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Abstract: Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross
the blood–brain barrier, and has demonstrated excellent safety and tolerability properties in clinical
research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase
(AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate com-
pounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate
olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted in vitro
kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve
agents sarin, cyclosarin, tabun, and VX. Our results showed that both enzymes possessed a binding
affinity for olesoxime in the mid-micromolar range, higher than the antidotes in use (i.e., 2-PAM,
HI-6, etc.). While olesoxime showed a weak ability to reactivate AChE, cyclosarin-inhibited BChE
was reactivated with an overall reactivation rate constant comparable to that of standard oxime HI-6.
Moreover, in combination with the oxime 2-PAM, the reactivation maximum increased by 10–30% for
cyclosarin- and sarin-inhibited BChE. Molecular modeling revealed productive interactions between
olesoxime and BChE, highlighting olesoxime as a potentially BChE-targeted therapy. Moreover, it
might be added to OP poisoning treatment to increase the efficacy of BChE reactivation, and its
cholesterol scaffold could provide a basis for the development of novel oxime antidotes.

Keywords: reactivation; organophosphate poisoning; warfare nerve agent; neuroprotection;
neurodegeneration

1. Introduction

Olesoxime (cholest-4-en-3-one) is a small molecule compound that was first synthe-
sized and evaluated in 2007 as a potential drug candidate for the treatment of the fatal
neurodegenerative disorder, amyotrophic lateral sclerosis (ALS) [1]. Olesoxime is a choles-
terol derivative, which is present as a stable mixture of syn- and anti-isomers of the oxime
side-chain (RR’C=N–OH) in the 3-position of the compound [1]. It is highly lipophilic
(cLogP = 10) and is able to cross the blood–brain barrier (BBB), although it has poor aqueous
solubility at pH 7.4 and must be orally administered in an oily excipient [1–3]. Olesoxime
was initially identified based on its survival-promoting activity on purified cultured rat
motor neurons deprived of neurotrophic factors, as well as on striatal and cortical neurons
under various stress conditions [1]. Further in vivo studies established its neuroprotective
and therapeutic effect, leading to preclinical and clinical studies for ALS and spinal muscu-
lar atrophy (SMA) [2–4]. Although no significant benefits were observed in patients [5,6],
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olesoxime is still being investigated for the treatment of various neurodegenerative dis-
eases due to its broad neuroprotective effect in different types of neurons. Similar to other
ring-oxidized oxysterol compounds that modulate neurotransmission and have numerous
biological activities in the nervous system [7–9], olesoxime inhibits the mitochondrial per-
meability transition pore (mPTP) complex, which mediates the mitochondrial cell death
program via calcium and cytochrome c release [1], modulates oxidative stress and reactive
oxygen species (ROS) production [4], regulates calcium and cholesterol homeostasis and
improves mitochondrial respiration [3]. Due to its various modes of action, olesoxime
demonstrates potential applicability for multiple neurodegenerative disorders, including
Huntington’s disease [10] and Parkinson’s disease [11], and offers some benefits for treating
Alzheimer’s disease [12].

Since olesoxime contains an oxime group (Figure 1), it could potentially act as an
antidote in cases of organophosphorus compounds (OP) poisoning. OPs like pesticides
and nerve agents (NA) are potent inhibitors of acetylcholinesterase (AChE) and butyryl-
cholinesterase (BChE) due to the phosphylation of their catalytic serine [13,14]. OPs exert
their toxic effect primarily by inhibiting AChE, an essential enzyme for neurotransmitter
acetylcholine (ACh) hydrolysis, which leads to the accumulation of ACh in synapses and
overstimulation of cholinergic receptors. Both enzymes can be found in the synapses of
the central nervous system, neuromuscular junctions of the peripheral nervous system,
and in blood where AChE is bound to the erythrocyte membrane and BChE is dissolved
in plasma [15]. Poisoning induces a plethora of symptoms like miosis, bronchorrhea,
bradycardia, convulsions, and in severe poisoning cases loss of consciousness and respi-
ratory failure, as well as long-term neurological damage in survivors [14,16]. Prevention
of seizures and recovery of enzyme activity is the primary goal of therapy, which gen-
erally involves the administration of anticholinergic atropine and an oxime reactivator
of phosphylated AChE [14]. Compounds with an oxime group can restore the activity
of inhibited cholinesterases through the nucleophilic attack of the oximate anion on the
phosphorus atom of the phosphylated catalytic serine of AChE and BChE [13]. So far, only
three pyridinium oximes have been approved for military and clinical use: pralidoxime
(2-PAM), asoxime (HI-6), and obidoxime [13].
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(2-PAM) and asoxime (HI-6), and organophosphate compounds (tabun, sarin, cyclosarin, VX,
and paraoxon).

In addition to not being equally effective reactivators for all OPs, standard pyridinium
oximes are hydrophilic and cannot cross the BBB in sufficient concentrations for AChE
reactivation due to the permanent charge on the nitrogen atom. Therefore, only 1–10% of
the oximes’ plasma concentration is present in the brain, and their action is mostly limited
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to the peripheral nervous system [17]. Moreover, oximes can also be toxic at doses needed
for reactivation [13] and their likely adverse toxic effects and risk-benefit ratio have to be
considered in preclinical and clinical studies [18]. Since olesoxime displays excellent safety
and tolerability properties and effectively crosses the BBB (reviewed in [3]), in this study
we analyzed olesoxime in vitro as a ligand and potential reactivator of phosphylated AChE
and BChE. In addition, we investigated the reactivation kinetics of the combined olesoxime
and 2-PAM and determined the important interactions of olesoxime within the enzyme
active site.

2. Materials and Methods
2.1. Chemicals for Cholinesterase Assays

Olesoxime was synthesized from commercial (+)-4-cholesten-3-one, as previously
reported [19] in 95% yield, and isolated as a mixture of E/Z isomers in a 2/1 ratio that
we did not attempt to separate, and submitted together for biological evaluation. The
synthesized olesoxime showed spectroscopic and analytical data are in good agreement
with its structure and the data described in the literature [19].

Olesoxime was dissolved in dimethyl sulfoxide (DMSO; Kemika, Zagreb, Croatia) as a
100 mM solution, diluted in methanol as a 10 mM solution, and stored at 4 ◦C. Oxime 2-PAM
(Sigma-Aldrich, St. Louis, MO, USA) was prepared in water as a 100 mM solution. Nerve
agents sarin, cyclosarin, VX, and tabun (NC Laboratory, Spiez, Switzerland) and insecticide
paraoxon (Sigma-Aldrich, St. Louis, MO, USA) were prepared as stock solutions (5 g/L) in
isopropyl alcohol and stored at 4 ◦C. Further dilutions were made in water just before use.
Acetylthiocholine iodide (ATCh), thiol reagent 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB),
and bovine serum albumin (BSA) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Stock solutions were prepared in water (ATCh) or 0.1 M sodium phosphate buffer,
pH 7.4 (DTNB). The final concentration of ATCh in the IC50 determination was 0.1 mM,
and 1.0 mM in all reactivation experiments. The final concentration of DTNB was 0.3 mM
for all measurements.

Recombinant human AChE was diluted in 1% BSA phosphate buffer as the work
solution. Human BChE was obtained from purified human plasma and was diluted in
phosphate buffer. Enzymes were stored at 4 ◦C.

2.2. Determination of Oxime Inhibition Potency as IC50 Value

To determine the IC50 value, we measured enzyme activity in the presence of a wide
range of oxime concentrations, ensuring maximum inhibition compared to the control
activity. The assay was performed in the 96-well plates on the Tecan Infinite M200PRO
plate reader. The inhibition mixture (300 µL final) contained phosphate buffer, AChE
or BChE, olesoxime, and DTNB (0.3 mM final), and following the addition of ATCh
(0.1 mM final), the activity was assayed by Ellman’s method [20]. The final concentrations
of DMSO were kept under 0.15%, to eliminate their influence on enzyme activity [21].
The measured activity was corrected for oxime-induced hydrolysis of ATCh. The IC50
values were determined from at least three experiments by a nonlinear fit of the oxime
concentration logarithm values vs. % of enzyme activity using Prism 9 (Graph Pad Software,
San Diego, CA, USA).

2.3. In Vitro Reactivation Assay

For reactivation screening measurements, BChE or AChE was first incubated with
paraoxon, sarin, cyclosarin, VX, or tabun for up to 1 h, achieving 95–100% inhibition. In-
hibited enzymes were then filtered through Mobicol Spin G-50 columns (MoBiTec GmbH,
Goettingen, Germany) to remove excess unconjugated OP. After filtration, the enzymes
were diluted 10-fold in 0.1 M sodium phosphate buffer pH 7.4, additionally containing
0.01% BSA for AChE, and incubated with 0.1 mM olesoxime at 25 ◦C. At specified time
intervals up to 24 h, an aliquot was taken and diluted 100-fold in buffer containing DTNB.
The recovered enzyme activity was measured upon the addition of the substrate ATCh
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(1 mM) by the Ellman spectrophotometric method [20]. The uninhibited enzyme was
identically diluted and passed through a parallel column, and control activity was mea-
sured in the presence of oxime at concentrations used for reactivation. Enzyme activity
measurements were performed at 25 ◦C and 412 nm, on a CARY 300 spectrophotometer
with a temperature controller (Varian Inc., Australia). The observed first-order rate constant
of reactivation (kobs) was calculated by linear regression of the reactivation dependence
(React./%) on time of reactivation (t/h).

For the detailed reactivation kinetics using a wider olesoxime concentration range
(from 10 to 130 µM), and the combined reactivation assay with 2-PAM (0.1 or 1.0 mM) and
50 µM olesoxime, we determined reactivation constants k2 (maximal first-order reactivation
rate constant), KOX (apparent phosphylated enzyme-oxime dissociation constant) and kr
(overall second-order reactivation rate constant), as well as Reactmax (maximal reactivation
percentage). k2 and KOX were evaluated from the plot of the observed first-order rate
constant of reactivation (kobs) vs olesoxime concentration, and kr was the ratio of k2 and
KOX as previously described [22].

2.4. In Silico Molecular Modeling

Olesoxime to be docked in the active site of AChE and BChE was modeled and later
minimized with the MMFF94 force field using ChemBio3D Ultra 12.0 (PerkinElmer, Inc.,
Waltham, MA, USA). The Discovery Studio 20.1 (BioVia, San Diego, CA, USA) Dock
Ligands protocol (CDOCKER) with a CHARMm force field was used for the docking
study [23,24]. As a model of AChE, we used the crystal structure of human AChE (PDB
code 4PQE; [25]). The model of BChE was the crystal structure of human BChE (PDB code
2PM8; [26]). The binding site within the AChE and BChE was defined by a sphere (r = 13 Å)
and it was used as the rigid receptor [27]. Details about the docking procedure using the
CDOCKER protocol and scoring of generated ligand poses by a CHARMm energy were
described previously [23].

3. Results and Discussion

Olesoxime is a cholesterol derivative with neuroprotective properties whose oxime
group may provide antidotal activity in cases of OP compound poisoning. Olesoxime
differs from most types of studied cholinesterase reactivators which are mostly pyridinium
or imidazolium oximes containing a quaternary nitrogen atom [28–37] or small uncharged
oximes with multiple ionization states [38–40]. Human cholinesterases differ in their
binding affinity towards oximes and OP inhibitors alike, which is a direct consequence
of the divergence in the active site gorge between AChE and BChE [22]. While AChE
has 14 aromatic amino acids lining the gorge, BChE has 6 of them replaced with aliphatic
amino acids, resulting in a 200 Å3 larger active site [41]. Therefore, bulkier molecules have a
higher inhibition rate for BChE than for AChE due to the easier access to the catalytic gorge.
This trend was also observed for olesoxime when we assessed the binding affinity of AChE
and BChE for the compound in terms of IC50 value (Figure 2). Olesoxime was dissolved in
DMSO and diluted as 10 mM in methanol to limit the inhibition of cholinesterases by DMSO
in both inhibition and reactivation mixtures when using compound concentrations higher
than 150 µM [21,42]. Methanol is a less potent inhibitor of the enzymes while improving
the solubility of lipophilic compounds such as olesoxime in phosphate buffer solution.
However, both enzymes displayed poor affinity for olesoxime in the lower micromolar
range and its solubility was impaired at concentrations above 100 µM even with the added
methanol. Total cholinesterase inhibition was not achieved and we approximated IC50 to
be over 200 µM for AChE and around 100 µM for BChE, which is more than 3 orders of
magnitude lower than that of tacrine [43]. Our results are consistent with other studies
where bulkier molecules were generally more potent BChE inhibitors due to the difference
in active site size [27,34,37,42,44].
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Figure 2. The inhibition profile and estimated binding affinities of AChE and BChE for olesoxime in
terms of IC50 (±SEM) values measured at 25 ◦C. Total inhibition was not achieved due to olesoxime’s
low solubility in buffer solution at concentrations higher than 100 µM.

Molecular modeling of the reversible complex of olesoxime within the active sites of
the two cholinesterases enabled us to visualize interactions between the oxime compound
and the amino acid residues lining the active site gorge (Figure 3). The oxime group of
olesoxime faces the exit of the AChE active site gorge (Figure 3A) and many hydrophobic
interactions with surrounding residues are present (purple). There is no interaction with
Trp86 from the choline-binding site, an important residue for substrate hydrolysis, but
there is interaction with His447 from the catalytic triad. Olesoxime also interacts with
Trp286, a residue from the peripheral anionic substrate binding site. In BChE, however,
olesoxime interacts with residues of the catalytic triad and choline-binding site, allowing the
reactivation of OP-BChE conjugate and a higher binding affinity of BChE for the compound
compared to AChE (Figure 3B). Moreover, the oxime group forms a hydrogen bond (green)
with Glu197, which is located next to the catalytic Ser198, while hydrophobic interactions
with His438 (catalytic triad) and Trp82 (choline substrate binding site) stabilize a productive
orientation of olesoxime within the BChE active site.
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It is worth emphasizing that although olesoxime exists as a stable mixture of syn-
and anti-isomers at the 3-position, we did not prefer one of the isomers for the molecular
modeling. The best-ranked poses resulted in the AChE complex with syn-isomer, and the
BChE complex with anti-isomer at the 3-position (Figure 3). However, in accordance with
our recent study on uncharged 2-thienostilbene oximes, AChE and BChE were inhibited
similarly with pure isomers, and, therefore, we do not expect that preparation of pure
olesoxime’s isomers would have merits on biological activity [45].

Olesoxime was next tested for its efficacy in reactivating AChE and BChE inhibited by
the organophosphate insecticide paraoxon and the nerve agents cyclosarin, sarin, tabun
and VX (Figure 1), and the results were expressed in terms of the observed reactivation rate
constant (kobs) and maximal reactivation percentage (Reactmax) achieved with OP-inhibited
enzymes within 24 h (Figure 4). The 0.1 mM olesoxime exhibited substantial reactivation
of cyclosarin-inhibited BChE, reaching about 60% of recovered enzyme activity within
3 h. Other OP-BChE conjugates were not susceptible to being reactivated by olesoxime,
reaching <30% of their reactivation maximum. All tested OP-AChE conjugates also showed
resistance to reactivation. It could be that the 0.1 mM concentration of the olesoxime was
too low to ensure efficient oxime binding to the phosphylated BChE. However, higher
concentrations could not be tested due to the aforementioned limitation in olesoxime sol-
ubility. In the case of AChE, the resistance to reactivation results from the low affinity
of the enzyme for olesoxime in 0.1 mM concentration which was used in the screening
assay. Furthermore, the affinity for the oxime is also limited by the spatial constraints
within the active site gorge, which are determined by the structure and orientation of
the organophosphate bound to the catalytic serine of the enzyme [22]. Additionally, the
modeling results show that the oxime group is oriented toward the exit of the active site,
precluding proper reactivation. Previous studies have shown that phosphoroamidate OPs
like tabun are generally resistant to reactivation, probably due to the electron pair located
on the amidic group making the nucleophilic attack by oxime very difficult [29,30,46].
Paraoxon-inhibited BChE conjugates are also not easily reactivated, and standard pyri-
dinium oximes remain among the most effective POX-ChE antidotes [34,47,48], with some
studies demonstrating the in vitro and in vivo potential of edrophonium-based oxime [49],
and novel zwitterionic oximes [38–40,50]. Pyridinium oximes are generally less effective
reactivators of OP-BChE conjugates than OP-AChE, and efforts are directed toward the
synthesis of imidazolium, cinchona, and quinuclidinium scaffold-based oximes to find
more potent OP-BChE reactivators [34,37,51].
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Figure 4. Reactivation screening of nerve agent-inhibited BChE by 0.1 mM olesoxime (±SEM)
expressed in terms of the observed reactivation rate constant (kobs) and maximum reactivation
percentage (Reactmax) determined at 25 ◦C within 24 h (n = 2).
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Based on the screening results, only the cyclosarin-BChE complex was selected for
further study of reactivation kinetics (Figure 5). A reactivation assay was performed over a
wider concentration range (from 10 to 130 µM) and about 70% of maximum reactivation
was achieved within 3 h. Due to a lack of a saturation curve, the overall reactivation rate
constant (kr) for cyclosarin-inhibited BChE was determined as the slope of dependence of
kobs vs. olesoxime concentration, and it was in the range of the standard oxime HI-6 and
higher than oxime 2-PAM (Table 1). While olesoxime did not show an improved recovery
of enzyme activity compared to standard and some novel quinuclidinium oximes [37], it
showed a reactivation efficiency of the cyclosarin-BChE conjugate in the range of some
di-chlorinated pyridinium-based oximes [35,36] and 3-hydroxy-2-pyridine aldoximes [21],
which were synthesized with the premise of improving the overall lipophilicity of charged
pyridinium molecules and stimulating passive diffusion across the BBB. Although some of
these oximes were predicted to efficiently cross the BBB based on both in silico predictions
and the in vitro brain membrane permeability test, olesoxime has the advantage of being a
highly lipophilic compound that is known to successfully cross the BBB and it was tested
in clinical studies that proved its safety in patients [2–4]. Due to these properties, its
cholesterol scaffold could serve as a model for the further development of novel oxime
antidotes. Moreover, as olesoxime provides mitochondria-stabilizing, calcium-modulating,
and anti-apoptotic effects [3], it may improve oxidative status and attenuate signs of
inflammation, which are characteristic consequences of OP poisoning in survivors [16].
In addition, olesoxime is a ligand of a presumptive mMPT pore regulator, the 18 kD a
mitochondrial permeability transition-translocator protein (TSPO), and as such can play
an important role in neuroprotection both by modulating the endogenous production of
neurosteroids in the nervous system, and by regulating the MPT process [52,53].
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Figure 5. Kinetics of olesoxime-assisted reactivation of cyclosarin-inhibited BChE (±SEM) determined
at 25 ◦C within 4 h (n = 2).

Table 1. Reactivation of cyclosarin-inhibited BChE by olesoxime and standard oximes 2-PAM and HI-
6. The kinetic parameters (±SEM): first-order reactivation rate constant (k2), phosphylated enzyme-
oxime dissociation constant (KOX), the second-order reactivation rate constant (kr), reactivation
maximum (Reactmax) and time of reaching the reactivation maximum (t) were determined at 25 ◦C
within 24 h.

Oxime k2/min−1 KOX/µM kr/M−1 min−1 Reactmax/% t/h

Olesoxime * / / 477 ± 12 70 3
2-PAM [35] 0.08 ± 0.01 1200 ± 290 65 ± 10 80 1
HI-6 * [21] / / 780 ± 30 90 0.5

* Linear dependence of kobs vs. oxime concentration in the studied concentration range enabled to determine kr.

Since olesoxime is well tolerated and was clinically tested without side effects, we
tested the combined reactivation efficacy of olesoxime and 2-PAM pair on sarin- and
cyclosarin-BChE conjugates (Figure 6). The combination of 50 µM olesoxime and 0.1 or
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1.0 mM 2-PAM in the reactivation mixture increased Reactmax by 10–30% for both sarin-
and cyclosarin-inhibited BChE and increased the observed rate constant of reactivation
(kobs) for the cyclosarin-BChE complex. The beneficial effect of olesoxime was especially
noticeable for the cyclosarin-BChE complex and 0.1 mM 2-PAM concentration, where the
addition of 50 µM olesoxime increased the reactivation maximum between 30 and 40%.
A conceptually similar in vivo study in rats poisoned with sarin by Caisberger et al. [54]
concluded that combinations of the oximes TMB-4 or K203 with HI-6 did not interfere
with HI-6 bioavailability, but rather supported its action. Therefore, combining the oximes
in the antidotal treatment may be a promising step towards a broad-spectrum antidotal
treatment of acute nerve agent exposure. A similar study in a guinea pig model [55]
evaluated the efficacy of a combined therapy of the standard oximes obidoxime and
2-PAM treatment regimen compared to a double dose of either oxime alone or a single
equimolar equivalent dose during sarin poisoning. Combined oxime therapy resulted in
improved seizure control, increased peripheral and central cholinesterase reactivation, and
improved behavioral signs. Although olesoxime is not an AChE reactivator, its peripheral
action might assist BChE in neutralizing sarin or cyclosarin in the blood before they reach
target tissues, thereby establishing a bioscavenging enzyme-oxime pair and preventing the
development of long-lasting neurological damage [37,48,49].
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Figure 6. Combined reactivation capability of 0.1 or 1.0 mM oxime 2-PAM with or without 50 µM
olesoxime (OLE) on sarin- and cyclosarin-BChE conjugates (±SEM). The observed reactivation rate
constant (kobs) and maximum reactivation percentage (Reactmax) were determined at 25 ◦C within
24 h (n = 2).

4. Conclusions

We evaluated the capacity of the cholesterol-based oxime olesoxime to perform as
an antidote and centrally active reactivator for organophosphate insecticide- and nerve
agent-inhibited cholinesterase enzymes, AChE, and BChE. Cholinesterases displayed weak
binding affinities for olesoxime, which is a consequence of its large cholesterol scaffold.
Olesoxime showed substantial reactivation efficacy for the cyclosarin-BChE conjugate in
the standard pyridinium oxime HI-6 range.

5. Future Directions

Since olesoxime has the advantage of successfully crossing BBB over charged pyri-
dinium oximes, olesoxime might be added to OP poisoning treatment to increase the efficacy
of dephosphylation of nerve agent-inhibited BChE in combination with standard oximes,
while its cholesterol scaffold could provide a basis for the development of novel oxime
antidotes. Indeed, in counteracting the OP poisoning, developing multitarget drugs such as
olesoxime might be of particular interest to enable simultaneous activity on AChE/BChE re-
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activation ensuring the neurotransmission and mitochondrial calcium-dependent functions
to provide an overall neuroprotective effect.
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