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Abstract: The evaluation of satellite soil moisture is a big challenge owing to the large spatial
mismatch between pixel-based satellite soil moisture products and point-based in situ measurements.
Upscaling in situ measurements to obtain the “true value” of soil moisture content at the satellite
grid/footprint scale can make up for the scale difference and improve the validation. Many existing
upscaling methods have strict requirements regarding the spatial distribution and quantity of soil
moisture sensors. However, in reality, soil-moisture-monitoring networks are commonly sparse
with low sensor density, which increases the difficulty of obtaining accurate upscaled soil moisture
data and limits the validation of satellite products. For this reason, this paper proposes a scheme to
upscale in situ measurements using five machine learning methods along with Landsat 8 datasets
and DEM data to validate the accuracy of a SMAP-enhanced passive soil moisture product for a
sparse network on the Qinghai–Tibet Plateau. The proposed scheme realizes the upscaling of in situ
soil moisture data to the pixel scale (30 m × 30 m) and then to the coarse grid scale (9 km × 9 km)
by using multi-source remote sensing data as the bridge of scale conversion. The long-time SMAP
SM products since April 2015 on the Qinghai–Tibet Plateau were validated based on upscaled soil
moisture data. The results show that (1) random forest regression performs the best, and the upscaled
soil moisture data reflect the region-average soil moisture conditions that can be used for evaluating
SMAP data; (2) the SMAP product meets its scientific measurement requirements; and (3) the SMAP
product generally underestimates the soil moisture in the study area.

Keywords: soil moisture; SMAP; evaluation; sparse ground-based sites; upscaling; random forest
regression

1. Introduction

Soil moisture (SM) is a key element in geoscience research, reflecting the moisture
status of the land surface and playing a crucial role in regulating global water and energy
cycles [1–3]. High-quality soil moisture information is essential for flood/drought predic-
tion and warning, agricultural monitoring, weather forecasting, and other fields [4–6]. For
a long time, it has been difficult to obtain large-scale soil moisture data due to the expensive
installation and maintenance costs of traditional ground-based soil-moisture-monitoring
systems [7,8]. In recent years, continuous advances in remote sensing technology have
made worldwide soil moisture measurements possible [9,10].

Satellite SM products need to be verified with high-precision in situ measurements to
assess their accuracy [11,12]. However, it is unreasonable to compare pixel-based satellite
soil moisture products and point-based in situ measurements directly, owing to the large
spatial mismatch between them [13,14]. Therefore, upscaling becomes a very important
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step during validation. It converts the data scale from the small scale to the large scale, thus
providing the reference SM values at the satellite scale for the validation of satellite SM
products [15]. There are several upscaling methods based on in situ measurements: (1) sim-
ple averaging, which directly calculates the arithmetic mean of all in situ measurements
within the satellite grid and regards it as the “true value” of the grid [4,16,17]; (2) Kriging,
a traditional geostatistical method, which uses the spatially correlated structure of in situ
measurements among sites to estimate soil moisture of the whole region [18,19]; and (3) the
model-driven method, which simulates the spatial pattern of soil moisture by building a
land surface model [20–23]. Due to the strong spatial heterogeneity of soil moisture, many
methods need a certain number of SM sensors to ensure that their upscaled soil moisture
data can accurately reflect the real soil moisture conditions at large scales [24,25]. However,
a large number of available soil moisture monitoring networks around the world have a
low density of observation sites; in some cases, only one site is distributed within a single
satellite grid [15,26]. For such sparse ground-based observations, the upscaled soil mois-
ture data based only on a limited number of in situ measurements are not representative.
Therefore, extra information is required to support upscaling, and higher-resolution remote
sensing images become a great option [27–29]. Clewley et al. [30] used satellite products
derived from Landsat data and DEM to carry out upscaling experiments. Qin et al. [24]
and Kang et al. [26] used MODIS-derived apparent thermal inertia to scale up in situ
measurements. These previous studies showed that introducing remote sensing data or
its derived data as auxiliary information into the upscaling can improve the upscaling
accuracy effectively.

Currently, the soil moisture active passive (SMAP) satellite maps land surface soil
moisture and detects soil freeze–thaw states at a global scale through the collaboration
of its synthetic aperture radar and radiometer [31]. It began operation in April 2015, but,
unfortunately, its radar stopped working after July 2015, and now only the radiometer is
operating. It publicly provides SM products with 36 km and 9 km grid cells [32]. To date,
SMAP products have undergone extensive validations in data-rich regions in the United
States, Europe, and China [10,14,33–36], while much less work is conducted in areas with
sparse ground-based observations.

The Qinghai–Tibet Plateau is the origin of many large rivers in Asia [37,38], and
it can directly drive climate change in its surrounding areas through atmospheric and
hydrological processes [39,40]. Obtaining high-quality and large-scale soil moisture data
on the Tibetan Plateau is of great importance. The SM sensors in the Ngari region of the
Qinghai–Tibet Plateau are very sparse, and it is challenging to evaluate the 9 km SMAP
SM products using reliable upscaled SM data. In this paper, we introduce multi-source
remote sensing auxiliary information with a spatial resolution of 30 m to conduct upscaling
experiments on the Ngari network, aiming to find an appropriate upscaling method for
sparse soil moisture networks, obtain reliable upscaled soil moisture time series, and
validate long-term SMAP products. In addition, while most previous satellite product
validations have been based on short-term data (1–3 years) [39,41], this paper utilizes
multi-source remote sensing data and the upscaling method to obtain reference SM values
from 2013 to 2021, enabling the validation of SMAP products over a longer time series
(since 2015). The format of this paper is as follows. Section 2 introduces the research data.
Section 3 describes the upscaling strategy and evaluation metrics. Sections 4 and 5 give the
results and discussion, respectively. Finally, Section 6 presents the conclusions of this study.

2. Study Data
2.1. SMAP SM Product

The soil moisture active passive (SMAP) mission carries an L-band radiometer and an
L-band synthetic aperture radar to detect global land surface soil moisture and freeze–thaw
states. The radiometer and radar can map soil moisture at a spatial resolution of 36 km and
freeze–thaw conditions at a spatial resolution of 3 km, respectively, while they can cooperate
to produce 9 km soil moisture products. After the radar stopped working in July 2015, the
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SMAP mission remained committed to providing high-resolution observations, even with
only the passive radiometer working [32]. SPL3SMP_E is a SMAP-enhanced Level-3 daily
composite SM product derived from the Backus–Gilbert interpolated radiometer brightness
temperature measurements that are posted on the 9 km EASE-Grid 2.0. It can provide daily
SM estimates of the upper 0–5 cm soil layer across the global land surface, and more details
can be found in SMAP (https://smap.jpl.nasa.gov/, accessed on 17 February 2022). In
this paper, we chose the SPL3SMP_E products (V4) in the Ngari region from April 2015 to
December 2021 for evaluation.

2.2. In Situ Observations

The Ngari soil moisture and soil temperature monitoring network is located in the
western Qinghai–Tibet Plateau in a cold arid environment [42]. In this area, the surface
land cover is mainly desert and alpine meadow, and the overall soil moisture content
is low. Since the network was established in 2008, its sites have continuously measured
soil moisture at various depths (5–80 cm) at 15 min intervals. During this period, some
sites were damaged, and several new sites were added. At present, there are 13 sites that
can provide long-term normal observation data (SQ02, SQ03, SQ06, SQ07, SQ08, SQ10,
SQ11, SQ14, SQ17, SQ18, SQ19, SQ20, SQ21), which are distributed in an area of about
45 km × 45 km. More information can be read in [43]. Figure 1 shows the distribution of
normal SM sensors in the study area and outlines the specific validation area of the SMAP
SM product in this paper with a pink frame, which marks the corresponding 9 km EASE-2
grid. It is clear that the SM sensors of the Ngari network are sparse, and there are often
only one or even no effective sites in a single 9 km EASE-2 grid. In this paper, we used in
situ measurements at 5 cm from March 2013 to September 2019.
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SMAP validation area is delineated using the 9 km EASE-2 grid and labeled with serial numbers 1–20.
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2.3. Ancillary Datasets

The remote sensing auxiliary data used in this study were taken from Landsat 8 satel-
lite observation data and an ASTER GDEM digital elevation model, both with a spatial
resolution of 30 m.

(1) Landsat 8 satellite observation

Landsat 8, one of the Landsat satellites, was jointly developed by NASA and the
USGS and launched in February 2013. Landsat 8 is equipped with two payloads, a thermal
infrared sensor (TIRS) and an operational land imager (OLI), to provide satellite observation
data of the global land surface with spatial resolutions of 15 m, 30 m, and 100 m. More
details can be found in Landsat Science (https://landsat.gsfc.nasa.gov/, accessed on 22
February 2022). In this paper, the land surface reflectance of the OLI sensor from March
2013 to December 2021 and the derived normalized difference vegetation index (NDVI)
information were used. Among them, the data from March 2013 to September 2019
were used to build the upscaling model together with the in situ measurement, and the
data from March 2013 to December 2021 were upscaled using the model to validate the
SMAP products.

(2) Digital Elevation Model

The advanced spaceborne thermal emission and reflection radiometer global digital
elevation model (ASTER GDEM) is a digital elevation product jointly developed and
released by NASA and METI. Its products are generated from stereo images collected by
the ASTER sensor with a spatial resolution of 30 m. They are able to cover all land between
83◦ N and 83◦ S latitude, which is about 99% of the world’s land area. More details can be
found in ASTER (https://asterweb.jpl.nasa.gov/, accessed on 21 March 2022). This study
used the ASTER GDEM V3 elevation data released in August 2019 and obtained the slope
and aspect of the terrain parameters for upscaling research.

3. Method
3.1. Upscaling Strategy

In order to make up for the huge scale difference between the satellite observations
and the in situ measurements, the satellite SM product validation needs to scale up the in
situ measurements to provide the reference SM value of the grid scale. Generally, when
a sufficient number of valid in situ measurements are available for an area, their average
value can be considered as the true value of the soil moisture in the area. However, in
reality, many soil-moisture-monitoring network sensors are not dense enough, including
the Ngari network. It is challenging to validate satellite SM products based on sparse
observations because the area-average soil moisture value obtained from limited field
measurements is not representative. The key to solving this problem is to supplement
additional effective soil moisture information to make up for the insufficiency of in situ
measurements, so as to ensure that the average soil moisture obtained can reflect the true
soil moisture conditions. The higher-resolution remote sensing image is a good choice of
auxiliary data for the following reasons:

• Satellite images are reliable auxiliary data sources, which have long-term time series
and are easy to access;

• Satellite images cover a wide range, which can make up for the deficiency of in situ
measurements to a certain extent;

• Satellite images are spatially continuous and uniformly sampled, which can effectively
capture the spatial heterogeneity of soil moisture, and thereby reflect the soil moisture
status more accurately [27,28];

• Their high resolution means that each pixel is purer than those of coarse-resolution
images, and therefore the spatial difference between the pixel measurement and point
measurement is not too large.

https://landsat.gsfc.nasa.gov/
https://asterweb.jpl.nasa.gov/
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In this study, we assumed that a single in situ measurement can represent the soil
moisture situation within about 30 m of the site, and based on this assumption, we used
30 m multi-source remote sensing images as the scale conversion bridge. Our upscaling
strategy can be divided into the following two steps: the first step is to construct an
upscaling model by fitting the in situ measurements to the remote sensing images, and
then use the model to estimate the 30 m soil moisture values over the entire study area. In
the second step, we average the valid 30 m soil moisture estimates corresponding to each
satellite grid to obtain the reference 9 km soil moisture values. This method fully considers
the spatial heterogeneity of soil moisture and the spatial representation capability of in situ
measurements, and the whole upscaling process is shown in Figure 2.
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Figure 2. Schematic diagram of the methodology.

Considering that soil moisture is affected by terrain, vegetation cover, soil properties,
and other factors [15,44], we chose Landsat 8 surface reflectance, ASTER GDEM, and
their derived data as auxiliary information. These auxiliary data can be divided into
two categories: static features and dynamic features. Static features include elevation,
slope, and aspect, which are closely related to soil moisture but remain constant over time.
Dynamic features include seven bands of land surface reflectance and NDVI, which change
with time and can dynamically reflect changes in soil moisture. In addition, noting the
obvious seasonal variation in soil moisture, we also included the month in the upscaling
experiments. All auxiliary data were divided into two datasets; one was used to build up
the upscaling models together with the in situ measurements, and the other was used to
obtain the 9 km soil moisture estimates for the validation of the SMAP products. It should
be noted that, to ensure the temporal consistency of the data, we used daily-averaged in situ
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measurements consistent with the Landsat product dates for the upscaling experiments.
The integration of in situ measurements from 13 soil moisture sites with multi-source
remote sensing data from 2013 to 2019 yielded 2054 sets of data. In order to ensure the
model’s accuracy, we removed abnormal values in the in-situ measurements and filtered
out cloud-contaminated remote sensing data. Consequently, we obtained a final sample
dataset consisting of 756 sets of data. The auxiliary data used were of various types and
large quantities. In order to properly simulate the complex relationship between in situ
measurements and various input features, we preferentially selected the random forest
regression (RFR) [45] algorithm for the upscale experiment, which has performed well in
previous scale conversion experiments [6,30]. In addition, we selected four other machine
learning algorithms: gradient boosting regression tree (GBRT) regression [46], AdaBoost
regression [47], ridge regression (RR) [48], and automatic relevance determination (ARD)
regression for comparative experiments. Compared with some other traditional regression
algorithms, these selected algorithms are able to process large batches of data quickly
and efficiently, and they can model complex nonlinear systems [28,49,50]. During the
experiment, 2/3 of the study data were randomly selected for training, and the remaining
1/3 was used to test the model. Furthermore, the upscaled soil moisture data were verified
by in situ measurements.

3.2. Validation Metrics

In this paper, four statistical indicators [51,52], the correlation coefficient (R, bias, root
mean square error (RMSE), and unbiased root mean square error (ubRMSE), are used to
comprehensively evaluate upscaled soil moisture and satellite soil moisture products. R
represents the time correlation between two datasets, and the closer the R value is to 1, the
more similar their changing trends are. Bias describes the error; a positive value indicates
an underestimation, while a negative value indicates an overestimation. RMSE reflects the
degree of deviation between two datasets, and ubRMSE represents the average error after
removing the mean deviation. The smaller the values of these two metrics, the more similar
the two datasets are. The calculation formulae of the evaluation indices are as follows:

R =
∑N

i=1

(
SMx

i − SMx
)(

SMy
i − SMy

)
√

∑N
i=1

(
SMx

i − SMx
)2
√

∑N
i=1

(
SMy

i − SMy
)2

(1)

Bias =
1
N

N

∑
i=1

(
SMy

i − SMx
i

)
(2)

RMSE =

√√√√ 1
N

N

∑
i=1

(
SMy

i − SMx
i

)2
(3)

ubRMSE =

√
RMSE2 − Bias2 (4)

According to the upscaling strategy, upscaling results need to be validated using in
situ measurements, while the SMAP products need to be evaluated using upscaled soil
moisture data at the 9 km scale. Therefore, when evaluating the upscaling results, SMx

represents the upscaled soil moisture data, SMy represents the in situ measurements, and
N represents the number of samples involved in the calculation; when evaluating SMAP
products, SMx represents the satellite-observed soil moisture, SMy represents the upscaled
soil moisture at the 9 km scale, and N represents the number of samples involved in the
calculation. It should be noted that the SMAP baseline requirement is that the ubRMSE of
the soil moisture in the top 5 cm depth of soil must be less than 0.04 m3/m3.
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4. Results
4.1. Evaluation of the Upscaling Result

Five upscaling algorithms were run on in situ data and auxiliary data to construct
the upscaling models. We trained upscaling models with two-thirds of the data from
March 2013 to December 2019—since the Landsat 8 data are available—and verified the
performance of the five models using the remaining data. The evaluation results are
shown in Table 1. Among the five algorithms, the RFR algorithm performed the best
with the lowest ubRMSE (0.029 m3/m3) and RMSE (0.029 m3/m3), the smallest bias
(−0.002 m3/m3), and the highest R (0.826), which shows that the average error between
the in situ measurements and the upscaled soil moisture is small, and they have a high
degree of correlation and similar change trends. The GBRT algorithm was slightly inferior
to the RFR algorithm, but its performance was still surprising. As for the other three
algorithms, they have larger ubRMSE and RMSE, as well as a smaller R, indicating that
their performance was worse than the RFR algorithm and the GBRT algorithm.

Table 1. Evaluation metrics of five upscaling algorithms. The best and worst values in each column
are highlighted in bold underline and bold, respectively.

Upscaling Algorithm ubRMSE
(m3/m3)

RMSE
(m3/m3)

Bias
(m3/m3) R

Random Forest Regression 0.029 0.029 −0.002 0.826
GBRT Regression 0.03 0.03 −0.004 0.809

AdaBoost Regression 0.031 0.036 −0.018 0.781
Ridge Regression 0.036 0.036 −0.004 0.697
ARD Regression 0.039 0.038 −0.004 0.665

Figure 3 plots the time series of in situ measurements and the upscaled soil moisture
estimated by the five upscaling models. It shows that the estimates of soil moisture based
on the RFR model are similar to the in situ measurements, showing a good upscaling effect.
The estimates based on the GBRT model are also very close to the in situ measurements,
but there are obvious deviations in a few cases. The upscaling effect of the other three
models is not ideal. Among them, the AdaBoost model always overestimated the soil
moisture, and the RR and ARD models were unstable during upscaling. By comparing the
five upscaling algorithms, it was found that the RFR can accurately simulate the complex
relationship between in situ measurements and various features, and its model has an ideal
upscaling effect.

Figure 4 shows scatter plots between in situ SM and the 30 m SM estimates based on the
RFR upscaling model. The R values of the SM estimates and the in situ measurements at all
sites are above 0.7, and most of them are between 0.8 and 1, showing a good correlation. In
addition, the bias, RMSE, and ubRMSE are all small, and no abnormal results are observed.
Overall, the RFR upscaling model runs stably and performs well at upscaling.

To sum up, the upscaling model trained by the RFR algorithm can accurately simu-
late the complex nonlinear relationship between multi-source auxiliary data and in situ
measurements, and its soil moisture estimates can be used as valid supplementary data.

4.2. Soil Moisture Based on Upscaling

As discussed above, we used the RFR upscaling model to obtain soil moisture data at
the 30 m scale across the entire study area. Figure 5 shows the estimated soil moisture at the
30 m scale in Ngari, and the white grids in the figure represent clouds, which are regarded
as invalid data. It reveals that the upscaled soil moisture is highest in the iceberg and lake
area, and higher in the vegetation area than in the bare land area, which is consistent with
the actual situation.
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Figure 5. Estimated soil moisture at 30 m resolution (results from 9 dates were randomly selected for
display in the subfigures).

Figure 6 shows the upscaled soil moisture at the 9 km scale, which was obtained by
averaging the 30 m soil moisture according to the extent of the SMAP 9 km EASE-2 grid. It
is worth mentioning that if more than half of the 90,000 small 30 m grids corresponding
to a single 9 km grid contain clouds, the average soil moisture value of the grid will be
regarded as invalid data and will not be used for the evaluation of SMAP products.

The upscaling method proposed in this paper was applied to the remote sensing data
from March 2013 to December 2021. It can complete the soil moisture time series when the
ground observations are missing, so as to realize the long-term time series validation of
SMAP products.

4.3. Validation of SMAP SM Products

Based on the upscaled soil moisture at the 9 km scale, we evaluated the SPL3SMP_E,
which is the SMAP global daily 9 km composite radiometer soil moisture product. Figure 7
shows the overall validation results of the SPL3SMP_E products in Ngari. If the upscaled
soil moisture is regarded as the ground truth, the ubRMSE and RMSE of the L3_SM_PE
products in the Ngari are 0.023 m3/m3 and 0.031 m3/m3, respectively, meeting the scientific
observation requirements of the SMAP satellite mission (0.04 m3/m3). In addition, the bias
is 0.0205 m3/m3, indicating that the SPL3SMP_E products underestimate the soil moisture
in Nagri.

Table 2 shows the refined analysis results for 20 grids of SPL3SMP_E products in
the study area (the grid numbers are shown in Figure 1). It was found that the ubRMSE
and RMSE of each grid are within 0.04 m3/m3, meeting the SMAP’s scientific observation
requirements. In particular, all ubRMSE values are lower than 0.026 m3/m3, indicating
that the satellite products have good observation accuracy. All the biases are positive,
except for grid 16, meaning that the satellite products universally underestimated the soil
moisture of the study area. Additionally, most of the correlations (R) are significant at the
0.05–0.07 level.
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Figure 7. The comparison of 9 km upscaled soil moisture data with SMAP soil moisture.

Table 2. Evaluation metrics between the 9 km upscaled soil moisture data and the SMAP SM product.

Grid ubRMSE (m3/m3) RMSE (m3/m3) Bias (m3/m3) R

1 0.0156 0.0234 0.0175 0.4757
2 0.0185 0.0381 0.0333 0.4980
3 0.0177 0.0272 0.0207 0.5796
4 0.0180 0.0260 0.0188 0.6309
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Table 2. Cont.

Grid ubRMSE (m3/m3) RMSE (m3/m3) Bias (m3/m3) R

5 0.0180 0.0314 0.0257 0.6253
6 0.0219 0.0320 0.0234 0.4303
7 0.0183 0.0353 0.0302 0.5619
8 0.0176 0.0387 0.0344 0.5363
9 0.0176 0.0329 0.0279 0.5084

10 0.0211 0.0269 0.0167 0.5766
11 0.0200 0.0228 0.0109 0.5460
12 0.0238 0.0286 0.0159 0.6779
13 0.0236 0.0300 0.0185 0.5708
14 0.0251 0.0300 0.0165 0.5531
15 0.0230 0.0240 0.0068 0.5602
16 0.0190 0.0195 −0.0040 0.6380
17 0.0213 0.0390 0.0326 0.6336
18 0.0230 0.0368 0.0288 0.5737
19 0.0203 0.0289 0.0206 0.5872
20 0.0220 0.0297 0.0199 0.5414

Figure 8 plots the time series of 9 km upscaled soil moisture data and satellite-observed
soil moisture in six randomly selected grids. In order to ensure the time consistency of
data, the upscaled soil moisture and the validated SMAP were both chosen twice a month,
corresponding to Landsat’s visit time. It is clear that the SMAP observations in Figure 8
are discontinuous. This is because the soil in Ngari is either covered with snow or frozen
from November to May every year, and during this period, the SM data are masked in the
SMAP products due to uncertainties in the reference freeze/thaw conditions of satellite
retrieval. Nonetheless, we can find that the available valid satellite soil moisture data show
distinct seasonality, being high in summer and low in winter, which is consistent with the
actual conditions of Ngari. Moreover, it is found that SPL3SMP_E products overestimate
the soil moisture of the Ngari network during the wet period and underestimate it during
the dry season. Unfortunately, due to the short duration of the radar operation, it is hard to
compare the soil moisture products observed by the radar with the soil moisture products
obtained by interpolation.
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5. Discussion

In order to ensure the effectiveness of satellite SM product validation based on sparse
observations, a method is proposed to scale up the in situ measurements to a high-resolution
pixel scale (30 m) and then to a coarse grid scale (9 km) using the RFR algorithm. The
pixels at the 30 m scale are relatively pure, and, therefore, the spatial representativeness of
the satellite observations and in situ measurements are similar. Additionally, the spatial
continuity of satellite images can effectively capture the spatial distribution of SM within
9000 m, making up for the limited number and uneven spatial distribution of sparse
network sites. Moreover, when ground observations are missing, the long-term historical
data from Landsat fill in the gaps caused by the discontinuity in in situ SM and complete
the soil moisture time series. In conclusion, it is beneficial to acquire representative soil
moisture at the coarse grid scale by using high-resolution remote sensing data as a scale
conversion bridge [53].

To accurately simulate the complex relationship between in situ measurements and
multi-source auxiliary data, the RFR algorithm was used to construct the upscaling model.
Validation and comparison experiments show that the RFR algorithm has ideal upscaling
performance, which is superior to the other four upscaling algorithms: GBRT, AdaBoost,
RR, and ARD. The poor performance of the RR and ARD algorithms may be due to the fact
that they are more suitable for simulating relationships with fewer categories of data.

When we analyze the features of soil moisture, we find that SM has a clear seasonal
characteristic, and shows a relatively stable pattern of change over time throughout the
year. Typically, soil moisture reaches its lowest level in winter, gradually rises in spring,
reaches its peak in summer, and then falls back in autumn (Figure 9). Considering the soil
moisture change law over time, this paper incorporates the month information as a feature
of soil moisture estimation into the upscale experiment for the first time.
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Figure 10 shows the difference in upscaling model performance with and without
month information. It is obvious that the accuracy of the RFR, GBRT, and AdaBoost models
is improved when including the month information, with their ubRMSE and RMSE values
decreasing and their R values increasing. This suggests that monthly information is actually
useful for estimating soil moisture. However, for the RR and ARD algorithms, the accuracy
of soil moisture estimation decreased after using monthly information. This might be
due to the fact that adding the monthly information makes the dataset larger and the
relationships between the data more complicated, making it harder for the RR and ARD
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algorithms to simulate the relationships, and producing unfavorable results. It reminds
us that the usage of auxiliary data may not always have beneficial impacts and that while
building an upscaling model, the suitability of data and algorithm should be taken into
consideration. It is also important to note that the RFR algorithm shows a strong ability to
deal with complex nonlinear relations in the experiment and is a good choice for modeling
multi-source data and in situ measurements.
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To ensure the reliability of SMAP product validation, a long time series of upscaled
SM was obtained based on the proposed method. The validation results demonstrate that
the SPL3SMP_E products satisfy the requirements of their scientific goal. However, we
found that the products underestimate the actual soil moisture in the Ngari area which
may be related to the field environment and the properties of the radiometer itself. Sadly,
SMAP’s radar malfunctioned in April 2015, which prevents us from conducting further
comparisons and analyses.

6. Conclusions

In this paper, a soil-moisture-upscaling model suitable for sparse ground-based soil
moisture observations was constructed to evaluate SMAP products on the Qinghai–Tibet
Plateau. The model utilized machine learning algorithms to effectively capture the com-
plex relationship between in situ measurements and multi-source high-resolution remote
sensing auxiliary information. The inclusion of remote sensing auxiliary information
compensated for the limited number of sparse ground observation sites and enabled the
acquisition of spatially representative large-scale soil moisture reference values, which
were then used for the evaluation of SMAP products.

We explored five machine learning algorithms for upscaling. The experimental results
demonstrated that the random forest regression (RFR) algorithm was a good choice for
constructing complex upscaling models, outperforming the gradient boosting regression
tree (GBRT), AdaBoost, ridge regression (RR), and automatic relevance determination (ARD)
models. We also explored the potential of different auxiliary data in obtaining reliable
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estimates of soil moisture and found that, in addition to known soil-moisture-related
features, the month information was an effective variable for estimating soil moisture.

Based on the upscaled soil moisture, the long-term SPL3SMP_E products in the Ngari
region since the launch of the SMAP mission were evaluated. The results showed that
(1) Ngari’s SPL3SMP_E products contain a large amount of invalid data from November
to May due to uncertainties in the satellite retrieval of SM during the frozen season;
(2) whether in the entire study area or in a single grid, the ubRMSE is within 0.04 m3/m3,
meeting the scientific observation requirements of the SMAP mission; and (3) SPL3SMP_E
products underestimate the soil moisture in Ngari as a whole, but often overestimate the
soil moisture during the wet period. Future work will focus on improving the performance
of upscaling methods and expanding their application to other regions.
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