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Abstract: The objective of this paper is to propose a framework for a robot to learn multiple Sensory-
Motor Contingencies from human demonstrations and reproduce them. Sensory-Motor Contin-
gencies are a concept that describes intelligent behavior of animals and humans in relation to their
environment. They have been used to design control and planning algorithms for robots capable
of interacting and adapting autonomously. However, enabling a robot to autonomously develop
Sensory-Motor Contingencies is challenging due to the complexity of action and perception signals.
This framework leverages tools from Learning from Demonstrations to have the robot memorize
various sensory phases and corresponding motor actions through an attention mechanism. This gen-
erates a metric in the perception space, used by the robot to determine which sensory-motor memory
is contingent to the current context. The robot generalizes the memorized actions to adapt them to the
present perception. This process creates a discrete lattice of continuous Sensory-Motor Contingencies
that can control a robot in loco-manipulation tasks. Experiments on a 7-dof collaborative robotic
arm with a gripper, and on a mobile manipulator demonstrate the functionality and versatility of
the framework.

Keywords: intelligent robotics; sensorimotor learning; human–robot interaction; robot programming
and interfaces

1. Introduction

Sensori-Motor Contingencies (SMCs) are the relations between the actions we perform
and the perceptual consequences we experience. They enable us to adjust and refine our
behaviors based on the sensory feedback we receive from our actions on the environment.
For example, when we grasp an object, we use visual feedback to evaluate the success or
failure of our motor action [1]. By perceiving and understanding these contingencies, we
develop a sense of agency and the ability to predict and control our environment.

SMCs are essential for the development of motor skills [2], for the coordination of
movements [3], and for the formation of our perceptual experiences [4], by providing a
fundamental framework for our interactions with the world around us.

The paradigm of SMCs has also been applied in robotics, to build robots that can
interact with real environments without explicit programming but relying on autonomous
emerging behaviors. In [5], the authors use SMCs to create a computational Markov model
of visual perception that incorporates actions as an integral part of the perceptual process.
This approach is extended in [6] to loco-manipulation tasks, showing a link between
prediction and evaluation of future events through SMCs. The main idea is to record
the temporal order of SMC activations and to maintain it in a network of linked SMCs.
This results in a two-layer structure with sequences of action-observation pairs forming
SMCs and sequences of SMCs forming a network that can be used for predictions. The
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same Markov model is applied in [7] to guide the development of walking algorithms,
where robots rely on the predicted sensory consequences of their motor commands to
adapt their gait and terrain. Moreover, SMCs can also inform the design of interaction
algorithms, enabling robots to interact with humans and the environment in a more natural
and intuitive way [8]. When robot control is based on SMCs, the robot’s adaptation to its
environment is mainly driven by its own experiences.

The SMCs concept can be related to the notion of affordances, introduced by Gibson in
1979 [9], which highlights humans’ capacity to perceive the environment without the need
for internal representation [10]. In robotics, affordances connect recognizing a target object
with identifying feasible actions and assessing effects for task replicability [11]. Recent
approaches, like [12,13], view affordances as using symbolic representations from sensory-
motor experiences. Affordances play a crucial role as intermediaries organizing diverse
perceptions into manageable representations that facilitate reasoning processes, ultimately
enhancing task generalization [14]. Challenges in robotics affordances include ambiguity,
lack of datasets, absence of standardized metrics, and unclear applicability across contexts,
with persistent ambiguities in generalizing relationships adding complexity to the field [15].

While affordances in robotics provide a framework for understanding how robots
perceive and interact with their environment, identifying actionable opportunities, the chal-
lenge of considering temporal causality in sensorimotor interactions remains: actions
are not simultaneous neither to their sensory consequences nor to their sensory causes.
To manage this asynchronicity, one must develop strategies that enable robots to manage
these delays [16]. This necessitates creating models that, either explicitly or implicitly,
anticipate the future states of the environment based on current actions and perceptions,
allowing robots to adjust their behavior proactively rather than reactively. Such models
could involve learning from past experiences to forecast immediate sensory outcomes,
thereby compensating for the temporal gap between action execution and sensory feedback
with experience.

Another family of approaches aiming to enable an agent to learn a behavior through
interactions with the environment is that of optimization and reinforcement learning (RL).
Such approaches demonstrated proficiency in complex tasks such as that of manipulating
elastic rods [17] by leveraging parameterized regression features for shape representation
and an auto-tuning algorithm for real-time control adjustments. Additionally, more recent
approaches, such as [18], leverage visual foundation models to augment robot manipula-
tion and motion planning capabilities. Among those works, several reinforcement learning
approaches leverage the SMC theory [19]. The goal of RL is to build agents that develop a
strategy (or policy) to take sequential decisions in order to maximize a cumulative reward
signal. This can resemble the trial-and-error learning process demonstrated by humans
and animals, where agents interact with an environment, receive sensory inputs, and take
actions. In sensorimotor control, reinforcement learning (RL) involves an agent interacting
with its environment, perceiving sensory information, and selecting actions to maximize
cumulative rewards [20,21]. The goal is for the agent to learn a policy that maps sensory
observations to actions, enhancing its performance over time. High-dimensional continu-
ous ssensors and action spaces, as encountered in real-world scenarios, pose significant
challenges for conventional RL algorithms [22]. Focusing computations on relevant sensory
elements, similar to biological attention mechanisms [23], can address this issue.

Learning From Demonstration (LfD) is another approach that complements sensori-
motor control, affordances and RL. LfD enhances robot capabilities by capturing human
demonstrations, extracting relevant features and behavior information to establish a con-
nection between object features and the affordance relation, and subsequently replicating
it in the robot [24,25]. LfD enables agents to learn from experts, leveraging their insights
into desired behaviors and actions. This integration of LfD into RL accelerates learning,
benefiting from expert guidance for more efficient skill acquisition. In specific application
domains [26–28], Learning from Demonstration (LfD) has successfully taught robots a
variety of tasks. These tasks include manipulating deformable planar objects [29], complex
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actions like pushing, grasping, and stacking [30,31], autonomous ground and aerial naviga-
tion [32–34], and locomotion for both bipedal and quadrupedal robots [35]. It is important
to note that these works assume the human operator to be an expert in the field. LfD
seeks to enable robots to learn from end-user demonstrations, mirroring human learning
abilities [36]. This connection potentially links LfD back to Sensorimotor Control (SMC).

This paper aims to establish a unified framework for programming a robot through
learning multiple Sensory-Motor Contingencies from human demonstrations. We adapt
the concept of identifying relevant perceptions in a given context from SMC literature [37],
and propose the detection of salient phases in the Sensory-Motor Trace (SMT) to create a
sensor space metric. This metric allows the agent to evaluate the robot and environment
to recognize contingent SMTs from its memory. Subsequently, we utilize Learning from
Demonstration techniques to abstract and generalize memorized action patterns to adapt to
new environmental conditions. This process enables the extraction of SMCs, representing
the relationships between actions and sensory changes in a sequential map—or tree—based
on past observations and actions. The introduction of saliency, a sensor space metric, and of
the tree allows us to manage the delay between action and perception that occurs in the
recording of SMTs. This enables the robot to anticipate and adapt to delays by recognizing
and reacting to patterns in the SMTs, facilitating a more timely and adaptive response to
dynamic environmental changes. The framework’s versatility is demonstrated through
experimental tests on various robotic systems and real tasks, including a 7-dof collaborative
robot with a gripper and a mobile manipulator with an anthropomorphic end effector.

The main contributions of this work are outlined as follows:

• We devise an algorithm to extract the contingent space-time relations intercuring
within intertwined streams of actions and perceptions in the form of a tree of sensori-
motor contingencies (SMC).

• The algorithm is based on the introduction of an attention mechanism that helps in
identifying salient features within Sensori-Motor Traces (SMTs). This mechanism
aids in segmenting continuous streams of sensory and motor data into meaningful
fragments, thereby enhancing learning and decision-making processes.

• Moreover, the algorithm leverages the introduction of suitable metrics to assess the
relationship between different SMTs and between an SMT and the current context.
These metrics are crucial for understanding how actions relate to sensory feedback
and how these relationships adapt to new contexts.

• The underlying implicit representation is encoded in a tree structure, which organizes
the SMCs in a manner that reflects their contingent relationships. This structured
representation enables robots to navigate through the tree, identifying the most rele-
vant SMTs based on the current context, thereby facilitating decision-making across
diverse scenarios.

• The versatility and adaptability of the framework are demonstrated through its inte-
gration into various robotic platforms, including a 7-degree-of-freedom collaborative
robotic arm and a mobile manipulator. This adaptability underscores the potential for
applying the proposed methods across a wide spectrum of robotic applications.

2. Problem Statement

A robot R, with sensors S , operates in a dynamic environment E . The state of the robot
and the environment at time t are fully described by vectors xR(t) ∈ RnR and xE (t) ∈ RnE ,
respectively. These states evolve according to:{

ẋR = fR(xR, uR, xE )
ẋE = fE (xE , xR, uE ) ,

(1)

where uR ∈ UR is the control input for robot R, and uE ∈ UE models any exogenous action
on environment E . The sensors measure perception signals p(t) = h(xE(t), xR(t)) ∈ P that
depend on both states.
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Assume an autonomous agent can control robot R to successfully execute m tasks in
the environment E . This agent behaves consistently with the SMC-hypothesis [38], meaning
it performs tasks by connecting contingent actions and perceptions. This behavior is typical
in humans [2] and is assumed to extend to humans tele-operating a robot. Suppose now
to register n SMTs corresponding to m ≤ n tasks executed by the robot. We define each
Sensori-Motor Trace (SMT) as

T ≜ (P(t), A(t)) : [tS, tF] → U× P , (2)

where tS and tF are the SMT starting and finishing time, respectively,

A(t) = uR(t), [tS, tF] (3)

is the stream of actions commanded to the robot, and

P(t) = p(t), [tS, tF] (4)

is the stream of perceptions recorded by the sensors.
It is important to state that a core aspect of the problem is that of modeling and

managing the temporal causality relations that regulate sensorimotor interactions (see
Figure 1). However, based on our previous assumptions, we claim that the specifications of
the m tasks are fully encoded in the n SMTs; therefore, our aim is to devise an algorithm
to abstract the SMCs underlying the recorded SMTs, i.e., to devise a representation that
models (i) which perceptions cause a given action (and its modality), and (ii) what are the
consequences that can be expected when a given action is undertaken, i.e., that models the
contingency relations between perceptions and actions. This SMC-based representation
(see Figure 2) allows the robot to anticipate the future states based on current actions and
perceptions in order to autonomously operate in novel, yet similar, contexts replicating the
m tasks.

Figure 1. Temporal Causality Relations in Sensori-Motor Trace (SMT): in each SMT, the sensorimoror
interactions are composed of a perception that causes an action (black arrow) and a perception that is
the consequence of an action (red arrow).

Figure 2. Desired representation that models sensorimotor interactions.
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This problem is inherently complex for several reasons. Firstly, SMTs involve numer-
ous continuous signals, necessitating the creation of a robust strategy to effectively handle
the wealth of information associated with these signals while efficiently managing memory
resources. Additionally, new contexts are unlikely to be exact duplicates of memorized
SMTs. Consequently, the robot must possess the capability to assess the dissimilarities
between different contexts and generalize the action component of the contingent sensori-
motor trace to accommodate variations in the task arising from differences in the context
itself. Merely reproducing memorized actions would be insufficient and impractical. Our
objective requires that the robot (i) perceives the context in which it operates, (ii) identifies
the matching SMC for that context, and (iii) acts accordingly within the current context
based on the identified SMC.

3. Proposed Solution

When looking for SMCs, we aim to identify consistent causal relations between actions,
perceptions, and given contexts. Therefore, to formulate a definition of SMC, it is necessary
to formally define what is a context.

Building on Maye and Engel’s discrete history-based approach [5], we define the
context of the robot–environment interaction at a given time t∗ as the historical record of
all robot perceptions and actions starting from an initial time, tS, expressed as:

c(t∗) ≜ (P(t), A(t)) : [tS, t∗] → U× P . (5)

It is important to note that while Equations (5) and (2) may seem similar, they differ
significantly. Equation (2) represents a fixed set of actions and perceptions recorded within
a specific past interval, while Equation (5) is dynamic, depending on the current time, t∗,
and evolving over time.

Our method comprises several objectives, including (i) matching the present context
with a memorized SMT, (ii) reproduce the behavior of the matched SMT, by (iii) adapting
its actions to the current context, all based on (iv) a comparison between perceptions.

To accomplish this, our approach requires the introduction of the following components:

1. A metric to measure the distance between perceptions dP(P1(t), P2(t)) and actions
dA(A1(t), A2(t));

2. Contingency relations between SMTs, denoted as CT(T1, T2) and between a context
and a SMT, denoted as CC(c, T);

3. An operation to adapt an action to a different context.
A∗(t) = M(T0, c∗, t) = M((P0(t), A0(t)), c∗, t).

It is important to note that defining and evaluating metrics such as dP, dA, CT , CC,
and the operation M, can be a complex task, as they operate on functions of time defined
over continuous intervals in multi-dimensional spaces. Our solution simplifies this chal-
lenge by identifying a discrete and finite set of instants, denoted as ti,j (for an i-th SMT
and a j-th instant), within each interval in both the perception and action spaces. This
mechanism, which we refer to as saliency, allows each SMT to be segmented into a sequence
of ki SMT fragments, defined as:

Ti,j =
(

Pi,j(t), Ai,j(t)
)

: [tj−1, tj] → U× P , (6)

where most of the contingency relations between action and perception are concentrated,
as illustrated in Figure 3.
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Figure 3. Temporal saliency extraction: For each Sensori-Motor Trace Ti, the temporal saliency
extraction results in a sequence of SMT fragments recorded two streaming of data: the actions
commanded to the robot Ai,j and the perceptions registered by the robot Pi,j.

Given a spatial distance in the task space dX(x1, x2), a distance between perceptions
DP(P1(t), P2(t)), and a distance between actions DA(A1(t), A2(t)), the definition of a
saliency let us introduce a contingency relation between SMTs CT(T1, T2), and a contingency
relation between a context and an SMT CC(c, T). Moreover, leveraging the tools of Dynamic
Movement Primitives (DMPs) [39], we defined a suitable contingency map M(T0, c∗, t) such
that dc(c∗, (P∗, M(T0, c∗, t))) = 0. With these distances and mapping operations established
in an accessible form, the notion of saliency facilitates the creation of a discrete tree structure
that models causal relations by using a discrete history-based approach, similar to that
in [5]. In this tree, each directed edge corresponds to an SMC extracted from an SMT
fragment, along with its saliency characterization, and nodes represent decision points.
Given this SMC-tree, the system gains the ability to operate autonomously in new contexts
by (i) comparing the current context with its memory using saliency, within the tree nodes
to identify the best-matching SMC, and (ii) adapting the identified SMC to the present
context. As we will see in the following sections, the introduction and definition of these
metrics, essential for extracting salience and establishing contingency relationships, enable
the system to handle various types of tasks effectively.

3.1. Temporal Saliency

In the work [23], the authors propose incorporating an attention mechanism to expand
upon their previously introduced discrete approach for handling continuous signals. This
attention mechanism is what we refer to as a form of temporal salience. It could be argued that
temporal salience is inherent to SMTs themselves. The literature has offered various tools
to enable artificial agents to extract temporal saliency from data. These techniques include
Unsupervised Clustering [40], which groups similar actions into clusters based on features
like joint angles, end effector positions, and tool usage; Hidden Markov Models [41],
which identify distinct tasks in a sequence by modeling transitions between actions and
estimating the probability of each task occurring; and Gaussian Mixture Models [42], which
are probabilistic models that recognize different tasks by estimating Gaussian distribution
parameters for each task.

Alternatively, temporal saliency can be explicitly communicated by the operator, either
through verbal or visual cues or by manual activation of a trigger. In our experiments,
as described in the following sections, we combine both automatic and explicit processes
for extracting temporal salience.

This approach results in the division of each SMT Ti into a collection of atomic SMT
fragments, defined as:

Ti ≜
(

Ti,1, ..., Ti,N
)

, (7)

where each
Ti,j = Ti,j(t) :

[
tj−1, tj

]
→ U× P = Ti(t)|[tj−1,tj]

(8)
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is simply the restriction of the SMT to the interval
[
tj−1, tj

]
.

By analogy, we refer to the perception and action components of each sub-task as Pi,j

and Ai,j, respectively.

3.2. Spatial Saliency

To extract salient information for both perceptions and actions, we must identify the
robot’s state during the recording of a SMT. This is achieved by considering a xPOI , which
represents a point of interest for the robot. For instance, in the case of a robot’s end-effector,
xEE ∈ X1 is a typical choice. For a mobile robot, its state is represented as x = (x, y, θ) ∈ X2.

The temporal evolution of xPOI is an integral part of the action stream recorded in
the SMT.

As we will see in the following sections, particularly in the context of perceptions,
xPOI plays a pivotal role in narrowing the focus to perceptions in close proximity to the
robot, as detailed in Section 3.3.

On the other hand, when it comes to actions, this variable serves a dual purpose. Not
only does it assist in extracting the saliency of actions, but it also facilitates their adaptation
to new contexts, as explained in Section 3.4.

3.3. Perception Saliency and Inter-Perception Distance

To provide a comprehensive introduction to the concept of perception saliency, it
is essential to begin by categorizing perceptions. In the field of robotics, many types of
sensors find common uses, including optical sensors like cameras, LiDAR, and depth
sensors, as well as force sensors such as load cells, torque sensors, and tactile sensors.
Additionally, distance sensors like ultrasonic, infrared, and LIDAR, as well as temperature
and proximity sensors, play vital roles. Each of these sensors generates distinct types of
raw data, ranging from images to scalar values and point clouds, and each offers a unique
perspective on either the environment or the robot itself. This diversity necessitates a
structured approach to organize and enhance the saliency process.

Within the realm of sensory perception, two fundamental categories emerge: intrinsic
and extrinsic perceptions. Intrinsic perception entails using a sensor to gain insights into
the properties of the sensor itself, while extrinsic perception involves employing the sensor
to understand the properties of the surrounding environment.

A simple intrinsic (SI) perceptual signal b p̃ ∈ bP is a perceptual signal that admit a
(sensorial perception) distance function

bdP(b p̃1, b p̃2) : bP× bP → R0+. (9)

Note that here and in the following, the right superscript does not indicate a power,
it is an index. Examples of simple intrinsic perceptual signal are, e.g., an environmental
temperature sensor that measures the temperature in Kelvin degrees, for which b p̃ = T ∈
R0+ and bdP(b p̃1, b p̃2) = |b p̃2 − b p̃1| or the joint torques vector of a robot b p̃ = q ∈ Rn,
which can use the distance defined, e.g., by the L2-norm:

bdP(b p̃1, b p̃2) =
√
(b p̃2 − b p̃1)T(b p̃2 − b p̃2). (10)

A simple extrinsic or localized (SL) perceptual signal b p̄ ∈ bP̄, instead, is defined as a
pair of an intrinsic perception and a location bx ∈ X

b p̄ = (b p̃, bx) ∈ bP×X. (11)

Since simple localized perceptions contain intrinsic perception, they must admit a
sensorial perception distance function too

bdP(b p̄1, b p̄2) ≜ bdP(b p̃1, b p̃2) : bP× bP → R0+ , (12)
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and, due to the location, a spatial distance function

bdX(b p̄1, b p̄2) ≜ bdX(bx1, bx2) : X×X → R0+ . (13)

Examples of localized signals are the triangulated echo of an object sensed through a
sonar sensor, or a segmented point-cloud extracted from the image of a depth camera. This
type of perception (SL) can also be multiple, ML, when it does not assume a unique value
but a set of values simultaneously. We define a multiple localized perceptual signal as a
finite set of variable size of localized perceptual signal, that is

b p̄◦ = {b p̄1, b p̄2, ..., b p̄nm} where b p̄j ∈ bP̄ (14)

which admit a sensorial perception distance

bdP(b p̄1
◦, b p̄2

◦) ≜ bdP(b p̃1
◦, b p̃2

◦) : bP◦ × bP◦ → R0+ . (15)

where b p̃k
◦ in Equation (15) represents the intrinsic perceptions part of b p̄k

◦.
After outlining the various types of perceptions, we employ this classification to define

a distinct salient sub-set for each sub-task

SPi,j ⊆ Pi,j. (16)

This is achieved by applying the following rules for extracting perception saliency:

(a) Given a simple intrinsic perception Pi,j = b p̃i,j or a set of intrinsic perceptions
Pi,j = (b p̃i,j), all the intrinsic perceptions are considered candidate

b p̃i,j ∈ SPi,j (17)

(b) Given a simple localized perception Pi,j = (1 p̄i,j)

1 p̄i,j ∈ SPi,j ⇐⇒ 1dX(1xi,j, xPOI) < 1ϵ (18)

where 1ϵ ∈ R+ is an appropriate threshold value for a specific sensor.
(c) Given a set of simple localized perceptions Pi,j = (1 p̄i,j, . . . , n p̄i,j)

k p̄i,j ∈ SPi,j ⇐⇒ kdX(kxi,j, xPOI) < kϵ (19)

where
k = arg min

k=1,...,n
(kdX(kxi,j, xPOI)) (20)

(d) Given a multiple localized perception Pi,j = (1 p̄i,j
◦ ) = ({1 p̄i,j

1 , . . . , 1 p̄i,j
m})

1 p̄i,j
l ∈ SPi,j ⇐⇒ 1dX(1xi,j

l , xPOI) < 1ϵ (21)

where
l = arg min

l=1,...,m
(ldX(1xi,j

l , xPOI)) (22)

(e) Given a set of multiple localized perception Pi,j = (1 p̄i,j
◦ , . . . , h p̄i,j

◦ )

k p̄i,j
l ∈ SPi,j ⇐⇒ kdX(kxi,j

l , xPOI) < 1ϵ (23)

where
l = arg min

l=1,...,r
(ldX(kxi,j

l , xPOI)), k = 1, . . . , h (24)

k = arg min
k=1,...,h

(ldX(kxi,j
l , xPOI)) (25)
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r denotes the elements number of k p̄i,j
◦ , that could be different for each multiple

perception.

In general, the perceptions within each SMT fragment, denoted as Pi,j = pi,j, encom-
pass a mix of different perceptions falling into three distinct categories (SI, SL, and ML).
Consequently, the previously mentioned rules are applied to the relevant type of perception
under consideration.

The outcome of the perception saliency process is the generation of a sequential set of
salient perceptions SPi,j, for each SMT fragment Ti,j = (Pi,j, Ai,j).

Lastly, the computation of the inter-perception distance DP, between two sets of
sub-task perceptions, P1,j and P2,j, which must contain the same number and types of
perceptions, is facilitated through their salient perceptions. This is expressed as:

DP(P1,j, P2,j) = DP(
SP1,j, SP2,j) = ⊕

b
bdP(b

S p1,j, b
S p2,j) (26)

where the symbol ⊕ represents the summation of various distances, taking into account
the different categories (e.g., between intrinsic and localized perceptions) and includes
appropriate normalization. It is important to note, in conclusion, that the saliency of
localized perceptions is also influenced by the variable xPOI , as discussed in Section 3.2.

3.4. Action Saliency and Inter-Action Distance

The action associated with the j-th fragment of the i-th SMT is encoded using a
parametric function that represents its salient features:

S Ai,j(ωi,j, xs, x f , τ) : W×X×X×T. → U (27)

This encoding is employed for adapting the action to a different context during
autonomous execution. Here are the key components of the action encoding:

• ωi,j is a parameterization of the salient action.

ωi,j = fω(Ai,j(t)) : [tj−1, tj] → W (28)

where fω() is a function that encodes the action Ai,j(t) in the time interval [tj−1, tj]. In
this work, we use the DMP method to encode the robot’s movement.

• xs is an empty variable which will be replaced by xPOI in the starting configura-
tion during the autonomous execution, e.g., the end-effector pose xEE or the state x,
before executing the learned action.

• x f stands for the final value that xPOI will assume at the end of sub-task. This value
depends on the type of perceptions involved. If only salient intrinsic perceptions are
at play, then x f = xPOI(tj), with xPOI(tj) denoting the final value assumed by xPOI
at the end of the j-th subtask during the SMT registration. Conversely, if at least one
localized perception is involved, x f becomes parameterized with the perception’s
location, as explained in the Contingent Action Mapping section (Section 3.6).

Similar to the inter-perception distance, we define the inter-action distance DA between
two distinct sub-task actions A1,j, A2,j based on their saliency actions S A1,j, S A2,j:

DA(
S A1,j, S A2,j) = da(ω

1,j, ω2,j) (29)

where da is the euclidian distance function applied to the action parametrization, drawing
inspiration from [43]. In particular, regarding Equation (29), when given two parameteriza-
tions ω1,j and ω2,j of two actions, their inter-action distance is equal to zero if and only if
the two parametrizations are the same:

da(ω
1,j, ω2,j) = 0 ⇐⇒ ω1,j = ω2,j. (30)
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3.5. Contingency Relation

Now that we have established the categories of perceptions and the essential attributes
needed to characterize a Sensory-Motor Trace (SMT), we can delve into defining two types
of contingency relations: CT between two SMTs and CC between a context and an SMT.

Starting with two distinct SMTs, denoted as (T1, T2), each characterized by temporal
saliency (T1,j, T2,j), perception saliency (SP1,j, SP2,j), and action saliency (S A1,j, S A2,j), we
establish their contingency based on the contingency relation between their constituent
fragments. Therefore, two fragments, (T1,j, T2,j), are considered contingent if the following
contingency fragment relation CF(T1,j, T2,j) holds true:

CF(T1,j, T2,j) = DA(
S A1,j, S A2,j) < ThA ∧ DP(

SP1,j, SP2,j) < ThP (31)

where ThA ,ThP are the thresholds, respectively, for the distance between actions and
perceptions.

To determine the contingency between two SMTs, T1 and T2, we declare CT(T1, T2)
as True if and only if all pairs of fragments (T1,j, T2,j) satisfy the contingency condition:

CT(T1, T2) = True ⇐⇒ CF(T1,j, T2,j) : ∀j (32)

Now, to establish contingency between an SMT and a context, we must first extract
saliency from the context. Given a context c(t∗), the process of temporal saliency extraction
results in a collection of context fragments denoted as:

c(t∗) ≜
(

c∗1, . . . , c∗Nc−1, c∗Nc
)

, (33)

where each c∗ j represents a fragment:

c∗ j = c∗ j(t) :
[
tj−1, tj

]
→ U× P = c∗(t)|[tj−1,tj]

(34)

This process is analogous to the task segmentation described earlier, with the notable
distinction that the number of context fragments increases over time, and the most recent
fragment c∗Nc is always associated with the current time t∗. Each sub-context’s percep-
tion and action components are identified as P∗ j and A∗

j, respectively. Saliency is then
extracted from these components as SP∗ j for perceptions and S A∗

j for actions, following
the methodology previously outlined.

To evaluate the contingency between a context c(t∗) and an SMT Ti, we consider that
through the extraction of temporal saliency, the context aligns with an SMT for all instances
prior to the current one (i.e., j < Nc). The key difference lies in evaluating the present
instance, c∗Nc . Therefore, for a context to exhibit contingency with an SMT, the contingency
relationship between SMT fragments should hold for the past history, as follows:

CPast(c∗ j, Ti,j) = True ⇐⇒ CF(c∗ j, Ti,j) : ∀j < Nc (35)

Moreover, the contingency condition in the current instance, denoted as CNow, must
be met, taking into account the saliency of perceptions only:

CNow(c∗Nc , Ti,Nc) = DP(
SP∗Nc , SPi,Nc) < ThP . (36)

Thus, for a new context and an SMT to be considered contingent, CC(c∗ j, Ti,j) = True,
they must exhibit contingency both in the past and in the current instance:

CC(c∗ j, Ti,j) = True ⇐⇒ CPast(c∗ j, Ti,j) ∧ CNow(c∗Nc , Ti,Nc) (37)

It is important to note that when the current instance aligns with the initial starting
time t∗ = tS (in discrete time, j = Nc), the contingency relation between a context and
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an SMT simplifies to solely the present contingency condition CC(c∗ j, Ti,j) = True ⇐⇒
CNow(c∗Nc , Ti,Nc).

In conclusion, it is worth emphasizing that we exclusively take into account the salient
perceptions to assess contingency at the current instant. This choice aligns with our goal
of identifying and retrieving the action component from the stored SMTs, which, in turn,
enables us to adapt the action to the current context, as explained in the following section.

3.6. Contingent Action Mapping

Given a context denoted as c(t∗) and a contingent SMT fragment represented by
Ti,j = (Pi,j, Ai,j), we introduce a contingent mapping function M(Ti,j, c∗, t) to determine a
new action A∗(t) to be executed at the current time t∗. This new action is derived from the
adaptation of the salient action S Ai,j to the context c(t∗), with the aim of minimizing the
distance DA(A∗(t), S Ai,j), provided that (37) is satisfied.

Moreover, the design of this new action A∗(t) is such that, when applied, it ensures
that the resulting updated context c(t∗ + 1) continues to be contingent in the past to the
corresponding SMT, as described in Equation (35). This definition allows us to state that
upon the successful autonomous execution and adaptation within the current context of
an SMT Ti stored in the tree, the resultant SMT T̂i is contingent upon Ti, meaning that
CT(Ti, T̂i) evaluates to True.

Mathematically, this new action A∗(t) can be expressed as:

A∗(t) = M(Ti,j, c∗, t) = M((Pi,j, Ai,j), (P∗Nc , A∗
Nc), t) =

M((SPi,j, S Ai,j), (SP∗Nc , S A∗
Nc), t) = S Ai,j(ωi,j, xPOI(t∗), x∗f , τ)

(38)

where the value of x∗f depends on the type of perceptions involved in SP∗Nc and SPi,j. It
is important to note that these perceptions must be of the same type and number to be
compared. If they only contain intrinsic perceptions, then x∗f is equal to the final value

assumed by xPOI at the end of Ti,j, xPOI(tj). However, if they involve a localized perception,
x∗f assumes the value bxNc associated with the location of the localized perception pair

(S
l pNc , lxNc ) in SPNc , having the minimum distance from the salient localized perception

S p̄i,j ∈ SPi,j:
arg min

l=1,..,s
bdP(

S
l pNc , S p̄i,j) (39)

where s represent the localised perception cardinality.

3.7. Sensory-Motor Contingency

As previously discussed, after formally defining the contingency relationships between
two SMTs and an SMT with the context through the extraction of perceptual and action
salience, we can now introduce the concept of an SMC (Sensory-Motor Contingency).
An SMC is defined as the pair of salient perceptions and actions for an SMT fragment
obtained through temporal saliency extraction.

For a given sensory-motor trace Ti and its corresponding fragments Ti,j, we define a
sensorimotor contingency SMC as:

Si,j = (SPi,j, S Ai,j) (40)

and
Si ≜

(
Si,1, . . . , Si,N

)
(41)

is the set of SMCs associated with Ti.
It is important to note that since all the metrics and relationships introduced earlier

rely on the salience of SMT, they naturally pertain to the SMC. This definition enables
us to represent the connections between actions and changes in perceptions as a discrete
tree structure, where each edge represents an SMC, and each node represents a decision
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point. These decision points, denoted as Π, are intances where temporal salience was
extracted. During autonomous execution, an assessment of the tree is required to evaluate
the execution of future actions by identifying the most context-contingent SMC among all
the SMCs in the tree.

3.8. Sensory-Motor Contingencies Tree

The method for constructing the SMCs tree follows the algorithm presented in Algorithm 1.
To build this tree, each SMT is processed by extracting its saliency following the procedure
in Sections 3.3 and 3.4. If the tree is initially empty, the first SMT is automatically stored,
and the first branch is added to the tree. Otherwise, a process is executed to efficiently
incorporate a new SMT into the existing tree. This procedure enables the integration
of initial SMC candidates from a novel SMT with specific branches of previously stored
SMTs. In essence, when elements of a new task exhibit similarities to those already stored,
the system selectively archives only the distinct portions of the task. These distinct portions
are then inserted into decision points associated with pre-existing SMTs.

Suppose the tree is composed of m branches, with each branch originating from the
root node (as depicted in Figure 4). After extracting the SMC candidates for a new SMT
denoted as T∗, a new branch is created, consisting of N SMCs to be included in the existing
SMC tree:

{S∗,1, . . . , S∗,N} = {(SP∗,1, S A∗,1), . . . , (SP∗,N , S A∗,N)} (42)

where ∗ denotes the new branch.

Figure 4. SMCs-tree: the SMCs are extracted to produce a SMCs-tree where the nodes represent the
decision points where the temporal saliency was extracted, and each oriented edge connecting two
nodes i and j is a SMC composed by a pair of salient perceptions-action.

At each step, the process evaluates the contingency SMT fragment relationship be-
tween S∗,j and the SMCs Si,j present in the tree, which are admitted by the node Πh,j−1.
This process begins with the initial step where h = 0 and j = 1. The equation for this
contingency check is as follows:

CF(S∗,j, Si,j) : ∀i ∈ Ij (43)

Here, Ij represents a set of all the SMCs indexes i admitted by the node Πh,j−1.
If S∗,j is found to be contingent with Si,j, then Si,j is added to the set Scon, which

contains all Si,j-contingent SMCs. Otherwise, the contingency check continues with the
next SMC connected to Πh,j−1.

After all SMCs to be compared have been examined, if Scon remains empty, the new
SMCs S∗,k : k = j, . . . , N are connected to the node Πh,j−1, and the check concludes.
Otherwise, if Scon is not empty, the process proceeds to assess the salient perceptions in
Scon to identify the most contingent SMC: the one with the least inter-perception distance.
To identify it, the process computes the index that minimizes this distance:

imin = arg min
i∈Ij

(DP(
SP∗,j, SPi,j)) (44)

After this, the process merges the SMCs S∗,j and Simin ,j, and the check continues on
the branch identified by the index imin. The process concludes once all the SMCs of the
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new branch have been processed. The merging between two SMCs can be performed in
several ways, such as choosing one of them or applying other sensor fusion and trajectory
optimization methods. The merging process can also be viewed as an opportunity for
the robot to enhance its understanding of the same SMC. In cases where a particular task
is repeated multiple times, during the merging process, the system can systematically
merge all the Sensory-Motor Contingencies by consistently integrating the parameters
of the older SMCs with the new ones. This iterative refinement allows the system to
progressively improve its comprehension of the task, leveraging past experiences to enhance
its performance.

Algorithm 1 SMCs Tree
1: function [Π] = Build_SMCs_Tree(T∗ , Π)
2: [T∗,1, . . . , T∗,N ] = Extract_temporal_saliency(T∗)
3: [S∗,1, . . . , S∗,N ] = Extract_SMCs([T∗,1, . . . , T∗,N ])
4: if Π is empty then Π0,0.append([S∗,1, . . . , S∗,N ])
5: else
6: int h = 0
7: int j = 1
8: Scon = []
9: for all S∗,j in [S∗,1, . . . , S∗,N ] do

10: for all Si,j admitted by Πh,j−1 do
11: if CF(S∗,j , Si,j) then ▷ (43)
12: Scon .append(Si,j)
13: end if
14: end for
15: if Scon is not empty then
16: Find imin() ▷ (44)
17: Merge_SMCs(S∗,j , Simin ,j)
18: else
19: Πh,j−1.append([S∗,j , . . . , S∗,N ])
20: Return Π
21: end if
22: h = imin
23: j ++
24: end for
25: end if
26: end function

3.9. SMCs-Aware Control

During autonomous execution, the robot can operate in new contexts that are akin to
those stored in the SMCs tree, and this is facilitated by Algorithm 2. The process begins at
the initial decision point and proceeds along the identified branch of the tree, given that
compatible perceptions are encountered along the way.

At each step within each decision point, the SMC control takes a new context denoted
as c(t∗), extracts the context’s saliency (as detailed in (33)), and seeks the most contingent
SMC fragment within the SMC tree. The objective of this control is to generate a new action
that ensures the past contingency of the subsequent context c(t∗ + 1) with the identified
branch of SMCs from the tree. Thus, during each step, the system evaluates only the current
contingency between the context and the SMCs, CNow, to determine the most contingent
SMC. This assessment entails identifying the index imin as follows:

imin = arg min
i∈Ij

(CNow(c∗Nc , Si,Nc)) (45)

whereas, Ij represents a set of all the SMCs indexes i admitted by the node Πh,j−1.
Once, the most contingent SMC is found, the index imin is employed in the contingent

action mapping to compute A∗(t):

A∗(t) = M(Timin ,Nc , c∗, t) =
S Aimin ,Nc+1(ωimin ,Nc , xPOI(Nc), x∗f , τ).

(46)

Finally, if, during the execution, the system fails to establish any correspondence with
the SMC-tree (CC(c∗ j, Ti,j) = False), it has the option to resume the recording process and
initiate the recording of a new SMT, starting from the ongoing execution.
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Algorithm 2 Autonomous Execution
1: j = 1
2: h = 0
3: Retrieve_SMCs_Tree_Π()
4: for all Πh,j−1 do
5: Perceive_New_Context_c(t∗)
6: [c∗1, . . . , c∗Nc ] = Extract_temporal_saliency(c(t∗))
7: [S∗

1, . . . , S∗
Nc ] = Extract_SMCs([c∗1, . . . , c∗Nc ])

8: Find_imin() ▷ (45)
9: A∗(t) = S Aimin ,Nc (ωimin ,Nc , xPOI (Nc), x∗

f , τ)

10: Send_action_to_the_robot(A∗(t))
11: j ++
12: h = imin
13: end for

4. Example Scenarios

In this section, we present a series of examples aimed at providing a comprehensive
and practical understanding of the method described above. We anticipate that more
complex examples similar to those proposed will be provided experimentally. Throughout
the examples, we assume the use of a robotic arm with a basic gripper as the end effector
(EE) and a robotic mobile base equipped with a camera and a 2D Lidar sensor. The user has
the flexibility to move the robots to any permitted positions, utilizing either xPOI = xEE or
xPOI = x.

4.1. Multiple Localized Perception—ML

Let us suppose we have a robotic arm and a filtered point cloud that provides a set of
clusters defined by color histogram and position. The clusters represent a multiple localized
perception Pi = (1 p̄i

◦) = ({1 p̄i
n}), where 1 p̄i

n = (1 p̃i
n, 1xi

n) is defined by color histogram
and position, respectively. In this scenario, we proceed to register two Sensory-Motor
Traces (SMTs).

4.1.1. SMTs Registration

1. During the first SMT T1 registration, the camera perceives two clusters (orange
cube and a green cylinder) 1 p̄1

1 and 1 p̄1
2. The user provides instructions to the robot,

demonstrating how to grasp the cube in one salient moment (as depicted in Figure 5a),
and then showing where to place it, above the green cylinder, in another salient
temporal moment (illustrated in Figure 5b).

2. During the second SMT T2 registration, the camera perceives two clusters (grey
pyramid and a yellow cylinder) 1 p̄2

1 and 1 p̄2
2. The user provides instructions to the

robot, demonstrating how to grasp the pyramid in one salient moment (as depicted in
Figure 5d), and then showing where to place it, above the yellow cylinder, in another
salient temporal moment (illustrated in Figure 5e).

4.1.2. SMCs Extraction

1. As the user provided two distinct salient temporal moments, the SMT is segmented in
two fragments, T1,1, T1,2. Each fragment contains associated perceptions, P1,j, which
are defined as P1,j = (1 p̄1,j

◦ ) = ({1 p̄1,j
1 , 1 p̄1,j

2 }) : j = 1, 2 where 1 p̄1,j
1 represents the

orange cube and 1 p̄1,j
2 represents the green cylinder. For the two subtasks, the salient

perceptions are determined by the criteria presented in (21) and (22). In this case,
the robot only learns the color histogram of the object closest to the E.E. ( i.e., orange
cube for T1,1 and green cylinder for T1,2):

l = arg min
l=1,2

(1dX(1x1,j
l , xEE(tj))) : j = 1, 2 (47)

1dX(1x1,j
l , xEE(tj)) < 1ϵ =⇒ 1 p̄1,j

l ∈ SP1,j : j = 1, 2 (48)

whereas
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ω1,j = fω(A1,j(t)) : t ∈ (tj−1, tj) : j = 1, 2 (49)

are the SMC action’s parameter related to the function S A1,j(ω1,j, x1,j
s , x1,j

f , τ) : j = 1, 2.

(a) SMT Fragment T1,1 (b) SMT Fragment T1,2

(c) SMCs Tree after the first SMT

(d) SMT Fragment T2,1 (e) SMT Fragment T2,2

(f) SMCs Tree after the second SMT

Figure 5. Multiple Localized Perception Example. SMTs Registration: from the same initial configura-
tion two SMTs are registered. In the first SMT T1 (a,b), the robot detects an orange cube and a green
cylinder, then, it grasps the orange cube (a) and puts it on the green cylinder (b). In the second SMT
T2 (d,e), the robot perceives a grey pyramid and a yellow cylinder, grasps the pyramid (e) and puts it
on the yellow cylinder. SMCs Extraction: in each SMT the robot learns the salient perceptions (cluster
color of the object nearest to the E.E.) and the associated salient action highlighted, respectively, in
orange and yellow in the figures. After extracting the SMCs from the first SMT, the robot builds the
SMCs tree in (c), while, after the second SMT the final SMCs tree is in (f).

2. As the user provided two distinct salient temporal moments, the SMT is segmented in
two fragments, T2,1, T2,2. Each fragment contains associated perceptions, P2,j, which
are defined as P2,j = (1 p̄2,j

◦ ) = ({1 p̄2,j
1 , 1 p̄2,j

2 }) : j = 1, 2 where 1 p̄2,j
1 represents the grey

pyramid and 1 p̄2,j
2 represents the yellow cylinder. For the two subtasks, the salient

perceptions are determined by the criteria presented in (21) and (22). In this case,
the robot only learns the color histogram of the object closest to the E.E. ( i.e., grey
pyramid for T1,1 and yellow cylinder for T1,2):
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l = arg min
l=1,2

(1dX(1x2,j
l , xEE(tj))) : j = 1, 2 (50)

1dX(1x2,j
l , xEE(tj)) < 1ϵ =⇒ 1 p̄2,j

l ∈ SP2,j : j = 1, 2 (51)

whereas

ω2,j = fω(A2,j(t)) : t ∈ (tj−1, tj).j = 1, 2 (52)

are the SMC action’s parameter related to the function S A2,j(ω2,j, x2,j
s , x2,j

f , τ) : j = 1, 2.

4.1.3. SMCs Tree

Following the registration of the first SMT T1, the robot proceeds to extract the SMCs
and creates the initial branch in the resulting tree, as depicted in Figure 5c. Upon extracting
the SMCs from the second SMT, the system computes the contingency relationship between
S1,1 and S2,1. Although the final configurations 1x1,1

1 and 1x2,1
1 are in close spatial proximity,

satisfying the inter-action distance condition, these fragments are non-contingent due to
the differing perceptions (an orange cube and a gray pyramid). Consequently, the system
introduces a new branch in the SMCs tree, leading to the tree shown in Figure 5f.

4.1.4. SMCs Control Execution

During the autonomous execution phase, the system receives context c1
∗, in which the

camera detects two clusters: an orange cube and a green cylinder, resulting in the salient
perceptions SP1

1 = ({S
1 p̄1

1, S
1 p̄1

2}). The choice of the most contingent SMC is given by (45)

1 = arg min
i=1,2

(CNow(
SP1

1, SPi,1)) (53)

Subsequently, the contingent action mapping computes A1(t) by adapting the most
contingent SMC action:

A∗
1(t) = S A1,1(ω1,1, xs, x f , τ) (54)

In this specific case, two localized perceptions are involved; therefore, the value of
x f =

S
1 x1. Whereas, xs assumes the value of xPOI at the initial instant of execution.

4.2. Robotic Mobile Base Merging Branches Example

Let us suppose to have a robotic mobile base, a camera that provides image color
histogram and a Lidar 2D point cloud. They represent, respectively, a simple intrinsic
perception 1 p̃i and a simple localized perception 2 p̄i = (2 p̃i, 2xi). In this scenario, we
proceed to register two Sensory-Motor Traces (SMTs) where the user can move the robot in
any allowed pose (xPOI = x).

4.2.1. SMTs Registration

1. During the first SMT T1 registration, in a first temporal salient moment, the camera
perceives the initial color histogram of the room 1 p̃1,1 and the Lidar provides the
room point cloud 2 p̃1,1 acquired in 2x1,1. The user decides to move the robot from its
initial configuration to x1,1 , Figure 6a. Then, in a second salient temporal moment,
the camera perceives a green arrow 1 p̃1,2 and the Lidar acquire a new point cloud
2 p̃1,2 in 2x1,2. The user decides to move the robot from its initial configuration to x1,2,
Figure 6b.

2. During the second SMT T2 registration, in a first temporal salient moment, the camera
perceives the initial color histograms of the room 1 p2,1 (∼ 1 p̃1,1) and the Lidar provides
the room point cloud 2 p̃2,1 (∼ 2 p̃1,1) in 2x2,1) . The user decides to move the robot
from its initial configuration to x2,1 (Figure 6d). Then, in a second salient temporal
moment, the camera perceives a yellow arrow 1 p̃2,2 and the Lidar acquire a new
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point cloud 2 p̃2,2 (∼ 2 p̃1,2) in 2x2,2. The user decides to move the robot from its initial
configuration to x2,2 (Figure 6e).

(a) SMT Fragment T1,1 (b) SMT Fragment T1,2

(c) SMCs Tree after the first SMT

(d) SMT Fragment T2,1 (e) SMT Fragment T2,2

(f) SMCs Tree after the second SMT

Figure 6. Robotic Mobile Base Merging Branches Example. SMTs Registration: from the same
initial configuration two SMTs are registered. In the first SMT T1 (a,b), the robot moves to x1,1

(a) and, after seeing a green arrow, reaches its final configuration x1,2 (b). In the second SMT T2 (d,e),
the robot moves to x2,1 (d) and, after seeing a yellow arrow, reaches its final configuration x2,2 (e).
SMCs Extraction: in each SMT the robot learns the salient perceptions (color histogram and lidar
point cloud) and the associated action highlighted, respectively, in orange and yellow in the figures.
After extracting the SMCs from the first SMT, the robot builds the SMCs tree in (c), while, after the
second SMT the final SMCs tree is in (f). Since the first subtasks of the two SMTs are contingent, they
are merged by the SMCs tree building process.

4.2.2. SMCs Extraction

1. As the user provided two distinct salient temporal moments, the SMT is segmented
in two fragments, T1,1, T1,2. Each fragment contains associated perceptions, P1,j,
which are defined as P1,j = (1 p̃1,j, 2 p̄1,j) : j = 1, 2. For the two subtasks, the salient
perceptions are determined by the criteria presented in (17) and (18):

1 p̃1,j ∈ SP1,j : j = 1, 2 (55)

2dX(2x1,j, x) < 2ϵ =⇒ 2 p̄1,j ∈ SP1,j : j = 1, 2 (56)

whereas

ω1,j = fω(A1,j(t)) : t ∈ (tj−1, tj) (57)



Robotics 2024, 13, 58 18 of 33

are the SMC action’s parameter related to the function S A1,j(ω1,j, x1,j
s , x1,j

f , τ) : j = 1, 2.

2. As the user provided two distinct salient temporal moments, the SMT is segmented
in two fragments, T2,1, T2,2. Each fragment contains associated perceptions, P2,j,
which are defined as P2,j = (1 p̃2,j, 2 p̄2,j) : j = 1, 2. For the two subtasks, the salient
perceptions are determined by the criteria presented in (17) and (18):

1 p̃2,j ∈ SP2,j : j = 1, 2 (58)

2dX(2x2,j, x) < 2ϵ =⇒ 2 p̄2,j ∈ SP2,j : j = 1, 2 (59)

whereas

ω2,j = fω(A2,j(t)) : t ∈ (tj−1, tj) (60)

are the SMC action’s parameter related to the function S A2,j(ω2,j, x2,j
s , x2,j

f , τ) : j = 1, 2.

4.2.3. SMCs Tree

Following the registration of the first SMT T1, the robot proceeds to extract the SMCs
and creates the initial branch in the resulting tree, as depicted in Figure 6c. Upon extracting
the SMCs from the second SMT, the system computes the contingency relationship between
S1,1 and S2,1. Since the final configurations 1x1,1

1 and 1x2,1
1 are in close spatial proximity

and the perceptions SP1,1, SP2,1 perceives the same room, the two fragments are contingent
and they are merged by the system. Then, the two next SMCs fragments S1,2 and S2,2

are compared. Since the two final configuration 1x1,2
1 and 1x2,2

1 are far in space, the two
fragments are non contingent. Consequently, the system introduces a new branch in the
SMCs tree, leading to the tree shown in Figure 6f.

4.2.4. SMCs Control Execution

At the beginning of the autonomous execution phase, the system receives context c1
∗,

in which the camera perceives the room histogram color and the Lidar acquires the room
point cloud, resulting in the salient perceptions SP∗1 = (S

1 p̃∗1, S
2 p̄∗1). The choice of the most

contingent SMC is given by (45)

1 = arg min
i=1

(CNow(
SP∗1, SPi,1)) (61)

Since, the only contingent SMC perception possible in the tree is SP1,1, if it satisfies the
contingency relation the contingent action mapping computes A1(t) by adapting the most
contingent SMC action:

A1
1(t) = S A1,1(ω1,1, xs, x f , τ) (62)

where x f =
S
1 x1 and xs assumes the value of xPOI at the initial instant of execution.

Otherwise, if for instance the robot is in another room, i.e., the contingency rela-
tion is not satisfied, the robot will stay in idle state with the option to retrieve the SMT
recording process.

If the robot performed the first SMC reaching the next room, the system receives a
new context c2

∗ in which the camera perceives a yellow arrow and the Lidar acquires the
room point cloud, resulting in the salient perceptions SP∗2 = (S

1 p̃∗2, S
2 p̄∗2).

The choice of the most contingent SMC is given by (45)

2 = arg min
i=1,2

(CNow(
SP∗2, SPi,2)) (63)

Subsequently, the contingent action mapping computes A2(t) by adapting the most
contingent SMC action:
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A∗
2(t) = S A2,2(ω2,2, xs, x f , τ) (64)

In this specific case, two localized perceptions are involved; therefore, the value of
x f =

S
1 x2 . Whereas, xs assumes the value of xPOI at the initial instant of execution.

4.3. Robotic Arm Merging Branches Example

Let us suppose we have a robotic arm, a filtered point cloud that provides a set
of clusters defined by color histogram and position, and a weight sensor. The clusters
represent a multiple localized perception 1 p̄i

◦, where 1 p̃i
n and 1xi

n are defined by color
histogram and position, respectively. Instead. the weight represent a simple intrinsic
perception 2 p̃i. In this scenario, we proceed to register two Sensory-Motor Traces (SMTs).

4.3.1. SMTs Registration

1. During the first SMT T1 registration, the camera perceives one cluster (orange cube)

1 p̄1,1
1 while the weight sensor detects a zero weight 2 p̃1,1. The user shows the robot

how to grasp the cube, Figure 7a, and place it above the weight sensor, Figure 7b.
Then, the camera still perceives the same cluster 1 p̄1,3

1 and the weight sensor acquires
the orange cube weight 2 p̃1,3. Finally, the user shows the robot where to put the object,
Figure 7c.

2. During the second SMT T2 registration, the camera perceives one cluster (orange
cube) 1 p̄2,1

1 while the weight sensor detects a zero weight 2 p̃2,1 . The user shows the
robot how to grasp the cub, Figure 7e, and place it above the weight sensor, Figure 7f.
Then, the camera still perceives the same cluster 1 p̄2,3

1 and the weight sensor acquires
the orange cube weight 2 p̃2,3 ( ̸= 2 p̃1,3). Finally, the user shows the robot where to put
the object (1x2,3

3 ̸= 1x1,3
3 ), Figure 7f.

4.3.2. SMCs Extraction

1. The salient perception for the subtasks are given by (21), (22) and (17)

j = arg min
l=1

(1dX(1x1,j
l , xEE(tj))) : j = 1, 2, 3 (65)

1dX(1x1,j
j , xEE(ti)) < 1ϵ =⇒ 1 p̄1,j

j ∈ SP1,j : j = 1, 2, 3 (66)

2 p̃1,j ∈ SP1,j : j = 1, 2, 3 (67)

whereas
ω1,j = fω(A1,j(t)) : t ∈ (tj−1, tj) : j = 1, 2, 3 (68)

are the SMC action’s parameter related to the function S A1,j(ω1,j, x1,j
s , x1,j

f , τ) :
j = 1, 2, 3.

2. The salient perception for the subtasks are given by (21), (22) and (17)

i = arg min
l=1

(1dX(1x2,j
l , xEE(tj))) : j = 1, 2, 3 (69)

1dX(1x2,j
j , xEE(tj)) < 2ϵ =⇒ 1 p̄2,j

j ∈ SP2,j : j = 1, 2, 3 (70)

2 p̃2,j ∈ SP2,j : j = 1, 2, 3 (71)

whereas
ω2,j = fω(A2,j(t)) : t ∈ (tj−1, tj) : j = 1, 2, 3 (72)

are the SMC action’s parameter related to the function S A2,j(ω2,j, x2,j
s , x2,j

f , τ) :
j = 1, 2, 3.
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(a) SMT Fragment T1,1 (b) SMT Fragment T1,2 (c) SMT Fragment T1,3

(d) SMCs Tree after the first SMT

(e) SMT Fragment T2,1 (f) SMT Fragment T2,2 (g) SMT Fragment T2,3

(h) SMCs Tree after the second SMT

Figure 7. Robotic Arm Merging Branches Example. SMTs Registration: from the same initial
configuration two SMTs are registered. In the first SMT T1 (a–c), the robot perceives and grasps an
orange cube (a), weighs it (b) and finally puts it down to his right (c). In the second SMT T2 (e–g),
the robot perceives and grasps the same orange cube (e), weight it (f), and finally puts it on top to his
right (g). SMCs Extraction: in each SMT the robot learns the salient perceptions (object cluster color
and weight) and the associated action highlighted, respectively, in orange and yellow in the figures.
After extracting the SMCs from the first SMT, the robot builds the SMCs tree in (c), while, after the
second SMT the final SMCs tree is in (f). Since the first two subtasks of the two SMTs are contingent,
they are merged by the SMCs tree building process.

4.3.3. SMCs Tree

Following the registration of the first SMT T1, the robot proceeds to extract the SMCs
and creates the initial branch in the resulting tree, as depicted in Figure 7d. Upon extracting
the SMCs from the second SMT, the system computes the contingency relationship between
S1,1 and S2,1. Since the final configurations 1x1,1

1 and 1x2,1
1 are in close spatial proximity and

the perceptions SP1,1 and SP2,1 perceive the same object and weight, the two fragments
are contingent and they are merged by the system. Then, the next two SMCs fragments
S1,2 and S2,2 are compared. Again, both the two final configurations 1x1,2

1 and 1x2,2
1 and

perceptions are similar, the two fragments are contingent and merged. Finally, the last two
SMCs fragments S1,3 and S2,3 are non contingent due to both different weights perceived
and final configurations. Consequently, the system introduces a new branch in the SMCs
tree, leading to the tree shown in Figure 7h.

4.3.4. SMCs Control Execution

At the beginning of the autonomous execution phase, the system receives context c1
∗,

in which the camera perceives one cluster (orange cube) and the weight sensor does not
detect any weight (zero weight), resulting in the salient perceptions SP∗1 = (S

1 p̃∗1, S
2 p̄∗1).
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The choice of the most contingent SMC is given by (45)

1 = arg min
i=1

(CNow(
SP∗1, SPi,1)) (73)

As previously mentioned, the only contingent SMC perception possible in the tree is
SP1,1. Hence, if it satisfies the contingency relation the contingent action mapping computes
A1(t) by adapting the most contingent SMC action:

A1
1(t) = S A1,1(ω1,1, xs, x f , τ) (74)

where x f =
S
1 x1 and xs assumes the value of xPOI at the initial instant of execution. Oth-

erwise, if the contingency relation is not satified, the robot will stay in idle state with the
option to retrieve the SMT recording process.

The same happens when the system receives the new context c2
∗, in which the camera

perceives one cluster (orange cube) and the weight sensor does not detect any weight (zero
weight), resulting in the salient perceptions SP∗2 = (S

1 p̃∗2, S
2 p̄∗2). The only contingent SMC

perception possible in the tree is SP1,2. Hence, if it satisfies the contingency relation the
contingent action mapping computes A2(t) by adapting the most contingent SMC action
and the robot reaches its final destination x f = S

1 x2 where the orange cube is above the
weight sensor. Otherwise, the robot will stay in idle state.

Subsequently, the system receives another context c3
∗, in which the camera perceives

the orange cube cluster and the the weight sensor acquire the object weight resulting in the
salient perceptions SP∗3 = (S

1 p̃∗3, S
2 p̄∗3).

The choice of the most contingent SMC is given by (45)

imin = arg min
i=1,2

(CNow(
SP∗3, SPi,3)) (75)

Finally, the contingent action mapping computes A3(t) by adapting the most contin-
gent SMC action:

A∗
3(t) = S Aimin ,3(ωimin ,3, xs, x f , τ) (76)

In this specific case, two localized perceptions are involved; therefore, the value of
x f =

S
1 x3. Whereas, xs assumes the value of xPOI at the initial instant of execution.

5. Experimental Validation

The validation of our proposed framework involved two stages: a comprehensive
numerical assessment in a simulation environment and practical real-world experiments.

In the simulation phase, we employed a repetitive pick-and-place scenario, akin to
the example outlined in Section 4.1, to thoroughly evaluate the framework’s robustness
and repeatability. We assessed key performance metrics such as success rates, execution
times, and perception comparison duration, taking into account variations in the initial
conditions for each execution.

The first real-world experiment closely resembled the scenario detailed in Section 4.3.
In this test, the robot was programmed to organize objects by their weight (Example
Section 4.3). The primary objective was to gauge the system’s proficiency in recognizing
contingent Sensory-Motor Contingencies (SMCs) and effectively merging them to construct
a coherent SMCs tree.

In the second real experiment, our framework was evaluated in a more complex setting.
This scenario involved the registration of two similar loco-manipulation Sensory-Motor
Traces (SMTs) and incorporated additional sensors. The robot’s task was to organize objects
based on their function within different rooms. The assignments encompassed a range of
activities, including opening doors, wardrobes, and grasping objects, among others. This
experiment pushed the framework to operate under conditions of extensive environmental
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interaction, synchronization of manipulation and navigation actions, and the recognition
and merging of contingent SMCs.

Video of the executed tasks is available in the attached multimedia material and from
these links ( https://www.dropbox.com/scl/fo/1v2u583fsc3rol6nvel42/h?rlkey=tfwq7m9
xrzcke2f0b1srflzmf&dl=0, accessed on 18 December 2023).

5.1. Validation in Simulation
5.1.1. Experimental Setup

The numerical validation was carried out on a laptop equipped with an Intel Core
i7-10750H CPU, 16 GB of RAM, and running Ubuntu 18.04.

In our simulation, we replicated a pick-and-place scenario utilizing the Panda Emika
Franka 7 DoFs arms equipped with the Franka hand gripper as end-effector (https://
github.com/frankaemika/franka_ros/tree/develop/franka_gazebo, accessed on 15 July
2023), which are available on the Gazebo simulator [44], as depicted in Figure 8.

Figure 8. SMCs tree in the Pick-and-Place experiment.

To interact with the simulation, the user employed an interactive marker provided
by the Franka simulator to manipulate the end-effector. A keyboard key was utilized to
signal the system of temporal saliency segmentation, indicating the start and end of each
Sensory-Motor Trace (SMT) fragment, as explained in Section 4.3.

During SMT registration, the robot operated in Cartesian impedance control mode,
and the reference poses were derived from the simulator. Gripper closure was activated via
the ROS control action.

To capture the point cloud of the objects in the simulated environment, we employed
a virtual Asus Xtion camera. The point cloud underwent several filtering steps to reduce
computational overhead: cropping the region of interest, eliminating the table surface,
and clustering the objects. All these steps were executed using the Point Cloud Library
(https://pcl.readthedocs.io/projects/tutorials/en/master/walkthrough.html, accessed on
7 April 2023), which offers numerous modules for filtering and clustering point cloud data.

In our methodology, we employed the Dynamic Movement Primitives approach
to encode the robot’s movements, utilizing 100 Gaussian basis functions. The temporal
resolution was set to dt = 0.01, while parameters α = 10, p = 90, and d = 60 were
configured to regulate damping, propulsion force, and convergence rate, respectively.

For assessing the interaction distance between two actions, we applied the Euclidean
distance function to action parameterization, employing a threshold value of ThA = 0.02 to
evaluate contingency relations.

Furthermore, considering the perceptions involved as sets of clusters defined by
color histograms and positions, we utilized the Bhattacharyya distance metric [45] as the

https://www.dropbox.com/scl/fo/1v2u583fsc3rol6nvel42/h?rlkey=tfwq7m9xrzcke2f0b1srflzmf&dl=0
https://www.dropbox.com/scl/fo/1v2u583fsc3rol6nvel42/h?rlkey=tfwq7m9xrzcke2f0b1srflzmf&dl=0
https://github.com/frankaemika/franka_ros/tree/develop/franka_gazebo
https://github.com/frankaemika/franka_ros/tree/develop/franka_gazebo
https://pcl.readthedocs.io/projects/tutorials/en/master/walkthrough.html
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inter-perception distance measure. A threshold of ThP = 0.1 was employed to evaluate
contingency relations based on this metric.

5.1.2. Task Description

In this experiment, we subjected the robot to over a thousand iterations of a straight-
forward pick-and-place task. This extensive testing aimed to assess the framework’s
repeatability and precision. For more complex experiments, please refer to the real-world
experiments.

The SMT registration consists of two fragments, such as for the example in Section 4.1,
where a white object is placed on the table in front of the robot. The robot has no prior
knowledge of this object, and there are no associated actions linked to it. In the first frag-
ment, the user takes control of the robot and instructs it to pick up the object. Subsequently,
in the second fragment, the robot is guided to deposit the object inside the orange cube.

Upon completion of this programming phase, the robot acquired the SMCs tree
depicted in Figure 8. As a result, the robot gained the ability to autonomously handle the
grasping and positioning of various objects, even when they are initially positioned at
random locations.

5.1.3. Results

We conducted a total of 1288 simulations, randomly selecting the initial object poses
along the length of the table. Our success rate for these simulations was 91.382%. The vari-
ability in object poses is depicted in Figure 9, and Figure 9a displays a histogram showing
the initial position distance of each object concerning the object’s position during the SMT
registration, which was (0, 0, 0.78) [m]. Additionally, Figure 9b illustrates a histogram of
the orientation distance relative to the initial orientation, which was (0, 0, 1.20) [rad] in roll,
pitch, and yaw (RPY).

(a) (b)

Figure 9. Pose distances histograms with respect to the SMT registration pose: (a) position and
(b) orientation distance histogram of each object during the execution with respect to the SMT
registration perceived object.

The distribution of objects is visually represented in Figure 10, where the initial
positions of the objects are color-coded according to their initial height relative to the table
plane. Figure 10a presents all the objects that were successfully placed in the orange box,
while Figure 10b depicts all objects for which the robot did not complete the task. The
dotted circles in the figures indicate the intervals used to calculate the success rate, as shown
in Figure 11.
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(a) (b)

Figure 10. Objects Positions: in the figures there are all the objects initial position (x,y) in each
execution. The marker color depends on the objects height (0.0 m = on the table). In black, there is the
object initial position in the registration phase. Figure (a) depicts all the successes, while (b) presents
all the failures. Finally, the dotted circles correspond to the intervals in Figure 11.

Figure 11. Success Rate: the success rate related to the distance from the initial position of the object
during registration.

Finally, we assessed the processing time during the execution phase relative to the
registration phase, which took 15 s. Figure 12a displays the histogram representing the time
taken by the framework to compare salient perceptions in the context-SMT contingency
relation evaluation. In Figure 12b, the associated histogram shows the total execution
process time, including both perception and action phases.

(a) (b)

Figure 12. Figure (a) shows the time taken by the vision system to recognize the object to be grasped
in each execution; (b) shows the duration of each pick-and-place task execution.
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5.2. Validation in a Real Manipulation Task
5.2.1. Experimental Setup

The robot was programmed to sort objects based on their weight, as illustrated in
Example Section 4.3. The setup included wearable devices worn by the user, a manipula-
tion system, and a perception system for object and environmental information retrieval,
as depicted in Figure 13.

The user interacted with the system through a tele-operation setup, utilizing touch con-
trollers to track the pilot’s hand movements at a frequency of 100 Hz. The tele-impedance
approach [46] was employed to control the end-effector’s pose. A button on the touch
controller is used by the user to indicate the temporal saliency extraction points for each
SMT fragment, as outlined in Section 3.1.

The manipulation system comprised a Gofa ABB 7 DoFs robotic arm with a two-
fingered gripper as the end-effector. During registration, the robot operated under Carte-
sian impedance control, and the reference poses were derived from the Oculus Rift CV1
touch controller (https://www.oculus.com/, accessed on 20 July 2023). The gripper was
actuated by the controller’s trigger. To capture the point cloud of objects within the scene,
an Industrial Zivid Camera (https://www.zivid.com/, accessed on 20 April 2023) is used.
The point cloud underwent several filtering steps to reduce computational costs, including
cropping around the region of interest, removing the table surface, and clustering the ob-
jects as in the simulation validation. Additionally, an ATI sensor was employed to measure
the weight of the objects.

For this real manipulation task, we employed the identical parameters as those used
in the simulation. Specifically, the perception threshold ThP = 0.1 remains consistent,
including its application in assessing the disparity of weights provided by the ATI sensor.

Figure 13. Manipulation Task Setup: the manipulation task setup includes a Gofa ABB 7 DoFs arms
equipped with a two fingers gripper as EE, an Inustrial Zivid Camera and an ATI sensor to perceive
and weigh the Heat-counters on the table.

5.2.2. Task Description

In this experiment, the robot was programmed to organize objects based on their
weight. We utilized heat counters as the manipulated objects, simulating a scenario involv-
ing the disposal of electronic and non-electronic components.

5.2.3. SMTs Registration

In the first SMT registration, a heat counter without electronics was presented in front
of the robot. At this stage, the robot had no prior knowledge of the object, and there were
no associated actions linked to it. The user then took control of the robot and instructed
it to grasp the object and place it on a weight sensor for measurement. Finally, the user
guided the robot on where to position the object.

https://www.oculus.com/
https://www.zivid.com/
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In the second SMT registration, the user repeated the same procedure with a heat
counter containing electronics. However, this time, the robot was programmed to place it
in a different location based on the perceived weight that is different from the previous one.

5.2.4. Execution Phase

After extracting the SMCs, the robot learned the tree structure depicted in Figure 14.
As a result, it can autonomously manage the grasping and positioning of various objects
placed in different initial positions. Additionally, it can autonomously identify the contin-
gent SMC to execute based on the object’s weight, as demonstrated in the execution phase
shown in Figure 15.

Figure 14. SMCs tree in the Real Manipulation Experiments: The system registered two different
SMTs. In the first one, the user took a heater-counter without electronics, weighed it, and placed it
in the blue box; while in the second, he carried out the same procedure but with a heater-counter
with electronics and, having a different weight, placed it in the white box. Since the first two SMCs
fragments of each SMT have the same perceptions and actions (are contingent), they were merged
during the SMCs tree building phase.

Figure 15. Execution phase in the Real Manipulation Experiments: all the heat-counters were sorted
correctly according to their weight.

5.3. Validation in a Real Loco-Manipulation Task
5.3.1. Experimental Setup

In this experiment, the robot’s task was to organize objects based on their functionality
within different rooms. The setup for this experiment comprised several components,
including wearable devices worn by the user, a mobile manipulator, and a perception
system, as illustrated in Figure 16.



Robotics 2024, 13, 58 27 of 33

Figure 16. Mobile Manipulator Robot System: the mobile manipulator system includes a Robotnik
Summit-xl-steel platform, a Panda Franka Emika robot with 7 Degrees of Freedom (DoFs) arms,
featuring a Pisa/IIT SoftHand as End Effector (EE), a two-degree-of-freedom robotic head equipped
with a Zed mini camera and an Intel Realsense D4155 camera to perceive the environment.

The user interacted with the system through an immersive tele-operation setup. Specif-
ically, an Oculus Rift CV was used to capture images from a stereo camera (ZED mini
(https://www.stereolabs.com/zed-mini/, accessed on 22 April 2023) while touch con-
trollers were employed to track the pilot’s hand movements. These controllers, operating at
a frequency of 100 Hz, also served to control the mobile base. Similar to previous examples,
the initiation and termination of each SMT fragment are triggered as described earlier.

The mobile manipulator consisted of a Robotnik Summit-xl-steel platform, a Panda
Franka Emika with 7 DoFs arms, equipped with a Pisa/IIT SoftHand [47] as EE, and a
two-degree-of-freedom robotic head equipped with the Zed mini camera.

During the registration phase, the robotic arm was controlled using the Cartesian
impedance controller, with the reference pose obtained from the Oculus Rift CV1 touch
controller. The Pisa/IIT SoftHand’s closure was activated using the controller trigger.
The robotic head synchronized with the pilot’s head movements, monitored by the Oculus
Rift CV1 headset sensors, ensuring a clear view of the scene. An Intel Realsense D4155
(https://www.intelrealsense.com/, accessed on 10 April 2023) was used to capture the
point cloud of the objects in the environment, employing the same filtering process as in the
manipulation experiments. Additionally, 2D sick lidars mounted on the Summit-xl-steel
platform were used to acquire the point cloud data of the rooms.

5.3.2. Task Description

The experiment took place at the Research Center E. Piaggio in Navacchio. In this
experiment, the robot’s objective was to retrieve objects from a wardrobe and subsequently
return them to their designated locations based on the type of each object. To accomplish
this task, the robot needed to navigate through various rooms, and a visual representation
of the environment is provided in Figure 17.

https://www.stereolabs.com/zed-mini/
https://www.intelrealsense.com/
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Figure 17. Real Experiments Environment Scheme: In the first SMT registration, the robot traveled
the green route: starting from point A, it opened a sliding door, took an object from the wardrobe in
B, and placed it on a table at the final point C. Instead, in the second registration, it traveled the red
path by opening the same sliding door, taking a different object in the wardrobe in B, and placing it
on a table at the final point D.

5.3.3. SMTs Registration

In the first SMT registration (green path in Figure 17), the robot began at point A in
room 1 with no prior knowledge of its environment. The user took control of the robot and
guided it to open the sliding door to reach point B in another room. Subsequently, the user
continued the process by instructing the robot to open the wardrobe, pick up a green can,
and place it on the table at point C.

In the second SMT registration (red path in Figure 17), the user repeated a similar task
procedure but, this time, the robot grasped a screwdriver from the wardrobe and left it on
the table at point D.

5.3.4. Execution Phase

Following the extraction of SMCs, the robot acquired the knowledge represented
by the tree in Figure 18. As a result, it possessed the capability to independently handle
the grasping and placement of various objects, even when they were initially positioned
differently. Additionally, the robot autonomously identified the contingent SMC to execute
based on the type of object involved.
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Figure 18. SMCs tree in the Real Loco-manipulation Experiments: The system registered two different
SMTs. In the first SMT, the user controlled the robot to reach a sliding door, open it, navigate to a
wardrobe, open it, take a green can, and place it on a table. Instead, in the second SMT, the human
operator controlled the robot to open the same sliding door, take a different object in the wardrobe,
and place it on a different table. The SMCs tree building process merged all the SMCs fragments of
the two SMTs up to the SMC in which the robot grasped different objects.
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6. Discussion

The validation in a pick-and-place simulation scenario demonstrated the robustness
and repeatability of the framework, achieving a success rate of over 90%. Examining
Figure 11, we observe a decreasing success rate as the object’s location moves further away
from the SMT registration point. This decrease is attributed to the increased pose error
estimation as objects are positioned near the camera’s field of view boundary. Additionally,
from Figure 12a, we notice an increase in time for the vision system to recognize objects
located farther away.

Figure 12a,b reveal that the average execution times are lower than the SMT registra-
tion time (15 s). This efficiency is achieved by the framework’s design, which eliminates
waiting time when the user initiates or concludes SMT fragments. The variance in execution
times is primarily due to the vision system’s need to compare incoming perceptions with
stored ones to identify objects for grasping.

In our real experiments, we assessed the framework’s capabilities in managing and
integrating diverse robotic systems and sensors. In the first real experiment, the system suc-
cessfully extracted salient SMC perceptions from the camera and weight sensor, as well as
merged the initial SMCs from each SMT. Thanks to the SMCs tree, the robot autonomously
and efficiently sorted objects on the table. Employing identical parameters from the sim-
ulation, real-world manipulation achieved a 100% success rate in sorting the five objects.
However, due to the limited number of tested objects, it is impossible to conclude on the
statistical significance of that specific experiment. Nonetheless, the reported results and the
experiment video contained in the multimedia file demonstrate the exemplary performance
of the simulation-developed system in real-world applications.

The framework’s architecture was thoughtfully designed to seamlessly transition
between manipulation tasks and loco-manipulation ones, allowing us to evaluate the
framework in combined tasks. The loco-manipulation experiment illustrated the frame-
work’s proficiency in learning and managing combined SMTs, particularly in scenarios
necessitating synchronization between manipulation and navigation—an accomplishment
that traditional planners often struggle with. From the multimedia material depicting
the autonomous executions, it becomes evident that the robot adeptly handled real-time
changes in the wardrobe’s pose during execution. It demonstrated a remarkable ability
to seamlessly adapt to the dynamic adjustments of the furniture, ensuring precise task
execution even in the face of unexpected movements.

Affordances in SMCs-Tree

Building an SMC-Tree as described in Section 3.8 can provide the robot with an implicit
representation of the affordances that exist in a given environment. Indeed, the different
branches sprouting from similar scenarios (e.g., the vision of a bottle) could lead to the
execution of actions linked to different affordances (e.g., fill-in the bottle, open the bottle-
cap, pour the bottle content in a glass, etc.. . . ). However, although we can link affordances
to the branches that sprout from a given node, there is not a one-to-one correspondence
between affordances and branches, as there could be more than one branch associated with
the same affordance, and there could be affordances that are not explored by the tree at all.

Moreover, it is important that our SMC-based framework relies on the hypothesis that
there exists some perception P of the environment that can be used to tell which is the
right SMC branch to follow along the tree. Therefore, although one could imagine using
variations of our approach to build a tree representing all the possible affordances of a given
object by combining many SMTs (one for each affordance to learn), some affordances may
manifest in Sensory-Motor Traces (SMTs) as a consequence of unobservable variables that
exist solely in the operator’s intentions. When two identical situations differ only in their
unmanifested intentions, it becomes challenging to capture and represent the information
solely through SMTs. Consequently, one would need to explicitly express these intentions,
perhaps through an additional operator command signal, to effectively account for the
subtle distinctions in the tree and explore all possible affordances of a scenario.
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7. Conclusions

In this work, we have presented a comprehensive framework for robot programming,
centered around the acquisition of multiple Sensory-Motor Contingencies (SMCs) derived
from human demonstrations. Our framework extends the fundamental concept of identify-
ing pertinent perceptions within a given context, allowing us to detect salient phases within
Sensory-Motor Traces (SMTs) and establish a sensor space metric. This metric empowers
the agent to assess the robot’s interactions with the environment and recognize stored
contingent SMTs in its memory. Moreover, we leveraged Learning from Demonstration
techniques to abstract and generalize learned action patterns, thereby enhancing the adapt-
ability of our system to diverse environmental conditions. Consequently, we extracted
a comprehensive collection of SMCs, effectively encapsulating the intricate relationships
between actions and sensory changes, organized in a tree structure based on historical
observations and actions.

To validate our framework, we conducted an extensive set of numerical validation ex-
periments, involving over a thousand pick-and-place tasks in both simulated and real-world
settings. In the simulated validation, we achieved a success rate of 91.382%, demonstrating
the efficacy of our framework in virtual environments. Conversely, in both real-world
experiments, we attained a remarkable 100% success rate, underscoring the robustness and
reliability of our system across physical applications. These experiments utilized both a
manipulator and a mobile manipulator platform, showcasing the versatility and robustness
of our system.

In future endeavors, we aim to further test our framework in various operating
conditions and explore opportunities for integrating collaborative tasks across multiple
robotic systems. Moreover, we plan to explore the representation of affordances within the
framework of SMC trees, since we believe that this could enable agents to perceive and
respond to a wider range of action possibilities presented by their environment.

8. Patents

The research showcased in this paper is encompassed by Patent Number WO2022175777A1.
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