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Abstract: Circadian rhythms integrate a finely tuned network of biological processes recurring every
24 h, intricately coordinating the machinery of all cells. This self-regulating system plays a pivotal role
in synchronizing physiological and behavioral responses, ensuring an adaptive metabolism within
the environmental milieu, including dietary and physical activity habits. The systemic integration of
circadian homeostasis involves a balance of biological rhythms, each synchronically linked to the
central circadian clock. Central to this orchestration is the temporal dimension of nutrient and food
intake, an aspect closely interwoven with the neuroendocrine circuit, gut physiology, and resident
microbiota. Indeed, the timing of meals exerts a profound influence on cell cycle regulation through
genomic and epigenetic processes, particularly those involving gene expression, DNA methylation
and repair, and non-coding RNA activity. These (epi)genomic interactions involve a dynamic interface
between circadian rhythms, nutrition, and the gut microbiota, shaping the metabolic and immune
landscape of the host. This research endeavors to illustrate the intricate (epi)genetic interplay that
modulates the synchronization of circadian rhythms, nutritional signaling, and the gut microbiota,
unravelling the repercussions on metabolic health while suggesting the potential benefits of feed
circadian realignment as a non-invasive therapeutic strategy for systemic metabolic modulation via
gut microbiota. This exploration delves into the interconnections that underscore the significance
of temporal eating patterns, offering insights regarding circadian rhythms, gut microbiota, and
chrono-nutrition interactions with (epi)genomic phenomena, thereby influencing diverse aspects of
metabolic, well-being, and quality of life outcomes.

Keywords: body clock; circadian rhythm; genomic; environmental adaptation; microbiota

1. Introduction

Epigenomics characterizes a set of reactions and processes that regulate changes
(activation or suppression) in the functions of genes without altering the sequences of the
nitrogen bases (adenine, guanine, cytosine, and thymine) of the DNA (deoxyribonucleic
acid) molecule [1,2], which leads to distinctions between the phenotypical expression of
cell groups that have the same genome background [3].

Epigenetic regulation occurs mainly through the action of compounds that bind to
DNA during the demethylation/methylation reaction or to histone proteins during the
acetylation process or other radicals [2]. These phenomena are mediated by enzymes (such
as DNA methyltransferase, histone acetyltransferase, and histone deacetylase), which favor
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or compromise these connections. The product of these bonds is a more compact chromatin
(heterochromatin), which impairs DNA transcription, or a looser chromatin (euchromatin),
which favors the binding of transcription factors and the regulation of cellular pathways [4].

In addition to epigenetic variations associated with DNA methylation and the acety-
lation of histone proteins, the suppression or promotion of DNA translation into protein
can be influenced by post-translational reactions of histones as in the ubiquitination, phos-
phorylation, and biotinilation stages [4], and/or by the action of ncRNA (ribonucleic acid
not coding molecules) [5] of the micro type (miRNA), which regulates the gene silenc-
ing/activation during the transcription process and/or regulates the translational level
of protein-coding genes or long type (lncRNA), which acts in chromatin remodeling as a
transcriptional regulator and/or as post-transcriptional regulators [6].

The technological advancement and generation of high-resolution genetic sequencing
allowed the identification of numerous molecules and reactions associated with epigenetic
interactions [7]. A critical gap remains concerning the interactions between environmental,
physiological, and biological factors impacting chromatin dynamics across the lifespan,
making epigenomics a compelling subject for ongoing scientific research [8–10].

Epigenetic modulation becomes even more complex when considering the impact
of chrono-nutrition, gut microbiota dynamics, and biological rhythms. Indeed, emerging
evidence suggests that the timing of nutrient/food intake, influenced by the circadian
clock, may modulate epigenetic mechanisms [11]. Additionally, the gut microbiota, closely
linked to circadian rhythms, plays a pivotal role in metabolizing nutrients and producing
bioactive compounds that can influence epigenetic homeostasis [12,13]. As these multi-
faceted elements converge, an in-depth exploration of putative interactions will uncover
novel insights concerning the influence of lifestyle factors in shaping the epigenome and,
consequently, impacting the overall metabolic state and health.

This review aims to elucidate the integrated epigenetic network orchestrating the
circadian control of biological rhythms, nutritional cues, and gut microbiota dynamics,
thereby unravelling the consequential implications for personalized and precision health.

2. Biological Rhythms and Epigenetic Regulation

For thousands of years, human beings preferentially carried out life activities during
exposure to light and rested at night. The repetition of various biological processes at the
central and peripheral levels characterizes the circadian rhythm (CR), which corresponds
to a variety of processes that persist daily in constant conditions [14], such as physiological,
metabolic, and behavioral processes that occur 24 h a day [15].

Biological rhythmicity is observed both in mammals and in primitive beings, such as
bacteria [16] and consists of an integrated, regulated, and self-sustaining network of trends
displayed in all cells of the body, with an important role in synchronizing body physiology
and behavior [17] from the molecular to the environmental level [18].

The rhythmic expression of these biological systems occurs through the action of the
so-called “clock genes” expressed in tissues such as the liver, heart, brain, and gut [19],
which send signals to the central circadian regulator based on the suprachiasmatic nucleus
(SCN) located in the anterior region of the hypothalamus, responsible for the circadian
integration of information coming from peripheral tissues, which is also directly influenced
by light or dark stimuli and regulatory neuroendocrine signals [18].

These internal clocks exhibit genetically determined, endogenous temporal patterns,
even in the absence of external cues, through transcriptional-translational feedback mech-
anisms [20], and the primary genes most studied are the following: CLOCK (circadian
locomotor output cycles kaput), BMAL1 (brain and muscle aryl hydrocarbon nuclear re-
ceptor translocator like 1), Per (Period), and CRY (Cryptochrome) [19], which, through
heterodimerization and nuclear processes, modulate gene transcription in the cell nucleus
after the translocation of CRY and Per in the cytoplasm, forming a feedback complex of
transcriptional activity signal [21].
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The molecular cascade involving clock genes occurs in the nucleus and is composed
of three interdependent phases involving the transcription of orchestrated components:
(1) in the main loop, BMAL1 and CLOCK heterodimerize and bind to E-box regions to
induce the transcription of CRY, Per, REV-ERB, and ROR, which, after their accumulation,
heterodimerize, inhibiting their own transcription; (2) in the PAR-bZIP loop, BMAL1 and
CLOCK bind to the E-box regions to modulate the transcription of the factors associated
with PAR-bZIP (such as DBP, TEF, and HLF); and (3) in the ROR/REV-ERB loop, PAR-bZIP
binds to the D-box region, activating the E-box region, where BMAL1 and CLOCK promote
the transcription of REV-ERB and ROR. Then, ROR stimulates the transcription of RORE to
regulate and inhibit the transcription of BMAL1 and NFIL3 (Figure 1) [21].
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Figure 1. Molecular transcription cascade of clock genes. CLOCK: Circadian locomotor output cycles
kaput, BMAL1: brain and muscle aryl hydrocarbon nuclear receptor translocator like 1, Per: period,
CRY: cryptochrome, ROR: retinoic acid related orphan receptor, PAR-bZIP: proline and acidic amino
acid-rich basic leucine zipper protein, NILF3: nuclear factor interleukin 3 regulated, DBP: D-box
binding protein, TEF: thyrotroph embryonic factor, HLF: hepatic leukemia factor. Adapted from
Schurhoff and Toborek, 2023 [21].

The circadian characteristics of each person are related to their tendency to perform
activities (e.g., work or sport) at certain moments of the 24 h cycle, which makes it possible
to classify individuals into different chronotypes [22]. Individuals may be morning type,
preferring to carry out their activities from dawn to midday; afternoon type, having a
maximum productivity from the afternoon to dusk; or nocturnal type, working optimally
during the night and early morning [23], which enables their peripheral clocks to respond
differently to environmental stimuli [22].

The SCN integrates the information captured by the sensory systems (vision, smell,
hearing, touch, and taste), as well as receiving and sending information to peripheral
tissues (liver, pancreas, heart, and gut) through neuroendocrine and non-humoral signals,
acting at a central level as the main circadian regulator of all biological systems [24].
Circadian regulation is resistant and “adaptable” to short-term environmental changes.
These changes, when they are chronic, result in a cascade of endogenous shifts at different
levels of regulation of circadian cues, central and peripheral, which interact with each
other [25].

In human and experimental models, different environmental and physiological stimuli
can influence the regulation of CR through epigenetic adjustments, especially those related
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to the promotion of DNA methylation and histone acetylation reactions (Table 1), and these
adjustments are reflected by the expression of distinct phenotypes.

Table 1. Environmental and physiological factors that modulate circadian regulation through epige-
netic interaction.

Environmental or
Physiological Factor Epigenetic Interaction Circadian Regulation Reference

Reduction of the
light/darkness cycle DNA Methylation * Disturbances in the transcription

cascade of clock genes in the SCN [26]

Exposure to light in inactive
phase Histone Acetylation * ↑ Per (1 and 2)/CRY1 [27]

Night Workers DNA Methylation * ↓ do CLOCK
↑ do CRY2 [28]

Senescence DNA Methylation * ↑ of CpG sites ** [29,30]

Cortisol levels and GR Regulate different sets of transcripts
in a spatial domain of chromatin *

Regulates transcriptional activity of
Per and CRY [31,32]

Physical activity DNA Methylation * Regulator of CRY, BMAL1, and
PPAR-δ [33,34]

Length of telomeres * [35–37]

GR: Glucocorticoid receptors. * The mechanism of epigenetic interaction was through the analysis of different
tissues, and total blood was used in most cases. ** CpG sites: Characterize a region of non-methylated DNA and
act as “sensors” of DNA methylation fraction in cells [38]. ↑: Increase. ↓: Decrease.

3. Chrono-Nutrition and Epigenetic Interactions

Among the environmental variables, the integration between light/dark cycle expo-
sure and nutrition, not only by the composition of the diet, but mainly by the time the
meal is performed, has emerged as an important modulator of CR in different systems [39].
Nutrition corresponds to a set of involuntary and unconscious biological processes by
which organisms digest, absorb, metabolize, and utilize nutrients for their survival [40].
In the same way, biological clocks are regulated by a set of cyclical physiological and
metabolic factors over the 24 h that interact with the timing, frequency, and composition of
meals, characterizing the circadian food intake distribution (Figure 2), giving rise to what
is known as chrono-nutrition [41,42].

In addition, the occurrence of macronutrients (carbohydrate, lipids, and protein) in
the meal and the time they are consumed act as a key point to align the metabolic reper-
cussions of food intake with the action of an integrated complex of neural and peripheral
structures associated with food and called FEO (food-entrainable oscillator) [43–45]. The
FEO characterizes an independent and self-sufficient system directly influenced by food
and located outside the SCN [46]. Although the hypothetical mechanisms of action are not
completely elucidated in the literature, the putative functionality is linked to predicting
the moment of feeding, which leads to the preparation of the tissues of the gastrointestinal
tract, promoting the quotidian synchronization between food or beverage intake with the
digestive process and absorptive and nutrient utilization over 24 h [47].
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Chrono-nutrition is very sensitive to environmental signals, which applies to lifestyle
changes, such as skipping breakfast or eating more carbohydrates at night, which impact
the circadian dysregulation (chrono-disruption) of food intake by dragging (delaying or
advancing) the action of the genes of the circadian machinery in distinct tissues, in the
central (SCN) or at the peripheric level [48], as in the liver or pancreas. This circadian
flexibility has been associated with the development of different metabolic conditions,
such as insulin resistance. However, on the other hand, it can be used as a preventive or
therapeutic agent for the treatment of chronic non-communicable diseases [11,49] since the
time of food intake (daytime versus nighttime) and the availability of substrates from the
diet [such as Acetyl CoA, NAD (nicotinamide adenine dinucleotide), and SAM (s-adenosyl
methionine)] act as precursors/intermediates (cofactors/substrates) of DNA methylation
reactions and histone acetylation or deacetylation, acting as a modulator of chromatin
characteristics [50].

The day-to-day realignment of endogenous genes [specifically BMAL1, CLOCK, and
NR1D1(nuclear receptor subfamily 1 group D member 1)], via the regulation of DNA
methylation reactions observed at different CpG sites, can be induced by the adoption of the
mediterranean diet and favors the regulation of energy homeostasis and weight loss [51,52].
Likewise, in recent years, nutritional strategies associated with daily caloric control [53]
and the consumption of foods with functional properties, such as extra virgin olive oil,
were directly related to the regulation of DNA methylation reactions, the prevention or
treatment of obesity, and associated comorbidities.

Changes to dietary patterns and mealtimes impacts DNA methylation [54] and miRNA
pathways, as observed by Quintanilha et al. [55] and peripheral blood, tissues, and cel-
lular samples, where, within dietary patterns, the manipulation of the diet through the
consumption of isolated nutrients or bioactive compounds (for example, resveratrol, cur-
cumin, and polyunsaturated fatty acid) influences gene expression thanks to the epigenetic
pathway associated with miRNAs (Table 2), which are usually involved in the silencing
of post-transcriptional genes, inducing mRNA degradation or repression by binding to a
targeted messenger RNA and helping to prevent the development of chronic diseases, such
as type 2 diabetes and cardiovascular diseases.

In parallel, there is a growing adoption of intermittent fasting (IF). IF is already known
in the context of the religious practices of Islam (Ramadan fasting), but has been gaining
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popularity for characterizing a nutritional strategy for weight/adiposity loss and metabolic
control associated with eating during a daily food window followed by fasting [56], re-
sulting in: (I) weight reduction/maintenance; (II) metabolic flexibility (switching from
using glucose as an energy source to using fatty acids and ketone bodies, leading to a
reduction in adipose tissue); (III) mitochondrial biogenesis; (IV) DNA repair; (V) autophagy
of damaged/diseased cells; and (VI) resistance to metabolic, oxidative, and nutritional
stress [57], potently involving epigenetic markers.

Table 2. Nutrients and epigenetic modulation of metabolic health by miRNA mechanisms.

Nutrient Epigenetic Mechanism by
miRNA Regulation Metabolic Health

Resveratrol ↑ miRNA 663, miRNA Let7A
↓ miRNA 155, miRNA 21 ↓ Inflammatory state

Saturated fatty acids in excess
(high fat diet) ↑ miRNA 29a Insulin resistance and type 2

diabetes

Polyunsaturated fatty acids

↑ miRNA 130b
↓ miRNA-146a, miRNA-146b,

miRNA-21, miRNA-125a,
miRNA-155 and miRNA 221

↓ Inflammatory state
↓ C-reactive Protein

Curcumin

↓ miRNA 155 ↓ Inflammatory state

↑ miRNA-181b,
miRNA-146b-5p

↓ Inflammatory state and
protect against the tumoral

process

Vitamin D ↑ miRNA 125b, miRNA 100 Tumor suppression activity
miRNA: micro–Ribonucleic Acid. ↑: Increase. ↓: Decrease. Adapted by Quintanilha et al. [55].

Among the IF protocols, time-restricted feeding (TRF) stands out. It “allows” the
consumption of food in specific “time windows”, with windows of 8 to 20 h of daily fasting.
The ratio more commonly used is the 16:8 sub-protocol, in which the individual spends 16 h
fasting and has 8 h in which they are free to access food [58]. In 2020, Templeman et al. [59]
suggested that reducing caloric intake at night and fasting for longer night periods (fasting
in the inactive phase) is related not only to a decrease in systemic metabolic inflammation
but also to quotidian realignment, improving the individual’s health and quality of life in
a general way. Accordingly, it was found that TRF allows the control of nutritional cues
that interact with peripheral clocks, helping them to maintain the optimized day-to-day
rhythms, in addition to being a low-cost strategy for the prevention and/or reversal of
metabolic imbalances in rodents and humans [60]. Intriguingly, circadian feeding behavior
and metabolic processes remain preserved in animals that maintained the TRF cycle in
the presence of SCN damage, highlighting the non-photonic and possibly independent
influence that TRF has on peripheral oscillations and circadian regulation [61].

Currently, TRF can confer health benefits. One of the mechanisms proposed is the
putative ability to modulate epigenetic pathways, especially those related to the inhibition
of miRNAs 122, 143, and 222, which are considered endocrine biomarkers and targets [62]
in blood samples of humans and animals [63]. These miRNAs act as epigenetic intercellular
communicators, favoring adipogenesis, for example, being related to metabolic disorders
such as obesity [62].

In the study by Saini et al. [64] on the overweight elderly, 14 miRNAs were differ-
entially expressed when comparing the pre- and post-TRF period. Specifically in the
post-TRF period, targets of regulated miRNAs suggested the increased expression of
(1) PTEN (classical DNA repair-related gene) [65], TSC1 (tumor growth suppressor) [66]
and ULK1/2 (autophagy activating protein kinase) [67], which are related to cell repair and
survival; (2) Ras protein, which regulates the mitogen-activated protein kinase pathway and
phosphoinositide-3 kinase, which are involved in the control of cell growth and survival.
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Interestingly, these pathways are inhibited in tumor cells, suggesting that the potential
beneficial effect of TRF on the cancer population should be evaluated in future studies;
(3) mTOR (cell growth and protein synthesis); (4) insulin sensitivity (glucose uptake); and
(5) the endophagic process (cell homeostasis and survival) [64]. Together, these findings
suggest that TRF can inhibit uncontrolled cell growth pathways and activate survival
pathways such as autophagy and cell repair, promoting good health. This relationship
demonstrates that health is directly related not only to what you eat, but also to the time
window in which food is consumed, mediated by epigenetic involvement.

Interestingly, all these synchronization/desynchronization interactions of endogenous
biological clocks in which food intake time windows modulate epigenetic routes that
also affect gut physiology and the health of gut microbiota (GM), which corresponds
to a set of microorganisms (bacteria, viruses, fungi, protozoa, and archaea) that inhabit
both the small intestine and colon, which are involved not only in the metabolic and
immunological functions of their host [68], but also critically in circadian regulation through
multidirectional interaction between its metabolites, diet, and clock genes [18].

4. Gut Microbiota and Epigenetic Modulation

Regardless of the time of meal intake, the intestinal lumen comprises the last and
main layer of contact between the gastrointestinal tract and nutrients in their absorptive
form [69]. The small intestine is composed of different types of cells, where enterocytes
stand out (absorptive cells present along the epithelium); goblet cells (responsible for the
production of mucins, proteins capable of providing not only a protective barrier and
molecular exchange between the environment and the intestinal epithelium); and Paneth
cells (secretors of antimicrobial products when the epithelium detects external microbial
fragments), being a key tissue of metabolic homeostasis [68]; and defense functions [69].

In this context, the gut houses 70–80% of immune cells and represents an important
lymphoid tissue rich in Peyer’s patches, which secrete CD4/CD8 T lymphocytes, plasma
cells (secretors of immunoglobulin A), macrophages, and dendritic cells. Above Peyer’s
patches are the M cells that perform endocytosis, in addition to the mesenteric lymph
nodes and an extensive surface with diffuse lymphocytes, which reflects the interaction
between the gut and the immune system [70], making it essential in the daily fight against
pathological agents and in the mediation of the low-grade chronic inflammatory process.

Although the inflammatory process associated with poor diet and obesity occurs
systemically, intestinal homeostasis is a key condition in the regulation of the state of
organic stress [71,72]. The epithelial layer of the gut protects against the passage of intestinal
microbes, food antigens, and toxins that reach the lumen [72]. However, susceptibility to
intrinsic and extrinsic factors (such as genetic predisposition, dietary pattern, the use of
antibiotics, or interruption to the circadian rhythm) can lead to the translocation of distinct
components, such as lipopolysaccharide, to the lamina propria, instigating the onset of
anti- and pro-inflammatory mechanisms correlated with the pathogenesis of the chronic
inflammatory state [73] (Figure 3).
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Concomitantly, the gut its closely associated with the FEO complex, and its circadian
functionality is linked to the action of other regulatory clock genes, such as CLOCK and
Per1 (Period 1), which regulate gut motility [46], and must be regular and optimized for
the arrival of nutrients in the lumen, a key fact that drives the secretion and action of
gastrointestinal hormones that regulate the circadian feeding rhythm [75].

In general, all cell membrane transporters found in the gut are regulated by the
presence/absence of nutrients in the intestinal lumen, which also triggers the regulation
of hormone secretion rhythms [76]. Thus, interrupted/altered feeding rhythms, such as
reduced food intake during the day and increased food intake during the night result in
altered postprandial responses and the impairment of hormone secretions involved in the
digestive process and metabolic control, such as insulin [75].

When in contact with nutrients, the intestinal mucosa is exposed to a large amount
of bacterial and invading antigens, usually from food, and the function of the intestinal
mucosal barrier is to provide an immune defense [68]. This immune function of the gut
is dependent on the interaction between the integrity of the gut barrier, the effectiveness
of the immune system and the GM (set of microorganisms, especially bacterial groups,
that colonize the small intestine and colon and have a symbiotic relationship with the host,
with an important influence on metabolism regulation) [77,78]. On the other hand, the
relationship between microbial metabolism and circadian regulation has been of scientific
interest for the elucidation of epigenetic pathways associated with GM and may impact on
precision nutrition management and health [79].

In this context, it is known that GM influences the physiology of hosts through
three potential epigenetic mechanisms: (1) the availability of chemical donors for DNA
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methylation or histone protein modifications; (2) the regulation of the expression and/or
activity of enzymes involved in epigenetic mechanisms; or (3) the activation of processes
intrinsic to host cells that direct epigenetic pathways [13].

The GM can synthesize several biological components. Among them, methyl and
acetyl groups have been identified as the substrates necessary for DNA methylation re-
actions and the acetylation of histone proteins, respectively [80]. The donation of these
groups occurs thanks to the power of the GM to synthesize epigenetic substrates (cofactors
or enzyme regulators involved in epigenetic reactions), such as folate and B vitamins syn-
thesized by Bifidobacterium and Lactobacillus, mainly, which are associated with the donation
of methyl groups [81].

Similarly, commensal microbes ferment complex carbohydrates and fibers, producing
short-chain fatty acids such as butyrate, which represent an important group of epigeneti-
cally relevant molecules associated with the inhibition of histone deacetylases, especially
histone deacetylase class I (HDAC3—histone deacetylase type 3), which is highly expressed
in the gut epithelium and sensitive to microbial signals, associated with homeostasis of the
Paneth cells and the protective function of the intestinal barrier [13], resulting in changes
in chromatin configuration [82]. Concomitantly with enzyme inhibition, short-chain fatty
acids also contribute to the increased cellular levels of acetyl coenzyme A by regulating the
action of dioxygenases involved in DNA methylation [83].

The GM largely impacts DNA methylation in various cell types and tissues in the
health-disease axis [84–86]. Through transcriptomics and DNA methylation analysis in
germ-free versus colonized mice it was possible to demonstrate that the microbiota induced
DNA hypomethylation and increased the expression of anti-bacterial and anti-inflammatory
genes, promoting the metabolic homeostasis of these animals [87].

Acetylation and histone methylation have been the most studied pathways in the
microbial regulation scenario. These modifications are balanced by the activity of opposite
classes of epigenetic enzymes (histone deacetylases versus histone methyltransferases, for
example). It is important to emphasize, however, that new studies are necessary to gain
a clearer understanding of the interactions between these enzymes and the reactions of
chromatin and methylation, since they are involved in the relationships between the GM
and the host [88].

Noteworthy, Krautkramer et al. [89] reported that gut microbiota alters the acetylation
and methylation of histones H3 and H4 in various tissues (colon, liver, and adipose tissue)
in a diet-dependent manner and the supplementation with short-chain fatty acids in rats
was able to partially restore histone changes, suggesting a potential therapeutic target
based on epigenetic screening.

In addition to microbial interaction with specific epigenetic marks, GM can indirectly
influence epigenetic mechanisms by activating immune cells, such as macrophages and
dendritic cells, which are essential for the transcription cascade of genes involved in
interferon and T cell signaling, which is another mechanistic pathway that relates the GM
to the immune response [90]. Likewise, the GM can induce the expression of IncRNAs in
the thymus and spleen [91], which suggests another epigenetic pathway where GM acts out
of the gut as a modulator of the immune system, highlighting the need for further studies
in the area [92,93].

5. Concluding Remarks

The feeding schedule and quotidian metabolic function over 24 h has a daily impact
on the synchronization of physiological processes regulated by clock genes throughout
the body, specifically in the gastrointestinal tract and associated systems, such as GM. In
turn, the interactions between the intestinal microorganisms and their host have nutri-
tional, immunological, and metabolic effects on a day-to-day basis associated with health
maintenance and the installation and/or control of chronic non-communicable diseases
by the modulation of the inflammatory state and other regulatory pathways, highlighting
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and emphasizing the importance of multidirectional interactions between nutrients, the
circadian system, and GM interfaces.

Heterochromatin and multi-omics studies concerning the identification of changes in
the configuration of the DNA, the genetic sequencing of GM, and the expression of clock
genes in different tissues have shown that this interaction (nutrient and mealtime/biological
rhythm/GM) is multidirectional and modulated by epigenetic mechanisms that occur con-
currently at different cellular levels and organic systems, being an emerging and complex
area for renewed scientific research for precision nutrition.

Although many studies in humans and experimental models provide data on circadian
synchronization/desynchronization, gut microbial composition, epigenetic pathways, and
the associated repercussions on the health-disease process, future perspectives should
stimulate an aim to elucidate mechanistic pathways and network involving epigenetic
interactions, not only in the gut microbiota-host relationship, but also within the microbial
community itself. Furthermore, potential therapeutic targets that can be modulated by the
synchronization of circadian rhythms and gut microbiota will involve putative changes in
lifestyle, particularly related to daytime meals and the adoption of healthy eating patterns,
based on epigenetic signatures and modulation for precision health maintenance.
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