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Abstract: This study investigates the efficacy of an open vocabulary, multi-modal, foundation model
for the semantic segmentation of images from complex urban street scenes. Unlike traditional models
reliant on predefined category sets, Grounded SAM uses arbitrary textual inputs for category defini-
tion, offering enhanced flexibility and adaptability. The model’s performance was evaluated across
single and multiple category tasks using the benchmark datasets Cityscapes, BDD100K, GTA5, and
KITTI. The study focused on the impact of textual input refinement and the challenges of classifying
visually similar categories. Results indicate strong performance in single-category segmentation but
highlighted difficulties in multi-category scenarios, particularly with categories bearing close textual
or visual resemblances. Adjustments in textual prompts significantly improved detection accuracy,
though challenges persisted in distinguishing between visually similar objects such as buses and
trains. Comparative analysis with state-of-the-art models revealed Grounded SAM’s competitive per-
formance, particularly notable given its direct inference capability without extensive dataset-specific
training. This feature is advantageous for resource-limited applications. The study concludes that
while open vocabulary models such as Grounded SAM mark a significant advancement in semantic
segmentation, further improvements in integrating image and text processing are essential for better
performance in complex scenarios.

Keywords: street view; semantic segmentation; foundation models; open vocabulary; multi-modal
AI; GeoAI

1. Introduction

Street view imagery, rich in geospatial information, has emerged as a key resource
for urban analysis and applications [1–3]. Scraping and understanding visual elements at
the pixel level from street view imagery considerably affects many geospatial applications,
due to their abundant real-world semantics [4,5]. The ability to understand street scenes
and extract environmental components rapidly and accurately can significantly advance
fields such as autonomous vehicles, health and well-being, greenery, urban morphology,
transportation, and human mobility [2,6,7].

Recently, the advent of Large Language Models (LLMs) has ushered in a new era
of possibilities for geospatial science. LLMs, exemplified by models like GPT-4, have
the capacity to understand and generate text-based descriptions of geospatial data, thus
enhancing geospatial analyses [8,9]. These models are proving instrumental in AI-based
Spatial Data Analysis, enabling the automated interpretation of geospatial information
from text data [8–11].

Multi-modal AI models combined with LLMs, including Contrastive Language-Image
Pre-training (CLIP) [12] and Bootstrapped Language-Image Pre-training (BLIP) [13,14],
have expanded the horizons of Geospatial Artificial Intelligence (GeoAI). These large
multi-modal models align textual descriptions with visual data, facilitating a deeper un-
derstanding of geospatial context [7]. GeoAI leverages these models to extract geospatial
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insights from a wide range of sources, paving the way for more comprehensive urban
greenery assessments and mobility solutions [11].

Semantic segmentation, which involves the classification of images at the pixel level,
plays a vital role in capturing and processing the information of a user’s surroundings [15–17].
With this pixel level classification, the system can better understand the various objects and
scenes in the street view image such as roads, traffic signs, pedestrians, vehicles, buildings,
etc. [6,18].

Before the widespread adoption of deep learning, segmentation primarily relied on
hand-crafted techniques such as pixel colour, Histogram of Oriented Gradients (HOG), and
Scale-Invariant Feature Transform (SIFT) [19]. However, the field of semantic segmenta-
tion underwent a transformation with the advent of deep learning. Fully Convolutional
Networks (FCNs) marked a significant milestone by enhancing pixel-level classification
in segmentation tasks, integrating transposed convolutional layers into an end-to-end
trainable architecture [20].

The subsequent emergence of innovative models, including SegNet [21], U-Net [22],
DeepLab [23], and PSPNet [24], further propelled the capabilities of semantic segmentation.
U-Net, known for its unique skip connections and symmetric encoder–decoder structure,
achieved notable success in medical image segmentation [22,25]. DeepLab, on the other
hand, enhanced segmentation accuracy by introducing dilated convolutions to expand
the learnable context [23,26–28]. These techniques proved invaluable in urban imagery
understanding.

Despite the remarkable accuracy of deep learning methods, they encounter challenges
related to training datasets, domain adaptation, and object-specific segmentation. For
instance, traffic signs may exhibit variations between regions, necessitating domain adap-
tation techniques [29]. Moreover, semantic segmentation in street view scenarios often
requires the identification of specific objects, such as “pedestrians” and “riders” rather than
generic “people” [30].

This is where multi-modal foundation models in geographic context come into play.
Because their vast training datasets include diverse geo-information and -location, these
large models have a capacity for geographical understanding. This addresses the geograph-
ical limitations often encountered by traditional deep learning models when applied to
street scene understanding [30–32]. They can adapt seamlessly to diverse urban environ-
ments and have the capability to detect specific targets, such as “pedestrians crossing the
road”, “cars with flat tires”, and “no passing signs” [30,32].

In open vocabulary tasks, the inputs are not only images but also text describing the tar-
geted set of classes, referred to as a “prompt” in Natural Language Processing (NLP) [30,32,33].
Prompts are texts, queries, or descriptive instructions input to language-based models to com-
plete user-expected tasks. Slight differences in input prompts would cause entirely different
outputs, so careful text design is needed in open vocabulary tasks [34]. Therefore, exploring
appropriate prompts (i.e., words for expected classes) is also a key to this study.

Recent advancements in open vocabulary multi-modal models have shown impressive
results in many zero-shot tasks. Grounding DINO, a model designed for open-vocabulary
object detection, seeks to extend the understanding of open-set concepts by integrating both
language and visual modalities [30]. The Segment Anything Model (SAM), introduced in a
promptable model for segmentation, excels in generating high-quality masks from just a
single foreground point and demonstrates robust performance across various downstream
tasks through prompt engineering [35]. Grounded SAM, which merges the Grounding
DINO and SAM models, can detect and segment relevant regions in images based on
arbitrary textual inputs from users [36].

The purpose of this study is to investigate the performance of open vocabulary models
in the task of the semantic segmentation of street scene imagery. Four street scene datasets
from open benchmarks were used for testing using Grounded SAM [36]. The specific
objectives were to (1) validate the ability of the open vocabulary model to reason directly
about the visual semantics of street scenes without training; (2) explore the performance



ISPRS Int. J. Geo-Inf. 2024, 13, 153 3 of 20

of the open vocabulary model for different text prompts and the segmentation results
of the open vocabulary model for individual confusable categories; and (3) compare the
performance to SOTA models on the four benchmark datasets.

2. Data and Task
2.1. Dataset

To evaluate the zero-shot capabilities of open vocabulary models, we selected bench-
mark datasets that were not used in the training of the pre-trained models. Grounding
DINO was trained on datasets including Object365, GoldG, Cap4M, OI, and RefC, while
Segment Anything was trained on a specially created dataset [30,31,37]. Consequently,
we choose Cityscapes [18], BDD100K [38], KITTI [39], and GTA5 [40] for testing to avoid
data leakage.

2.1.1. Cityscapes

The Cityscapes dataset focuses on the semantic understanding of urban street scenes,
providing a large number of diverse stereoscopic video sequences from 50 different
cities [18]. It incorporates 19 pixel-level semantic categories, namely Road, Sidewalk,
Building, Wall, Fence, Pole, Traffic Light, Traffic Sign, Vegetation, Terrain, Sky, Pedestrian,
Rider, Car, Truck, Bus, Train, Motorbike, and Bike [18]. We utilised the validation set of
Cityscapes to explore the detailed performance of the open vocabulary model.

Due to the high-quality annotation within Cityscapes, numerous studies have utilised
it for research, making a vast array of reference results available. Consequently, our analysis
will primarily engage with, compare, and discuss the Cityscapes dataset. Given the general
applicability and usefulness of the categories defined in Cityscapes, many datasets have
adopted similar categories. Hence, we have additionally selected three other Cityscapes-
style datasets for comprehensive testing, to validate the performance in different conditions.

2.1.2. Additional Test Datasets

In addition to Cityscapes, BDD100K [38], KITTI [39], and GTA5 [40] were selected
for further testing. While akin to Cityscapes in terms of the categorisation into 19 classes,
these datasets offer unique perspectives owing to varied data collection conditions and
environments. This diversity enriches the testing landscape, providing a more rounded
evaluation of the model’s capabilities.

BDD100K consists of driving views and labels of various types for multitask learn-
ing. It was captured in the United States of America and its semantic segmentation set is
Cityscapes-like [38]. KITTI, with its focus on both urban and rural environments in Europe,
contains a Cityscapes-like semantic segmentation set which is tested in this study [39].
This offers an enriched context for model evaluation including urban and rural environ-
ments and different geographical locations. GTA5, a synthetic dataset derived from a
video game engine, presents high-resolution images across a spectrum of simulated urban
environments [40]. Its inclusion in the testing regimen is pivotal for assessing the model’s
adaptability from controlled, synthetic scenarios to real-world situations, a critical aspect
of model generalisation.

The rationale for using these additional datasets alongside Cityscapes is their com-
plementary nature. Each introduces different variables, such as varied lighting conditions
and weather scenarios, and contrasts between synthetic and real imagery. This variety not
only challenges but also reinforces the model’s ability to generalise and perform accurately
in diverse urban settings. Therefore, testing across these datasets offers a comprehensive
evaluation of the semantic segmentation model’s robustness and effectiveness.

2.2. Task Definition
2.2.1. Traditional Semantic Segmentation

Traditional semantic segmentation for images typically involves training a model such
as a CNN on datasets similar to the one seen in Figure 1a. At the training stage, the training
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images are learned and their semantic labels with pre-defined classes are used to update the
model’s parameters. After incremental parameter optimisation, the model peaks with the
best performance on the trained dataset. In the inference stage, the trained model receives
an image which is of a similar scene to the training data. A segmentation result within the
pre-defined classes is output.

(a) (b)

Figure 1. The framework of models in semantic segmentation tasks including training stage and
inference stage. (a) Traditional deep learning model. (b) Grounded SAM. The unlocked symbol
means that time must be spent on training; the locked symbol and grey boxes mean this part is
unchangeable.

Traditional semantic segmentation tasks are usually based on a fixed, predefined
vocabulary (or set of categories). Given an image I with size W × H (where W is the width
of the image and H is the height of the image), the goal is to assign a category label Li,j to
each pixel (i, j) (where i ∈ [1, W] and j ∈ [1, H]).

Thus, we can define a mapping function f : I → L, where I is an input image and L
is a labelling matrix of size W × H, where each element Li,j is a selection of labels from a
predefined set of categories C; thus, Li,j ∈ C.
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The function f is usually a deep neural network that accepts an input of image I and
outputs a labelling matrix L. The parameters of f are then updated iteratively by a loss
function L that compares the ground truth L∗, i.e., the true label of I, with L from f , until
L is closer to L∗. Normally, L is used to evaluate the prediction performance from the
true labels.

2.2.2. Open Vocabulary Semantic Segmentation

Taking Grounded SAM as the example of open vocabulary semantic segmentation, the
training data are normally not images only, as seen in Figure 1b. Besides the labelled images,
textual data and image–text pairs are used during training. The model architecture is more
complex, often not only a single network for visual learning but also additional structures
for language processing and image–text fusion. In the inference stage, because the model
has learned natural language and is able to understand text, the expected semantics are
not limited to a fixed set of categories but have an open vocabulary. The input data are a
proposed image and a set of expected classes. The output is the segmentation result within
the open vocabulary list the user has provided.

Open vocabulary image understanding combines image and text information to deal
with object categories that are not in a pre-defined vocabulary. Given an image I of size
W × H and a set of several categories T = {t1, t2, . . . , tN} (where N is the number of
category texts) whose representation is Text, the aim is to segment each pixel (i, j) (where
i ∈ [1, W] and j ∈ [1, H]) to a category label Li,j, and this category label is included in the
prompted classes T. The mapping function is f : (I, T) → L, where I is an input image and
L is a labelling matrix of size W × H where each element Li,j is a selection of labels from
the prompted categories T; thus, Li,j ∈ T.

In open vocabulary semantic segmentation tasks, the function f is not a single network
but a group of models. f consists of at least the following: (1) an image encoder for
extracting image features; (2) a text encoder for extracting text features; and (3) a fusion
mechanism that combines the image and text features to generate a category label for
each pixel. The inputs are an image I and a labelling set T, and the output is a labelling
matrix L (L ∈ T). The loss function L is applied to update the weights, but in multi-modal
learning, a contrastive loss between predicted objects and language tokens for classification
is implemented in addition to a loss function for visual modality. However, in this study,
we focused on the evaluation of the inference performance of the open vocabulary model
for the benchmark datasets without any training. We used common evaluation metrics to
quantify the model performance by comparing L prompted from T to ground truths L∗.

3. Methodology
3.1. Framework of Implementation and Evaluation of Grounded SAM

To quantify the performance of open vocabulary models in the semantic segmentation
of street views, we use four established image benchmark datasets and segment them
with Grounded SAM. We then refine the text prompts for Grounded SAM based on our
error analysis. Finally, we evaluate the performance on the benchmarks. The workflow
shown in Figure 2 is structured into three stages: Initial Inference, Prompt Improvement,
and Benchmarking.

Initially, we use the category names T1, defined in the Cityscapes dataset, as text
prompts. We apply single-word text prompts for each category to each input image I
from the benchmark dataset. Using the pre-trained open vocabulary model Grounded
SAM, we generate segmented images. We then compare these segmented outputs to
the ground truth labels from the benchmarks. This phase involves analysing the direct
inference results without any prompt tuning. We conduct experiments on each category
separately, thus solving a series of bicategorical tasks. This explores the segmentation
capabilities of Grounded SAM for each category separately. We follow this with multi-
category experiments where all predefined categories T1 are combined together in a single
text prompt, with category words separated by commas. Effectively, the category sets Ti
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are equivalent to the text prompts. For these multi-category experiments, we can generate
confusion matrices which can help in identifying different types of errors.

Upon analysing the confusion matrices together with the input images, we discern
two main error categories: textual confusion and image-based confusion. Considering that
changing prompts can lead to different results (see Section 1), multiple prompts have been
designed. We mitigate the detected error types by refining the set of category names: T2
for fixing a textual error, T3 for fixing a visual error, and T4 for both. Again, these refined
names are concatenated to form text prompts (separated by commas). The enhanced text
prompts are then deployed with the model to produce new segmentation results. The
effectiveness of the enhanced prompts is validated through comparison with ground truth
data. We both visually and quantitatively checked the improvement of the new results over
the initial outputs.

Figure 2. The workflow of implementing Grounded SAM [36] on benchmark datasets and evaluating
segmented performance.

Finally, we compare outcomes derived from the open vocabulary model with state-of-
the-art segmentation methods on the same benchmark datasets. This comparison clarifies
the advantages and limitations of open vocabulary models in the context of street view
image segmentation.

3.2. Prompt Design

To assess the impact of prompts on segmentation results, we modify the names of
the corresponding categories, focusing on both the nature of the errors and the visual
characteristics of the categories. The analysis of the preliminary results in Section 4 reveal
distinct visual differences between Traffic Light (t7) and Traffic Sign (t8) and between Person
(t12) and Rider (t13). However, Bus (t16) and Train (t17) present challenges in classification,
even manually. This leads to the design of three different types of prompts besides the
pre-determined names (T1) by Cityscapes seen in Table 1:

• Prompt T2: Designed to address confusions not related to the visual level. This prompt
aims to rectify errors arising from textual misunderstandings or misclassifications that
do not stem from visual similarities.

• Prompt T3: Tailored to confusions at the visual level. This prompt is particularly
focused on addressing the challenges in distinguishing visually similar categories,
such as trains and buses.
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• Prompt T4: A combination prompt, developed to tackle both textual and visual
confusions. This prompt incorporates elements from both T2 and T3 to provide a more
comprehensive solution to the segmentation errors.

Additionally, within T3, multiple prompt designs were considered, shown in Table 2.
The classes Train (t16) and Bus (t17) are challenging to segment due to their visual similarity.
This approach acknowledges the complexity of differentiating between certain categories
and seeks to refine the model’s accuracy through tailored prompt adjustments.

Table 1. Prompt design (i.e., input item of classes) for street view semantic segmentation using
Grounded Segment Anything. Bold represents improved prompts to avoid textual misunderstand-
ings, and underline represents improved prompts in addressing visual feature similarity.

Class Pre-Defined Classes from T2 T3 T4Cityscapes (T1)

t1 Road Road Road Road
t2 Sidewalk Sidewalk Sidewalk Sidewalk
t3 Building Building Building Building
t4 Wall Wall Wall Wall
t5 Fence Fence Fence Fence
t6 Pole Pole Pole Pole
t7 Traffic Light Signal Light Traffic Light Signal Light
t8 Traffic Sign Signpost Traffic Sign Signpost
t9 Vegetation Vegetation Vegetation Vegetation
t10 Terrain Terrain Terrain Terrain
t11 Sky Sky Sky Sky
t12 Person Pedestrian Person Pedestrian
t13 Rider Rider Rider Rider
t14 Car Car Car Car
t15 Truck Truck Truck Truck
t16 Bus Bus Bus Bus
t17 Train Train Tram/... Tram
t18 Motorbike Motorbike Motorbike Motorbike
t19 Bike Bike Bike Bike

Table 2. Additional category enhancements for confused categories caused by image feature similarity.

Prompt T Class t16 Class t17

T1 Bus Train
T3 (Train → On Rails) Bus On Rails

T3 (Train → Locomotive) Bus Locomotive
T3 (Train → Streetcar) Bus Streetcar

T3 (Train → Tram) Bus Tram
T3 (Bus → Coach) Coach Train

T3 (Bus → Bus on Roads Bus on Roads Train on Railsand Train → Train on Rails)

The strategies used for prompt enhancement in this study are as follows: (1) Avoiding
similar vocabulary for different categories, e.g., Traffic Light (t7) and Traffic Sign (t8) → Signal
Light (t7) and Signpost (t8). (2) Specialising vocabulary, e.g., Person (t12) → Pedestrian (t12).

In summary, these prompt designs are integral to improving the segmentation accuracy
of open vocabulary models. By addressing both textual and visual confusions, the model’s
performance in segmenting complex street scenes can be significantly enhanced. Section 4
will delve into the impact of these prompts in greater detail.
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3.3. Experimental Setting

One of the benefits of open vocabulary models is that they allow inference on a
particular dataset without any training on that dataset. The required resources at the
inference stage are considerably lower than at the training stage.

The experiments were conducted on an Ubuntu server with Intel® Core™ i7-6850K
CPU @ 3.60 GHz, 64 GB random-access memory, and a single GeForce RTX 2080 Ti with
11 GB memory. The Grounded SAM by Ren et al. [36] is implemented based on the
PyTorch framework with PyTorch version 1.13 and CUDA version 11.7. Based on the above
configuration, the inference time for 19 classes is around 20 s per image.

We keep the hyper-parameters of Grounded SAM to their default settings. Specifically,
the box threshold is 0.25, the text threshold 0.25, and the Non-Maximum Suppression
(NMS) threshold is 0.8. Initial experiments are conducted independently for each category
defined in Cityscapes (T ∈ T1). We apply single-word text prompts for each category to
each input image (I). This explores the segmentation capabilities of Grounded SAM for
each category separately. In the multi-category experiments, all predefined categories (T1)
are combined together in a single text prompt, with category words separated by commas.
The textual improved prompt (T2), visual improved prompt (T3), and hybrid improved
prompt (T4) also contain all categories in a single text prompt.

3.4. Evaluation Metrics

To effectively assess the performance of semantic segmentation in image processing,
the following evaluation metrics are employed:

• Precision and Recall are common metrics used for classification tasks [41]. Precision
is the proportion of positive predictions that are true positives, i.e., how many of the
positive predictions are correct. Recall is the proportion of all true samples that are
correctly predicted, which assesses the model’s ability to identify positive samples
and how many positive samples are missed.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

where TP is the number of true samples that are predicted as positive. FP is the
number of false samples that are predicted as positive. FN is false negative samples.

• Intersection over Union (IoU) is typically used in segmentation tasks. It expresses
the ratio of the intersection to the combination of predicted results and ground truth
for a single class [42]. Mean IoU is the average value of IoU for all classes.

IoUc =
Area o f Overlap
Area o f Union

=
TPc

TPc + FPc + FNc
(3)

mIoU =
1
C

C

∑
c=1

IoUc (4)

where C means the number of classes.

4. Experimental Results
4.1. Results for Individual Category Segmentation

This subsection presents the performance evaluation of Grounded SAM across indi-
vidual categories (from t1 to t19). Our quantitative results are presented in Table 3. Some
visual results are shown in Figure 3. An aggregate analysis of the results from four datasets
indicates that the segmentation performance is exceptionally strong in most categories,
particularly notable in Road (t1), Building (t3), Vegetation (t9), Sky (t11), Person (t12), Car
(t14), Truck (t15), Bus (t16), and Mobile Bike (t18), where the recall rates exceed 70%. This
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suggests that these categories are well-recognised by the model. However, apart from Road
(t1), the precision and IoU for other categories are somewhat disappointing, especially for
the category Train (t17), where the precision and IoU reach only 10% in the Cityscapes,
BDD100K, and GTA5 datasets. The model’s performance in other categories is reasonably
good, with recall rates of around 50%, though the precision and IoU for Sidewalk (t2) and
Terrain (t10) are relatively low. This performance pattern is somewhat expected. Con-
sidering that each category is treated as a binary classification task (presence or absence)
in an open vocabulary model, some ambiguities in target definitions are likely. Overall,
Grounded SAM shows robust segmentation capabilities across these categories without
the necessity for category-specific training. This demonstrates the model’s proficiency
in handling a variety of urban elements, though it also highlights areas where further
refinement, such as prompt design, could enhance performance.

Figure 3. Examples of the segmented prediction for each category in independent binary classification
experiment. Red mask represents the ground truth; blue mask represents the prediction result; and
purple mask represents the correct predicted result.

Table 3. Semantic segmentation performance on four benchmark datasets for each category in
independent binary classification experiment.

Dataset Road S.walk Build. Wall Fence Pole T.Light T.Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike

Precision in %

Cityscapes val. 81.34 13.58 78.16 5.77 41.88 79.45 80.33 55.06 86.19 1.99 57.09 74.72 22.85 95.69 49.87 71.01 12.64 53.80 79.04
BDD100K val. 78.74 12.02 71.77 26.62 25.97 42.31 72.90 25.60 61.33 4.77 87.52 61.72 15.67 61.73 44.39 54.07 1.20 31.60 83.02

KITTI 91.16 26.87 78.48 16.30 30.70 78.68 76.80 23.64 83.73 14.05 94.33 73.10 43.61 96.23 24.20 70.20 60.04 56.54 59.96
GTA5 88.61 18.33 75.20 17.57 5.01 62.08 80.45 18.97 76.27 3.08 99.63 69.64 38.57 19.33 20.41 59.12 18.30 31.66 71.24

Recall in %

Cityscapes val. 97.04 69.03 88.21 65.71 66.85 33.95 69.37 57.28 70.15 55.49 95.52 83.05 61.52 87.05 92.73 92.23 85.17 80.78 73.36
BDD100K val. 94.46 73.08 92.70 93.44 73.23 75.35 84.19 71.11 79.75 52.41 95.70 86.07 85.77 89.99 92.39 96.77 13.36 71.94 85.88

KITTI 92.89 69.93 86.38 51.57 67.14 47.61 69.78 66.74 77.20 59.02 95.55 72.00 70.49 88.26 79.33 88.73 93.15 85.42 63.60
GTA5 84.02 74.41 88.43 80.29 57.83 66.78 68.16 62.96 75.56 45.23 90.14 89.88 96.99 90.38 88.84 97.81 85.45 91.96 92.13

IoU in %

Cityscapes val. 79.37 12.80 70.77 5.60 34.68 31.21 59.30 39.03 63.07 1.96 55.60 64.83 19.99 83.77 48.0 67.00 12.36 47.70 61.42
BDD100K val. 75.27 11.51 67.93 26.14 23.72 37.16 64.13 23.19 53.07 4.57 84.21 56.11 15.27 57.77 42.83 53.11 1.11 28.13 73.05

KITTI 85.22 24.08 69.84 14.13 26.69 42.17 57.63 21.15 67.13 12.80 90.36 56.92 36.87 85.31 22.77 64.45 57.50 51.57 44.64
GTA5 75.83 17.24 68.46 16.84 4.83 47.43 58.48 17.07 61.18 2.97 89.84 64.58 38.11 18.94 19.90 58.35 17.74 30.81 67.15

4.2. Result for Multi-Category Segmentation

This subsection discusses the performance of Grounded SAM in a multi-category
classification context, focusing exclusively on the Cityscapes dataset. To evaluate the
model’s performance, a confusion matrix of the segmented results was constructed, as
illustrated in Figure 4. The model performed relatively well on most of the categories.
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Specifically, the categories of Road (t1), Building (t3), Sky (t11), Person (t12), Car (t14), Truck
(t15), Bus (t16), and Motorcycle (t18) have very high recognition accuracies above 0.9, which
implies that the model has strong discriminatory ability on these common and obvious
categories. However, there are also some categories such as Fence (t5), Traffic Sign (t8),
Terrain (t10), Rider (t13), and Train (t17), which have significantly lower accuracies below 0.7,
implying that the model may have recognition problems on these categories or confusion
with other categories. In particular, the accuracies for Fence (t5) and Terrain (t10) ranged
between 0.55 and 0.7, which may indicate that the model had some difficulty with these
two categories, but the overall performance was acceptable. However, for the categories
of Traffic Sign (t8), Rider (t13), and Train (t17), the accuracy is as low as 0.04 to 0.01, which
means that the model fails almost completely on these categories.

Figure 4. Confusion matrix of the segmented results for the multi-category experiment.

The confusion matrix analysis reveals that Grounded SAM excels in identifying and
segmenting several key urban elements. However, it also highlights significant challenges
in certain categories. The low accuracies in categories suggest a need for further model
refinement, possibly through more sophisticated prompt engineering or additional training
data to improve discrimination between these and other categories.

Overall, these results for multi-category segmentation provide valuable insights into
the strengths and limitations of Grounded SAM in handling complex urban environments,
laying the groundwork for future improvements in model accuracy.

4.3. Improvements in Addressing Textual Similarity

After improving input prompts, we have made significant progress in the categories
that are prone to confusion due to text similarity shown in Figure 5. A notable enhancement
was observed in the identification of Rider (t13) seen in Figures 5a and 6. The accuracy for
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Rider (t13) significantly increased from 0.04 to 0.59. This substantial improvement indicates
that the majority of previous misclassifications have been effectively addressed. However,
it is worth noting that there was a slight decrease in the accuracy for the Person category
(t12). This trade-off suggests a shift in the model’s ability to differentiate between closely
related categories.

The adjusted prompts led to a remarkable improvement in distinguishing Traffic Sign
(t8), with their accuracy soaring from 0 to 0.80 seen in Figures 5b and 7. This improvement
is particularly significant considering the previous challenges in differentiating Traffic
Sign (t8) from Traffic Light (t7). Interestingly, the accuracy of Traffic Light (t7) remained
stable, indicating that the model’s existing proficiency in recognising Traffic Light (t7) was
maintained while enhancing its ability to identify Traffic Sign (t8).

(a) (b)

Figure 5. Confusion matrix based on original pre-defined names (left) and improved prompt (right)
for categories caused by textual misunderstanding. (a) Person (t12) and Rider (t13). (b) Traffic Light
(t7) and Traffic Sign (t8).

Figure 6. Examples of the segmented prediction for Person (t12) and Rider (t13). Green label
represents Person (t12) and blue label represents Rider (t13).

These results demonstrate the effectiveness of prompt refinement in enhancing the
model’s performance, particularly in categories prone to textual confusion. The significant
increase in accuracy for Rider (t13) and Traffic Sign (t8) underlines the potential of prompt
engineering as a powerful tool to fine-tune semantic segmentation models. This improve-
ment is crucial for applications where the precise identification of distinct but textually
similar categories is essential.
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In summary, the refinements in input prompts have led to substantial improvements
in Grounded SAM’s ability to accurately distinguish between categories that previously
posed challenges due to textual similarities.

Figure 7. Examples of the segmented prediction for Traffic Light (t7) and Traffic Sign (t8). Green label
represents Traffic Light (t7); and blue label represents Traffic Sign (t8).

4.4. Improvements in Addressing Visual Similarity

For categories confused by image similarity, we explored varying input prompts. The
results are shown in Figure 8. When using the open vocabulary model for semantic seg-
mentation, subtle changes to the prompt do affect the model’s categorisation performance.
Despite experimenting with a range of rail-related terms, the model continued to struggle
with the Train (t17) category. Different prompt pairings were tested, such as Bus (t16) and
On Rails (t17), Bus (t16) and Locomotive (t17), Bus (t16) and Streetcar (t17), and Bus (t16) and
Tram (t17). Unfortunately, these attempts resulted in the recognition accuracy for Train
(t17) remaining below 0.05, indicating persistent difficulties in differentiating trains from
visually similar objects.

Figure 8. Confusion matrix based on original pre-defined names (T1) and improved prompt (T3) for
categories caused by visual similarity.

An interesting observation was made when more descriptive prompts were employed,
such as “Bus on Roads” (t16) and “Train on Rails” (t17). While the accuracy for Train (t17)
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improved slightly, it remained relatively low. A significant breakthrough was achieved
when the term “Coach” was introduced. Although this led to some new confusions, with
the model misclassifying Coach (t16) mainly as Truck (t15), the recognition of Train (t17)
improved dramatically, reaching an accuracy of 0.94 shown in Figure 9.

Figure 9. Examples of the segmented prediction for Bus (t16) and Train (t17). Red label represents
Truck (t15); green label represents Bus (t16); and blue label represents Train (t17).

These experiments underscore the nuanced impact that prompt design can have on the
model’s ability to categorise visually similar objects. While subtle changes in prompts can
influence categorisation performance, certain categories that are too visually similar continue
to pose challenges. The remarkable improvement in recognising trains using the term “Coach”
highlights the potential of creative prompt engineering in overcoming these challenges.

To sum up, this study demonstrates that while prompt modifications can significantly
enhance the recognition of certain visually similar categories in semantic segmentation, the
process requires careful experimentation and creativity to identify the most effective terms.

4.5. Comprehensive Results

Much like in the initial test for single categories, the open vocabulary model Grounded
SAM performed well on most categories, as shown in Table 4. On Road (t1), Building (t3),
Sky (t11), Car (t14), and Bike (t19), both precision and recall exceeded 80%, showing the
model’s ability to recognise and classify these categories well.

However, there is a significant difference in precision and recall between Traffic Light
(t7) and Traffic Sign (t8) when using the category names defined by Cityscapes as prompts
T1. Traffic Sign (t8) has a high precision of 90.35% but a surprisingly low recall of 0.96%.
This implies that Grounded SAM may miss many instances of Traffic Sign (t8) due to the
confusing textual descriptions. Traffic Light (t7) has only 23.54% precision, but its recall
is as high as 90.73%, which implies that the model may have misclassified instances from
other categories into this category. Combined with Figures 5b and 7 in Section 4.3, it can be
found that the reason leading to these two extreme cases is that when applying T1, most of
Traffic Sign (t8) is segmented into Traffic Light (t7). After further adjustment using T2 as
input prompts, due to the textual similarity of the categories, Traffic Light (t7) and Traffic
Sign (t8) improve. The precision of Traffic Light (t7) increases to 69.91%, and the recall
rate also increases slightly. After losing a little precision, the recall rate of Traffic Sign (t8)
increases to 80.22%.

For categories such as Rider (t13) and Train (t17), the model performs poorly with the
application of prompt (T1), and their precision and recall are very low. Figures 5a and 6
show that Rider (t13) and Train (t17) are extremely easy to confuse with Person (t12) and
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Bus (t16), respectively. Based on previous analysis in Section 4.3, the reason for the Rider
(t13) error is due to similarity in the input text, as is the case for Traffic Sign (t8). Similarly,
with the updated prompt, the precision of Rider (t13) increases from 17.70% to 56.44%, and
its recall increases from 4.31% to 58.81%. The precision of Person (t12) has also increased
slightly, while its recall has decreased slightly. For Train (t17), which is visually very similar
to Bus (t16), the recall is still almost zero with Prompt T3’s improvements, and the precision,
which was 45.77%, plummets to 0%. The model still has significant challenges in this
visually similar category.

These results illustrate Grounded SAM’s effective performance in several categories
and its challenges in dealing with textual and visual similarities. The adjustments made
to the prompts led to notable improvements in some categories, but challenges persist,
particularly in differentiating categories with close visual resemblances. This analysis
underscores the importance of prompt design in optimising the performance of open
vocabulary semantic segmentation models.

Table 4. Semantic segmentation performance with four prompt designs on Cityscapes validation
dataset. Bold values indicate the improved categories and total results, and underline values high-
light the best performance in different prompts.

Prompt Road S.walk Build. Wall Fence Pole T.Light T.Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike Total

Precision in %

T1 98.09 86.35 91.87 46.49 51.47 80.96 23.54 90.35 96.90 66.94 88.38 74.97 17.70 97.15 29.71 65.46 45.77 47.14 86.70 67.68
T2 98.08 88.71 91.66 46.58 48.33 81.70 69.91 85.22 97.34 64.01 89.76 88.26 56.44 97.10 31.95 61.03 42.22 48.04 84.18 72.13
T3 98.07 86.67 91.69 51.05 49.63 80.41 23.69 54.50 96.96 62.68 89.1 74.93 21.76 97.12 38.11 56.95 0.00 49.82 86.46 63.66
T4 98.18 87.92 91.72 49.17 48.91 82.15 69.03 83.59 97.44 65.42 90.02 87.92 56.13 97.14 28.70 58.33 0.06 47.97 84.39 69.69

Recall in %

T1 98.76 78.71 94.80 72.08 67.16 77.44 90.73 0.96 78.52 55.08 99.39 95.25 4.31 89.76 89.37 88.95 4.03 88.34 81.76 71.34
T2 99.02 77.92 95.06 70.54 68.24 74.33 91.16 80.22 78.41 56.84 99.39 89.51 58.81 90.70 89.87 90.05 4.06 87.88 83.88 78.20
T3 98.81 77.9 91.5 70.37 64.02 76.89 91.26 0.47 78.52 55.79 99.38 95.15 5.17 89.37 89.48 90.34 0.00 86.53 82.31 70.70
T4 98.92 79.05 95.04 71.46 68.18 73.32 91.30 79.54 79.02 60.03 99.40 89.44 57.78 90.54 75.31 89.82 0.03 87.92 83.85 77.37

IoU in %

T1 96.90 70.00 87.47 39.40 41.12 65.50 22.99 0.96 76.60 43.30 87.90 72.28 3.59 87.46 28.70 60.54 3.85 44.38 72.65 52.93
T2 97.14 70.89 87.49 38.99 39.46 63.72 65.48 70.42 76.77 43.07 89.27 79.99 40.45 88.31 30.84 57.17 3.85 45.05 72.46 61.10
T3 96.93 69.56 84.49 42.02 38.81 64.76 23.17 0.47 76.63 41.88 88.61 72.17 4.36 87.07 36.47 53.68 0.00 46.24 72.91 52.64
T4 97.14 71.31 87.53 41.10 39.82 63.25 64.77 68.80 77.42 45.57 89.53 79.65 39.80 88.19 26.23 54.71 0.02 45.01 72.59 60.65

5. Discussion

In street view semantic segmentation tasks, traditional deep learning models usually
rely on predefined sets of categories. In contrast, open vocabulary models lift this limitation
by processing arbitrary textual descriptions to define the desired categories. This approach
brings flexibility and adaptability to semantic segmentation tasks, enabling models to map
and interpret complex visual scenes more accurately. Street scene understanding involves
complex and diverse semantic elements with significant geographical variations. While
traditional deep learning models are limited by their training conditions, the flexibility
of open vocabulary models is particularly important in dealing with highly complex and
variable environments. In scenarios such as urban environments, it is crucial to accurately
recognise and classify numerous elements. Open vocabulary models provide an effective
solution for this purpose. We explored the performance of the Grounded SAM model for the
direct inference of street scene images without training, using Cityscapes and their defined
categories as benchmarks. We devised multiple textual inputs to compare performance
differences. In addition, we evaluated the model on four Cityscapes-style datasets and
compared it to current state-of-the-art (SOTA) models.

5.1. Overall Performance of Open Vocabulary Models

Although Grounded SAM performs well when dealing with single-category street
segmentation tasks, it still faces challenges in multi-category segmentation tasks, espe-
cially when there is a high degree of textual semantic or visual feature similarity between
categories. For example, the model may produce misclassifications when distinguishing
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between visually highly similar objects such as pedestrians and cyclists. This phenomenon
suggests that although the open vocabulary model is theoretically broadly adaptable,
it still requires further fine-tuning or comparative learning when dealing with complex
multi-classification problems.

5.2. Impact of Text Input Refinement on Results

Our study found that refined text inputs are crucial for reducing classification con-
fusions. For example, different text inputs led to significantly different results when
distinguishing between categories such as traffic signals and traffic signs or pedestrians and
cyclists. This suggests that classification accuracy can be significantly improved by more
specific and granular text input. However, for categories that are also difficult to distinguish
visually, such as buses and trains, even fine-grained textual descriptions struggled to elimi-
nate model confusion. This emphasises the need for open vocabulary models to be further
enhanced with the combined capabilities of image processing and text understanding in
future developments.

5.3. Comparison with Other SOTA Models

In our study, we compared Grounded SAM’s performance on Cityscapes, BDD100K,
GTA5, and KITTI to current state-of-the-art (SOTA) methods shown in Tables 5 and 6. Some
visual results are shown in Figures 10 and 11. On Cityscapes, the highest performance of
Grounded SAM with the prompt T2 was 61.1%. In comparison, the highest performance
of an SOTA model was 80.8% (Table 6 last column). Similarly, on BDD100K, GTA5, and
KITTI, the highest performances of the models were 40.4%, 56.2%, and 50.6%, while those
of the best SOTA model were 53.5%, 75.9%, and 72.8% (Table 5). On a single category, using
Cityscapes as an example shown in Table 6, Grounded SAM performs close to SOTA’s
performance on most classes. For example, on Road, Building, Pole, Traffic Light, Person,
and Bike, the difference is very small. However, on Fence, Terrain, Rider, Train, and
Motorbike, the gap is still large, at over 20%.

Table 5. Semantic segmentation performance of Grounded SAM compared to state-of-the-art seg-
mentation methods. We generated Grounded SAM results for BDD100K, GTA5, and KITTI. SOTA is
taken from the respective literature.

Method mIoU

Dataset: BDD100K (val)

NiseNet [43] 53.5

Grounded SAM with T1 39.1
Grounded SAM with T2 40.4
Grounded SAM with T3 38.2
Grounded SAM with T4 39.2

Dataset: GTA5

MIC [44] 75.9
HRDA [45] 73.8

DAFormer [46] 68.3
ProDA [47] 57.5
CCM [48] 49.9

Grounded SAM with T1 53.1
Grounded SAM with T2 56.2
Grounded SAM with T3 51.4
Grounded SAM with T4 53.6

Dataset: KITTI

Deeplabv3+ + SDCNet [49] 72.8
MapillaryAI [50] 69.6

SIW [51] 68.9
AHiSS [52] 61.2

SegStereo [53] 59.1
APMoE-seg [54] 48.0

Grounded SAM with T1 45.4
Grounded SAM with T2 50.6
Grounded SAM with T3 45.2
Grounded SAM with T4 50.3
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Table 6. Semantic segmentation performance per category compared to state-of-the-art methods on
Cityscapes validation dataset. Results for Grounded SAM were generated by us using T2, and SOTA
values are collected from Takikawa et al. [55].

Method Road S.walk Build. Wall Fence Pole T.Light T.Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike Total

LRR [56] 97.7 79.9 90.7 44.4 48.6 58.6 68.2 72.0 92.5 69.3 94.7 81.6 60.0 94.0 43.6 56.8 47.2 54.8 69.7 69.7
Deeplabv2 [26] 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8 70.4
Piecewise [57] 98.0 82.6 90.6 44.0 50.7 51.1 65.0 71.7 92.0 72.0 94.1 81.5 61.1 94.3 61.1 65.1 53.8 61.6 70.6 71.6
PSP-Net [24] 98.2 85.8 92.8 57.5 65.9 62.6 71.8 80.7 92.4 64.5 94.8 82.1 61.5 95.1 78.6 88.3 77.9 68.1 78.0 78.8

Deeplabv3+ [28] 98.2 84.9 92.7 57.3 62.1 65.2 68.6 78.9 92.7 63.5 95.3 92.3 62.8 95.4 85.3 89.1 80.9 64.6 77.3 78.8
GSCNN [55] 98.3 86.3 93.3 55.8 64.0 70.8 75.9 83.1 93.0 65.1 95.2 85.3 67.9 96.0 80.8 91.2 83.3 69.6 80.4 80.8

Grounded SAM 97.1 70.9 87.5 39.0 39.5 63.7 65.5 70.4 76.8 43.1 89.3 80.0 40.5 88.3 30.8 57.2 3.9 45.1 72.5 61.1

Figure 10. Examples of segmented prediction in multi-category classification experiment with Prompt
T1, T2, T3, and T4 on Cityscapes. * The visualised segmented results apply the same colour map
as Cityscapes.

When compared to current state-of-the-art models, the open vocabulary model may
be slightly worse in terms of overall performance. However, it is worth noting that its
performance in some specific categories is very close or even equal to these state-of-the-art
models. Most importantly, instead of requiring extensive training on a specific dataset,
the open lexical model allows for direct inference on lower-cost hardware. This feature
provides significant advantages in terms of resource and time costs and is particularly
important for resource-constrained research and application scenarios.
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(a) (b)

(c)

Figure 11. Examples of segmented prediction in multi-category classification experiment with Prompt
T2. * The visualised segmented results apply the same colour map as Cityscapes. (a) BDD100K.
(b) KITTI. (c) GTA5.

6. Conclusions

This study explored the capabilities of Grounded SAM, an open vocabulary model, in
the context of street view semantic segmentation. Grounded SAM demonstrates significant
adaptability and flexibility over traditional deep learning models, particularly in its ability
to process arbitrary textual descriptions for category definition. While it excels in single-
category tasks, challenges arise in multi-category segmentation scenarios, especially with
categories having high textual or visual similarities. Textual input refinement proved crucial
in reducing classification errors, yet the model struggled with visually similar categories like
buses and trains. Compared to state-of-the-art models, Grounded SAM shows competitive
performance in specific categories without the need for extensive training, highlighting
its efficiency and potential in resource-constrained settings. The findings underscore the
need for further enhancements in integrating image processing and text understanding
to improve the model’s overall efficacy in complex urban environments. In addition,
Grounded SAM performed well on datasets in different regions, which indicates that it has
a strong adaptability in geography.

Finally, this study finds that open vocabulary models for segmentation such as
Grounded SAM are capable of segmenting visual elements in street view imagery without
any further training. Despite their significant robustness and generalisation, the perfor-
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mance in categories with similar visual appearance, which are also difficult to separate
in traditional deep learning models or even human judgement, are still a considerable
challenge. An additional finding is that minor changes in prompts can drastically influence
predictions. Specific vocabulary for categories enables models to reduce confusion. The
adaptability of foundation models in different geographic regions is impressive, which may
supplant transfer learning for geographic regions. While we focus on street view imagery,
the capabilities of open vocabulary models in the understanding of other crucial vision
data such as remote sensing imagery await further exploration.
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