 ENSG00000161381 predicted 0.831
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To investigate the physical interaction of the potential miRNA–target transcript pairs, 
we performed a dual-luciferase reporter assay. The pMIR-REPORT containing the wild-
type (WT) or mutant (Mut) DDX6 3’UTR, TTC39C 3’UTR, or SEMA4A 3’UTR was co-
transfected with miR-218-5p mimic, and the pMIR-REPORT containing the wild-type 

Figure 5. miRNA–miRNA interaction analysis. (A) Network of selected miRNA–mRNA interactions.
(B) Negatively correlated miRNA–mRNA pairs predicted simultaneously, at least, in three used
databases in our pipeline. Red and blue nodes mean upregulated and downregulated in VCM vs.
ICM, respectively.

To investigate the physical interaction of the potential miRNA–target transcript pairs,
we performed a dual-luciferase reporter assay. The pMIR-REPORT containing the wild-type
(WT) or mutant (Mut) DDX6 3’UTR, TTC39C 3’UTR, or SEMA4A 3’UTR was co-transfected
with miR-218-5p mimic, and the pMIR-REPORT containing the wild-type (WT) or mutant
(Mut) SGMS2 3’UTR was co-transfected with miR-494-3p mimic into 3T3 cells. Figure 6A
shows the predicted miRNA binding site in the 3’UTR of its target gene.

Transfection of miR-218-5p mimic significantly reduced the luciferase activity
in WT_DDX6_3’UTR and WT_SEMA4A_3’UTR, whereas the luciferase activity in
the WT_TTC39C_3’UTR remained unaltered. Additionally, miR-494-3p significantly
reduced the luciferase activity of SGMS2 (Figure 6B). Therefore, these results confirmed
that DDX6 and SEMA4A are direct targets of miR-218-5p, and SGMS2 is a direct target
of miR-494-3p.
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Figure 6. miR-218-5p targets DDX6 and SEMA4A and miR-494-3p targets SGMS2. (A) Predicted miR-
218-5p binding sites in the 3’UTR of DDX6, TTC39C, and SEMA4A, and predicted miR-494-3p binding
sites in the 3’UTR of SGMS2. The red nucleotides are referenced to seed sequence and sequence
complementary to seed sequence of miRNA and 3’UTR, respectively. (B) Dual-luciferase activity assay
in 3T3 cells co-transfected with the pMIR-REPORT miRNA expression reporter vector containing
the wild-type (WT) or mutant (Mut) DDX6, TTC39C, or SEMA4A 3’UTR fragment with miR-218-5p
mimic, and the pMIR-REPORT miRNA expression reporter vector containing the wild-type (WT)
or mutant (Mut) SGMS2 3’UTR fragment with miR-494-3p mimic for 18 h (n = 3). (C) Expression
levels of DDX6, TTC39C, SEMA4A, and SGMS2 in VCM (n = 9) vs. ICM (n = 6) analyzed by qRT-PCR.
(D) Expression levels of miR-218-5p, miR-487b-3p, and miR-494-3p in VCM (n = 9) vs. ICM (n = 6)
analyzed by qRT-PCR. ** p < 0.01; * p < 0.05. ns: nonsignificant; NC: negative control.
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3.4. Validation of Differentially Expressed Genes and miRNAs by qRT-PCR

To validate the sequencing data for certain differentially expressed genes, miRNAs
were verified in the myocardial tissue of nine VCM and six ICM patients by qRT-PCR.
ß-ACTIN and GAPDH were used as an internal control for mRNA qRT-PCRs, whereas U6
and 5s small nuclear RNAs were used for miRNAs. As presented in Figure 6D, significant
differences were observed in the expression of the four deregulated genes between the
VCM and ICM groups. DDX6, SGMS2, TTC39C, and SEMA4A were upregulated in ICM
heart samples compared to VCM (Figure 6D). On the other hand, only the expressions of
miR-218-5p, miR-487b-3p, and miR-494-3p, downregulated in ICM samples compared to
VCM, were comparable with the sequencing data (Figure 6E).

4. Discussion

DCM is commonly regarded as a final pathway resulting from various underlying
causes, which significantly influences both prognosis and outcomes [43]. However, there
remains a significant gap in knowledge regarding etiologically based biological pathways
associated with DCM. Here, we propose an approach to better understand molecular and
cellular processes of distinct DCM etiologies through transcriptome analysis of mRNA
and miRNA. Although several studies have analyzed and compared the transcriptome
of distinct DCM etiologies against healthy controls [19,23,24], to date, studies comparing
the mRNA and miRNA transcriptome of different etiologies with each other remain poor.
Using RNA-seq, we identified genes that are differentially expressed between VCM and
ICM myocardial biopsies. Pathway analysis with GSEA revealed ECM- and mitochondrial
respiration-related pathways as the most common positively enriched biological routes for
the GO terms CC, BP, and MF in VCM compared to ICM. In contrast, immune-activation-
related pathways were among the most negatively enriched in VCM vs. ICM.

In DCM, the deposition of structural ECM proteins varies based on the mechanical or
ischemic trigger. Thus, several studies suggest that, in contrast to the marked deposition of
structural ECM due to mechanical alterations (i.e., pressure overload) or injuries (myocar-
dial infarction), volume overload is less profibrotic [44,45]. VCM develops a compensatory
response to maintain ventricular shape and size. However, fibrosis in VCM is associated
with the loss of interstitial collagen, a prominent ECM degradation [46–49]. Although the
collagen gene expression increases, there is an imbalance in the matrix metalloproteases
(MMP) and tissue inhibitor metalloproteases (TIMPs) that correlates with unaltered colla-
gen protein levels [49]. In this sense, Irqsusi et al. demonstrated that MMPs were expressed
during mitral valve regurgitation, a model of volume overload, in a dynamic destruction
process supported by TIMPs, the expression of which increased with the severity of the
mitral regurgitation [50]. Accordingly, our results showed the upregulation of collagen and
MMP family genes. The fact that both collagen synthesis and ECM degradation pathways
are activated during ventricular remodeling in VCM may explain the enrichment of the
ECM-related pathway compared to ICM, even being less fibrotic.

ICM fibrosis is the consequence of a repair process secondary to significant cardiomy-
ocyte death that stimulates the inflammation cascade and the activation of reparative
myofibroblasts to protect myocardium integrity. Cardiomyocyte death rapidly activates
innate immune pathways that trigger cytokine, chemokine, and adhesion molecule ex-
pression, initiating the inflammatory phase and leading to the infiltration of the infarct
by leukocytes and T cells [51]. Accordingly, our results showed positive enrichment of
immune-response-related pathways in ICM compared to VCM. In addition, biopsy samples
collected from the remote zone of ICM hearts are subject to diffuse reactive fibrosis that
differs from the reparative fibrosis that occurs in the infarcted zone [52] GSEA analysis also
revealed mitochondrial respiration-related pathways as more enriched in VCM compared
to ICM, suggesting a more severe mitochondrial dysfunction in the ICM cohort. It is well
known that mitochondrial dysfunction contributes to the transition from the normal heart
to end-stage-HF, which is the common pathway of DCM, including VCM and ICM [53–55].
Therefore, the enrichment of pathways related to mitochondrial respiration in VCM may in-
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dicate a more severe mitochondrial dysfunction in ICM than in VCM. It has been suggested
that mitochondrial dysfunction may represent only a late phenomenon in the disease pro-
cess. Therefore, these results may indicate that ICM hearts go into failure faster than VCM.
Consistently, rats with infarcted hearts displayed clear impairment and mitochondrial
dysfunction at baseline, whereas a model of compensated volume overload showed the
absence of major mitochondrial and contractile dysfunction [56,57]. Mitochondrial ion
channels allow the fine-tuning of its membrane potential, ROS production, and function of
the respiratory chain complexes and are extensively studied in terms of protecting the heart
or cardiac cells from ischemia–reperfusion injury [58]. This is consistent with the negative
enrichment of mitochondrial respiratory-related pathways, such as respiratory complex I
and the cytochrome complex in ICM related to VCM. On the other hand, the ICM cohort
presented a downregulation of calcium ion-dependent exocytosis and calcium-dependent
protein-binding pathways, which is also related to mitochondrial dysfunction and ischemic
heart disease. Ischemia–reperfusion induces a large influx of calcium into the cell and the
mitochondrial outer compartment. The subsequent opening of the membrane permeability
transition pore in the inner mitochondrial membrane and the resulting calcium overload
induces the homeostasis of cardiomyocytes and activates the mitochondrial pathway of
apoptosis [59]. Hence, our results support the idea that mitochondria are strongly rec-
ommended as a therapeutic target for cardiac ischemia–reperfusion injury [59,60]. It is
well-recognized that cardiac ischemia–reperfusion injury following myocardial infarction,
is a complex process involving multiple cellular and molecular pathways. Targeting mi-
tochondria offers a promising approach due to their central role in energy production,
oxidative stress, and cell-death pathways. Mitochondria-targeted therapies, including
antioxidants, mitochondrial uncouplers, and agents that modulate mitochondrial perme-
ability transition, have shown potential in preclinical studies. However, translating these
findings into effective clinical therapies remains challenging due to issues such as off-target
effects, limited tissue specificity, and inadequate delivery methods [60]. Hence, our find-
ings underscore the importance of mitochondria as therapeutic targets in the management
of ICM.

Finally, KEGG enrichment analysis showed cardiac muscle contraction and fatty acid
degradation among the most positively enriched pathways in VCM compared to ICM. An
enrichment of the cardiac muscle contraction pathway in VCM could be explained by the
fact that volume overload is characterized by an eccentric (lengthening) muscle contraction
as a consequence of the mechanical stress [61]. Fatty acids are the main energy substrate
of the heart via ß-oxidation to produce ATP in mitochondria [61]. Therefore, fatty acid
degradation pathway enrichment could be a secondary effect of the less dysfunctional state
of mitochondria in VCM. In this sense, we also observed a positive enrichment of the PPAR
signaling pathway, involved in fatty acid metabolism and mitochondrial function in the
heart [62].

miRNA-seq analysis resulted in five miRNAs deregulated. miR-218-5p, miR-487b-
3p, and miR-494-3p were upregulated, whereas miR-106b-3p and miR-193b-5p appeared
downregulated in VCM vs. ICM. Among the 22 predicted miRNA–target transcript pairs,
only four were negatively correlated, miR-218-5p-DDX6, miR-218-5p-TTC39C, miR-218-
5p-SEMA4A, and miR-494-3p-SGMS2, and only three (miR-218-5p-DDX6, miR-218-5p-
SEMA4A, and miR-494-3p-SGMS2) displayed physical interaction. DDX6 is an RNA
helicase with roles in cellular stress and hypoxia [63], processing (P)-body homeostasis
regulating stem-cell plasticity [64], and the miRNA pathway [65,66]. In this regard, our
analysis shows that the DDX6 gene is involved in P-body formation in CC, the regulation
of cellular macromolecule biosynthetic processes in BP, and is associated with double-
stranded RNA binding in MF. Although little is known about its role in the heart, DDX6
has been associated with abnormal heart formation and described as modulating bone
morphogenic protein (BMP) signaling [67]. The BMP subfamily belongs to the transforming
growth factor beta (TGF-β) superfamily, which is well-documented to be upregulated in
animal models of myocardial infarction [68]. In addition, BMP subfamily members have
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been suggested to exert both pro- and anti-inflammatory actions and may regulate fibrosis
in myocardial infarction. Curiously, miR-218-5p, a potential miRNA targeting DDX6, has
been also reported to mediate myocardial fibrosis and inflammation after myocardial infarc-
tion [69–72], suggesting therefore that the so far unknown DDX6/miR-218-5p axis could
play a regulatory role during fibrosis and inflammation in the infarcted heart. Regarding
the SEMA4A, which is involved in cell activation, immune response, T-cell differentiation,
and lymphocyte differentiation according to BP, an in vivo cardiac ischemia–reperfusion
mouse model showed SEMA4A to be highly expressed in macrophages recruited at the
injured area, and it was suggested to exert a role activating angiogenesis and inflamma-
tion [73]. Accordingly, our results showed higher expression of SEMA4A in ICM than in
VCM. Interestingly, miR-218-5p has been associated with inflammation in a myocardial
ischemia–reperfusion injury model [71], suggesting, therefore, the SEMA4A/miR-218-5p
axis as a potential target for regulating cardiac inflammation. It is well-known that the
inflammatory response following an ischemic event can lead to adverse remodeling, car-
diomyocyte injury, and matrix degradation, ultimately contributing to the development of
HF. Targeting specific inflammatory pathways can potentially reduce infarct size, promote
repair, and prevent adverse remodeling, offering a promising approach to improve out-
comes in patients with ICM [74]. This positions inflammation as a therapeutic target for
ICM in the context of diversifying therapies against ICM vs. VCM.

So far, nothing is known about the role of TTC39C in the heart. In fact, TTC39C is a little-
studied gene. A Pubmed search only resulted in 11 results, and its function is unknown.
To date, it has been only related to immunodeficiency [75]. Therefore, further studies are
needed to unveil the role of this gene in heart disease. Finally, Sphingomyelin synthase
2 (SGMS2, also SMS2) was upregulated in ICM hearts compared to VCM. Concordantly,
SGMS2 was found upregulated in cardiomyocytes in response to hypoxia in vitro [76].
This study concluded that downregulation of SGMS2 may protect cardiomyocytes against
hypoxia-induced apoptosis and oxidative stress by enhancing the expression of nuclear fac-
tor erythroid 2-related factor 2 (Nrf2), an inhibitor of apoptosis [77]. Interestingly, two stud-
ies have reported miR-494-3p, which constitutes a miRNA–target transcript pair together
SGMS2, to play a protective role in myocardial ischemia–reperfusion injury, repressing in-
flammation and apoptosis [78,79]. In addition, SGMS2 has been also described to attenuate
inflammatory injury after cerebral ischemia–reperfusion in mice [80]. This indicates that
the SGMS2/miR-494-3p axis may be a novel potential target against hypoxia-induced in-
flammation and/or apoptosis in cardiomyocytes. Treating cardiomyocyte apoptosis in ICM
vs. VCM is important because it directly addresses the underlying mechanisms driving HF
in each condition. In ICM, cardiomyocyte apoptosis occurs as a result of ischemic injury,
leading to a loss of functional heart muscle tissue. This process significantly contributes to
the progression of HF by reducing the heart’s ability to pump effectively. In contrast, in
VCM, cardiomyocyte apoptosis may be less prominent and may occur due to factors re-
lated to valvular dysfunction rather than ischemia [81]. Therefore, targeting cardiomyocyte
apoptosis in ICM could be essential to halt the progression of HF and improve outcomes
for affected individuals.

To date, most studies have tested differentially expressed genes between ischemic
and non-ischemic cardiomyopathy relative to a normal heart [2,23,82–84], offering novel
insight into unique disease-specific gene expression that exists between different etiologies.
However, our approach goes beyond this by directly comparing the transcriptomic profiles
of two distinct etiologies of DCM: VCM and ICM. This direct comparison allows us to iden-
tify unique gene-expression signatures associated with each etiology, as well as common
pathways dysregulated in DCM as a whole. Understanding these differences is crucial for
developing personalized treatments tailored to each etiology, potentially improving patient
outcomes. Our study offers insights into the molecular heterogeneity of DCM and paves
the way for more precise therapeutic interventions.

In conclusion, we found distinct gene-expression profiles in VCM and ICM heart
tissues, indicating that distinct mechanisms are involved in the progression of the diseases
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towards end-stage HF. In addition, we found five differentially expressed miRNAs and
identified four previously undescribed miRNA–target transcript pairs that may open new
avenues for research into the molecular pathogenesis of DCM.

Despite the valuable insights provided by our study, it is crucial to acknowledge
limitations. The small number of differentially expressed miRNAs observed between VCM
and ICM is notable. This limitation is largely due to the difficulty in accessing human
myocardial tissue samples. Additionally, the inherent variability in human tissue samples
complicates analysis and may contribute to the modest number of differentially expressed
miRNAs identified. Nevertheless, these findings offer valuable insights into the molecular
differences between VCM and ICM, highlighting the potential role of miRNAs in DCM
etiologies. Future research with larger sample sizes and comprehensive analyses will be
essential to address these limitations and advance our understanding of DCM pathogenesis.
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26 enriched GO terms categorized by the MF.
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