U\ plants

Article

Effects of Rice Husk Biochar Coated Urea and Anaerobically
Digested Rice Straw Compost on the Soil Fertility, and Cyclic
Effect of Phosphorus

Ashoka Gamage 1'%, Ben Basnayake 2, Janendra De Costa 3> and Othmane Merah %-5*

check for
updates

Citation: Gamage, A.; Basnayake, B.;
De Costa, J.; Merah, O. Effects of Rice
Husk Biochar Coated Urea and
Anaerobically Digested Rice Straw
Compost on the Soil Fertility, and
Cyclic Effect of Phosphorus. Plants
2022,11,75. https://doi.org/
10.3390/plants11010075

Academic Editor: Jim Moir

Received: 22 November 2021
Accepted: 20 December 2021
Published: 27 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya,
Peradeniya 20400, Sri Lanka

Department of Agricultural Engineering, Faculty of Agriculture, University of Peradeniya,

Peradeniya 20400, Sri Lanka; nri.srilanka@gmail.com

Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka;
janedrad@gmail.com

4 Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, 31030 Toulouse, France

5 Département Génie Biologique, Université Paul Sabatier, IUTA, 32000 Auch, France

*  Correspondence: ashogamage@gmail.com (A.G.); othmane.merah@ensiacet.fr (O.M.);

Tel.: +94-714-430-7141 (A.G.); +33-(0)5-34-32-35-23 (O.M.)

Abstract: Fertilizer application in rice farming is an essential requirement. Most of the high-yielding
varieties which are extensively grown throughout the country require recommended levels of fertil-
izers to obtain their potential yields. However, effective, and efficient ways of fertilizer application
are of utmost importance. Coated fertilizers are used to reduce leaching nutrients and improve the
efficiency of fertilizer. However, conventional coated fertilizers such as Sulphur coated urea and
urea super granules are not popular among rice farmers in Sri Lanka owing to the high cost. Mixing
urea-coated rice husk biochar causes a slow release of nitrogen fertilizer. This coated fertilizer and
rice straw compost reduction the cost of importations of nitrogen-based fertilizers per unit area of
cultivation. The study aimed to evaluate the effects of rice husk biochar coated urea and anaerobically
digested rice straw compost on the soil fertility, and the cyclic effect of phosphorus. Concerning
the pot experiment, rice grain yield was significantly higher in Rice husk biochar coated urea, triple
super phosphate (TSP), and muriate of potash (MOP) with anaerobically digested rice straw compost.
The lowest yield was observed in the control. The release of phosphate shows a cycle effect which
is an important finding. Rice husk biochar coated urea can potentially be used as a slow-releasing
nitrogen fertilizer. In addition, the urea coated with biochar is less costly and contributes to mitigating
pollution of water bodies by inorganic fertilizers (NPK).

Keywords: anaerobically digested compost; cyclic effect; leaching; rice husk biochar; slow-
releasing fertilizer

1. Introduction

Agriculture plays an important and strategic role in the performance of the Sri Lankan
national economy contributing nearly 8.4% of the gross domestic product (GDP) [1].
Presently, Sri Lanka produces 2.3 million metric tons (MMT) of rough rice (paddy) with a
national average yield of 4.3 MT/ha in the 2017 /2018 Maha seasons [1].

With the introduction of High Yielding Varieties (HYV), the provision of incentives to
apply more chemical fertilizers. This was initiated in Sri Lanka in the year 1962. The HYVs
are highly responsive to chemical fertilizers and hence it was essential to apply fertilizers
to achieve expected yields. The increased pressure to maintain a high level of rice output
for consumption has resulted in the increased use of inorganic fertilizer in rice fields in Sri
Lanka [2]. The subsidy was limited to the main nitrogen fertilizer urea during 1997-2004. In
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the year 2005, the subsidy has again been expanded. Since 2005-2015, the subsidy provided
for all three main fertilizers (N, P, and K) at a fixed price.

At present, urea is the foremost nitrogen fertilizer (60-70%) used in Sri Lanka. Urea is
the major source of supply of nitrogen fertilizer to crop production. Urea was imported to
Sri Lanka during 2015-2017 has been for agricultural use. Urea has a nitrogen content of
46% is used in rice cultivation. The recovery of applied nitrogen to wetland rice is around
20-40% [3-6]. However, N application rates on agricultural fields often exceed the actual
crop use and the unused N in the soil profile is either removed through leaching, denitrifica-
tion, or volatilization. The nitrate ion is negatively charged and is not retained by the soils;
thus, the dominant form of nitrate is leached from the soil [7,8]. Nitrate leaching which
causes contamination of groundwater has become a major concern worldwide, mainly
because of the intensification of agricultural productivity [9]. Rising nitrate concentration in
groundwater has been detected in developing countries such as India and Sri Lanka where
agricultural production has been intensified through the application of urea above the
recommended levels [10]. Studies conducted on groundwater within intensively cultivated
areas typically had nitrate-nitrogen concentrations in the range of 10-15 mg N/L compared
to 0.2 mg N/L in non-cultivated lands. There is a correlation between groundwater quality
and land use [11]. WHO standard in the year 2011 for nitrates concentrations in drinking
water is 10 mg N /L.

Many phosphorus (P) sources contaminate surface waters. These sources are agricul-
ture, municipal sewage treatment plants, individual septic treatment systems, decaying
plant material, runoff from urban areas and construction sites, stream bank erosion, and
wildlife. The addition of phosphorus to surface water accelerates the eutrophication pro-
cess, in which the water becomes overly enriched with nutrients [6]. Clune [12] indicated
that total P should not exceed ranged from 0.010 to 0.053 mg /L in a stream and revers.

Biochar is a charcoal carbon product derived from biomass that enhances soils, se-
questers or store carbon, and provides useable energy. Biochar is produced by thermal
decomposition of organic material under an anaerobic condition (or limited supply of
oxygen) and at relatively low temperatures (<700 °C) [13].

Biochar is a porous substance containing high levels of carbon and various functional
groups. The addition of biochar to agricultural soil enhances soil physicochemical proper-
ties [14], enzymes activity, microbial activity, and microbial diversity [15]. However, the
interactions between biochar and microbial activities in soil are not fully understood [15].
The application of biochar to soil could increase soil nutrient levels and crop productivity
by reducing leaching losses and even supplying nutrients to the crops.

Mixing both urea and biochar in soils creates a slow release of nitrogen fertilizer
and increases nitrogen retention [16], thus increasing the efficiency and reducing the
cost of nitrogen-based fertilizers. Biochar has been found to adsorb a variety of heavy
metals, including lead (Pb), arsenic (As), and cadmium (Cd) [17]. Biochar also slowed the
downward movement of pesticides, thus potentially reducing the risk of groundwater
contamination [18]. There are only a few methods available for rice husk and rice straw
reuse in Sri Lanka. A significant amount of rice husk and straw remains unused and
burned in open fields, causing serious environmental and health problems. The concept
of producing biochar using rice husk and producing rice straw compost is practicable in
Sri Lanka because about 1.8 million farm families are engaged in rice cultivation island
wide. It is of utmost importance to manage the agricultural wastes while providing a
value-added useful product for increasing agricultural productivity and protecting the
environment. Therefore, this study aimed to evaluate the effects of rice husk biochar coated
urea and anaerobically digested rice straw compost on soil fertility, and the cyclic effect of
phosphorus. Furthermore, determine the behavior of rice husk biochar coated urea and
evaluate the leaching losses of nutrients.
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2. Results
2.1. Proximate Analysis of Soil

The results indicated that the physicochemical properties of soil had much more influ-
ence on the morphological characters of the growth of rice plants (Table 1). Soil electrical
conductivity indicates soluble nutrients, and it is useful in monitoring the mineralization
of organic matter in -rich soil. The soil pH regulated the enzyme activity of soil and helped
the solubility of the nutrients. Bulk density is an indicator of soil compaction, increases
with time as particles settle after puddling is halted. Bulk density is inversely related to
many important soil properties. These are water-holding capacity, soil particle size, total
porosity, infiltration capacity, hydraulic conductivity, gas exchange, and nutrient mobility.

Table 1. Physicochemical proprieties of the soil.

Properties Soil
Moisture content % 2.94 + 0.120 (air dried)
Bulk density (g/cm?) 1.3 £0.040
pH 5.2 +0.028
Carbon content % 0.6 £+ 0.006
Total Nitrogen (mg/kg) 300 + 8.16
Phosphorus (mg/kg 7 £+£0.0.12
Potassium (mg/kg) 500 £ 10.8
Electrical conductivity (uS/cm) 89.1 +£0.817
Salinity % NA
Texture Sandy loam

NA-not available. Each value represents the mean of three samples.

2.2. Pot Experiment
Rice Plant Vegetative Growth

The significantly highest (p < 0.05) plant height can be observed in the inorganic
fertilizer followed by anaerobically digested rice straw compost treatment (treatment 3)
while the control had the lowest. However, plant height was faster in the treatment using
inorganic fertilizer (treatment 1) than in the biochar coated urea treatment (treatment 2)
from 12 to 71 days after transplanting. After 71 days, plant heights were similar in all
treatments (Figure 1). The number of tillers was highest in treatments 1, followed by 3 and
4 compared to the other treatments (Table 2). All fertilizer treatments, irrespective of the
use of urea coated biochar or compost showed a significantly (p < 0.05) higher number of
panicles per hole than the unfertilized control (Table 2). However, there were no significant
differences in tiller number between different fertilizer combinations. Rice grain yield was
significantly greater in treatments 4 and there was no significant difference in treatment, 2,
3, and 1 (Table 2). The lowest yield was observed in treatment 5 which is control and no
addition of inorganic fertilizers.

There was a significant increase in biomass (dry matter) of the rice plant with the
application of amendments as compared to the control (Table 2). The mean total dry
biomass for treatment 4 was significantly higher than the means for all other treatments.
The mean total dry biomass for treatments 1 and 3 was significantly higher than the means
for treatments 2 and 5. The mean total dry biomass for treatment 2 (biochar coated urea)
was significantly higher than that of treatment 5.
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Figure 1. Variation of plant height with time in the pot experiment. Each data point is a mean of
four replicates. Treatment 1— inorganic fertilizer only (Urea, TSP and MOP), Treatment 2— rice husk
biochar coated Urea, TSP and MOP, Treatment 3— inorganic fertilizer (Urea, TSP and MOP) with
anaerobically digested rice straw compost only, Treatment 4— rice husk biochar Urea, TSP and MOP
with anaerobically digested rice straw compost and Treatment 5— no fertilizer as control.

Table 2. Effect of different treatments on the growth and yield parameters of rice cultivated in pots.

Treatment Dry Matter (g) Number of Tillers per Pot Number of Panicles per Pot Yield (kg/ha)
1 63.02° + (0.93) 12.252 =+ (2.50) 8.0 + (0.50) 4359.18 ® + (948.00)
2 50.83 © =+ (0.86) 9.752b 4 (2.06) 7.66 2 + (0.90) 3763.26 ® + (771.00)
3 61.01° + (0.70) 11.252 4 (0.50) 8.332 & (0.66) 4648.97 ® 4 (191.00)
4 65.03 2 + (1.25) 11.252 + (2.50) 8.102 £ (0.52) 5081.63 2 + (115.10)
5 27.82 9 + (2.26) 7.25° + (0.95) 5.00° £ (0.77) 891.83 © + (163.36)

Mean followed by the same letter at each column are not significantly different (p < 0.05), each value represents
the mean of four replicates. SD is given in parenthesis. Treatment 1— inorganic fertilizer only (Urea, TSP, and
MOP); Treatment 2— rice husk biochar coated urea TSP and MOP; Treatment 3— inorganic fertilizer (Urea, TSP,
and MOP) with anaerobically digested rice straw compost only; Treatment 4— rice husk biochar urea, TSP and
MOP with anaerobically digested rice straw compost and Treatment 5— no fertilizer as the control.

Total N (organic and inorganic N) of the soil of treatment 1 increased during the
first 12 days and then gradually decreased until 19 days and subsequently increased
(Figure 2a). Total N in the soil of treatment 2 was maintained almost the same throughout
the period. Total N in the soil of treatment 3 increased during the first 12 days and later on
decreased gradually until days after planting and again increased. Soil nitrate-nitrogen of
treatment 1 increased during the first 12 days and then gradually decreased until 19 days
and subsequently increased (Figure 2b). Nitrate in the soil of treatment 2 was maintained
almost the same throughout the period.
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Figure 2. Variation of (a) total nitrogen in soil with different treatments; (b) nitrate nitrogen in soil
with different treatments in the pot experiment.

Nitrate- N in the soil of treatment 3 increased during the first 12 days and later on
decreased gradually until days after planting and again increased. According to the mean
separation, treatments 3, 1, and 4 had the highest total N with no significant difference
among them while 5 showed the lowest total N. The rice husk biochar coated urea and
anaerobically digested rice straw compost amendment also caused a significant increase
in the total plant N compared to control treatments. After three and half months, the
soil N were as follows; treatment 1 (0.248 kg/ha), treatment 2 (0.207 kg/ha), treatment 3
(0.260 kg/ha), treatment 4 (0.247 kg/ha) and treatment 5 (0.112 kg/ha). After three and
half months, the soil nitrate-nitrogen were as follows; treatment 1 (0.094 kg/ha), treatment
2 (0.069 kg/ha), treatment 3 (0.086 kg/ha), treatment 4 (0.082 kg/ha) and treatment 5
(0.037 kg/ha).

The P of the soil of treatment 1 decreased during the first 30 days and then gradually
increased. P in the soil of treatment 2 decreased during the first 19 days and then gradually
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increased (Figure 3a). P in the soil of treatment 3 decreased during the first 30 days and
then gradually increased. P in the soil of treatment 4 decreased during the first 23 days and
then gradually increased.

(@)

[ G QK G Y
ONPROO-_2NRAROOOON

Phosphorus in soil (mg/100g)
[=N=N-N-]

100

Time (Days)
—&— Treatment 1 ——Treatment 2 —&—Treatment 3
Treatment 4 —e—Treatment 5

(b)

N/P Ratio (mg/100g)

0 10 20 30 40 50 60 70 80 90 100 110
Time (Days)

—&—Treatment 1 —&—Treatment 2 —&—Treatment 3
Treatment 4 —e—Treatment 5

Figure 3. Phosphorus and N/P ratio variation. (a) Variation of phosphorus in soil with different
treatments; (b). Influence of nitrogen on phosphorous uptake as illustrated with the ratio of nitrogen
to phosphorus in the pot experiment. Each data point is a mean of four replicates. Treatment 1—
inorganic fertilizer only (Urea, TSP and MOP), Treatment 2— rice husk biochar coated Urea, TSP and
MOP, Treatment 3— inorganic fertilizer (Urea, TSP and MOP) with anaerobically digested rice straw
compost only, Treatment 4— rice husk biochar Urea, TSP and MOP with anaerobically digested rice
straw compost and Treatment 5— no fertilizer as control.

The rice husk coated urea (Treatment 2) and inorganic fertilizer with anaerobically di-
gested rice straw compost amendment also caused a significant increase in the P compared
to control treatments. After three and half months, the soil P were as follows; treatment 1
(0.356 kg/ha) treatment 2 (0.492 kg /ha), treatment 3 (0.780 kg /ha), treatment 4 (0.780 kg /ha)
and treatment 5 (0.228 kg/ha). Phosphorus amounts in the soil of treatment 3 and 4 were
the highest when compared to treatment 1.

After three and half months, the soil K was as follows; treatment 1 (23.52 kg/ha),
treatment 2 (23.88 kg/ha), treatment 3 (24.72 kg/ha), treatment 4 (24.08 kg/ha) and treat-
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ment 5 (1.2 kg/ha). Considering the pH of the soil (Figure 4b) and organic matter content

(Figure 4c), treatment effects were not significant (p < 0.05).
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Figure 4. Variation of (a) potassium in soil with different treatments; (b) pH of the soil with different
treatments; (c) organic matter of soil with different treatments in the pot experiment. Each data point
is a mean of four replicates. Treatment 1— inorganic fertilizer only (Urea, TSP and MOP), Treatment
2— rice husk biochar coated Urea, TSP and MOP, Treatment 3— inorganic fertilizer (Urea, TSP and
MOP) with anaerobically digested rice straw compost only, Treatment 4— rice husk biochar Urea, TSP
and MOP with anaerobically digested rice straw compost and Treatment 5— no fertilizer as control.
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2.3. Leaching Column Experiment

Each data point represents the mean of two replicates. Treatment 1-inorganic fertilizer
only, Treatment 2—rice husk biochar coated urea only, Treatment 3-anaerobically digested
rice straw compost, and Treatment 4-no fertilizer as a control.

Figure 5a shows that the NO3-N of leachates of treatment 1 increased during the first
14 days and gradually decreased and again increased. The NO3-N of leachates of treatment
2 increased to 48.4 mg/ L during the first 14 days and decreased gradually and again
increased. These fluctuations can be attributed to the application of urea at specified times
responding to given dosages. In the case of compost, the NO3-N of leachates of treatment 3
increased during the first 47 days and then it decreased gradually 20.43 mg/L. In the first
week, leaching losses from treatment 3 were higher than treatment 1.
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Figure 5. (a) Variation of NO3; ~-N with time; (b). Variation of PO, ~3-P with time; (c). Variation of K+
with time; (d). Variation of pH with time in the leaching column experiment.

According to the results of mean separation, the results of all the treatments are
significantly different from each other (p < 0.0001). Treatment 1 has the highest value of
NOs-N leaching and 2, 3, and 4 come in descending order (Figure 5a). According to Table 3
the cumulative NO3~-N leaching losses of kilogram per hectare (soil depth was 20 cm).
of different treatments were as follows; treatment 1 was 30.1 £ 0.31 kg/ha, treatment 2
was 21.64 &= 0.51 kg/ha, treatment 3 was 16.64 £ 0.21 kg/ha and treatment 4 control were
9.26 + 0.11 kg/ha. Treatment 1 has the highest value of NO;~-N leaching and 2, 3, and 4
come in descending order. Results reveal that biochar coated urea and rice compost have
potential in terms of reducing groundwater pollution of NO3™ due to leaching compared
to treatment 1 (inorganic fertilizer only).
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Table 3. Leaching losses of the nutrients.

Nutrient Treatment 1 Treatment 2 Treatment 3 Treatment 4

NO;-N (kg/ha) 30102 + (0.31)  21.64P £ (0.51) 1664+ (021)  9.269 & (0.11)
PO,-P (kg/ha) 05492+ (0.21)  0419°+ (0.45)  0435P £ (0.16)  0.360° =+ (0.39)

K (kg/ha) 43572 + (0.95) 3294+ (0.32)  3.709b° 4 (0.21)  2.915° + (0.98)
Gas volume 15,952.74 @ + 8966.34° + 8824.92b + 7467.24° +
(m3/ha) (12.31) (15.64) (11.25) (14.56)

Mean followed by the same letter at each column are not significantly different (p < 0.05), each value represents
the mean of two replicates. SD is given in parenthesis.

The cumulative leaching losses of P of eighty-three days of different treatments were
as follows; treatment 1 was 10.98 mg/L (0.66%), treatment 2 was 8.39 mg/L (0.19%),
treatment 3 was 8.7 mg/L (0.14%) and treatment 4, control was 7.2 mg/L. According to the
cumulative addition of phosphorous to the columns except for the control, leaching losses
of P percentages are as follows; treatment 1 was 0.66%, treatment 2 was 0.19% and treatment
3 was 0.14%. Considering, P there are significant treatment effects (Figure 5b). According to
Table 3 the cumulative P leaching losses in different treatments were as follows; treatment 1
was 0.544 kg /ha, treatment 2 was 0.419 kg/ha, treatment 3 was 0.435 kg/ha and treatment
4 control was 0.360 kg/ha. So, treatment 1 has the highest value of P leaching, and 2, 3, and
4 come in descending order. Using biochar as a coating material of urea also can save the
reduction loss of P biochar coated urea and rice straw compost has potential in terms of
reducing groundwater pollution of P due to leaching compared to treatment 1.

The cumulative leaching losses of K after eighty-three days of different treatments were
as follows: treatment 1(346.64 mg/L), treatment 2 (262.36 mg/L), treatment 3 (296.48 mg /L),
and treatment 4 control (231.94 mg/L). According to the cumulative addition of potassium
to the columns except for the control, leaching losses of K percentages are as follows;
treatment 1 was 19.26%, treatment 2 was 5.05% and treatment 3 was 17.78%. According
to the mean separation treatment, 1 (4.375 kg/ha) showed the highest K followed by 3
(3.709 kg/ha), 2 (3.294 kg /ha), and 4 (2.915 kg/ha). However, treatments 3 and 2 are not
significantly different and again 2 and 4 are also not significantly different (Figure 5c).
Treatments 4 and 3 have a higher pH than treatments 1 and 2 (Figure 5d).

3. Discussion
3.1. Analysis of Soil Physicochemical Properties

Soil physicochemical properties changes caused by cultural practices and their con-
sequences to soil productivity have generated significant research concerns. Degradation
of soil fertility and quality are key factors for declining yield [19]. Soil fertility must be
maintained to sustain and improve crop growth and yield. Soil is puddled (mixes soil and
water to produce an impervious layer) before rice transplanting and kept flooded to create
anaerobic conditions for rice growth. After puddling create a plow layer. This plow layer
reduces hydraulic conductivity to support water ponding. It minimized the water percola-
tion losses and enhanced the water and nutrient use efficiency of rice [20]. Furthermore,
puddling triggered several changes in soil physical properties such as breaking down soil
aggregates and forming hardpans at a shallow depth. This hard fan led to induced changes
in pore size distribution [21].

Under flooded conditions, the redox potential of paddy is low, and NO;~, Fe3t, Mny*,
and SO42~ are, respectively, reduced to NH,4™, Fe2*, Mn?*, and S?~. Thus, flooding also
improves the availabilities of P, K, Si, Mo, Cu, and Co and reduces the availabilities of N,
S, and Zn. the redox potential is increased, thereby oxidizing the soil nutrient elements,
and changing the effectiveness of the above-mentioned elements [22]. In most lowland
rice soils, P availability initially increased on flooding and rice may meet its P requirement
from the residual P [23]. The efficiency of K fertilizer application is affected by various
factors. Both rice and the subsequent crop remove enormous amounts of K as a byproduct,



Plants 2022, 11, 75

10 of 19

resulting in a significant negative K balance in soils regardless of whether K fertilizers are
applied at recommended doses [24].

3.2. Pot Experiment
3.2.1. Rice Plant Vegetative Growth

The vegetative growth stage of rice has several phases. These phases are tillering, an
increase in plant height, and leaf emergence at regular intervals. The length of this stage
primarily determines the total life cycle duration of different rice varieties. Panicle initiation
(PI) is the start of the reproductive phase of rice development that may occur before the
maximum tiller number is reached in very-short duration and some short-duration varieties.
Heading, when the panicle is fully visible stage rice varieties may be staggered due to later
tillers that produce panicles. The maximum tiller (tillers develop in the axils of leaves,
giving each plant three to a dozen or more) number is reached and followed by a vegetative
lag phase before panicle initiation (PI) occurs [25]. In direct-seeded rice fields with a normal
plant population (10 to 20 plants per square foot), rice plants generally produce 2 to 5 panicle
bearing tillers per plant compared to 10 to 30 tillers per plant in transplanted rice where
more space is available between plants. After maximum tillering has occurred, no more
effective tillers are produced. A portion of the late tillers generally dies due to competition
effects. The first yield component, potential panicles per unit area, is determined at this
time [25]. Generally, the number of tillers is determined during the vegetative growth
period and is mainly governed by the tillering capacity of cultivars, planting density, and
the availability of mineral nutrition, particularly nitrogen [26]. Management of N fertilizer
for maximum uptake efficiency by the rice crop varies with the cultural system, variety, soil
texture, soil moisture, and several other factors. Correct management of the pre-flood N is
critical since a rice crop’s potential grain yield is determined by the early N. The number of
panicles (heads) and the number of grains per panicle are determined by the pre-flood N
application [25,27,28]. These results indicated that the importance of basal application of
readily available inorganic fertilizers especially N fertilizers.

3.2.2. Yield and Yield Component

The reproductive stage is characterized by culm elongation, a rate of increase in tiller
number, booting, the emergence of the flag leaf, heading, and flowering. The reproductive
stage usually lasts approximately 60 days in most varieties. Panicle initiation is the time
when the panicle primordia initiate the production of a panicle in the uppermost node of
the culm. Panicle differentiation is closely associated with the internodal elongation stage.
Panicle differentiation is equivalent at this point, the panicle is 1 to 2 mm in length and the
branching of the panicle is visible. This is a critical stage during rice plant development
and the environment can have a major effect on plant growth [25]. High temperatures tend
to reduce the grain filling period and may reduce grain weight. Low temperatures tend to
lengthen the time required for grain fill and ripening [25].

3.2.3. Biomass Yield

There is some evidence that biochar can reduce the run-off of agricultural inputs such as
nitrates as well as suppress N,O and CH,4 emission from the soil to the atmosphere [29-32].
In this way, biochar may act to improve the efficiency of the use of nitrogen in the soil.
It is important to note that the properties of biochar in soils are dynamic due to the
Physicochemical and biological changes which occur over time [29-32]. The addition
of biochar to agricultural soil enhances soil properties such as water retention capacity,
soil quality, soil organic matter stability, and nutrient retention capacity, maintaining soil
acidity level, organic carbon sequestration, greenhouse gases emission reduction, and
microbiological activity [14,15].
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3.2.4. Total Nitrogen and Nitrate Nitrogen in the Soil

Most of the organic amendments supply low amounts of available N due to immo-
bilization after organic matter decomposition and N mineralization. In addition, the N
from organic matter is also involved in other soil processes such as nitrification and de-
nitrification. The higher N uptake percentage in the treatment 3 (0.20%) followed by 1
(0.19%), 4 (0.19%), and 2 (0.179%) compared to the control (0.128%) can be attributed to
higher amounts of available N in the soil. Moreover, the addition of inorganic fertilizer with
composted rice straw could facilitate decomposition due to relatively low lignin content.
Due to its low N content, rice straw has a high C/N which could induce N immobilization
during decomposition in soil [28]. Biochar added plots receiving nutrients (NPK) sustained
higher crop yield compared to control plots where yield declined rapidly. Results from
semi-arid soils in Australia have shown a positive response to biochar in combination
with fertilizer in pot trials [29]. A key consideration highlighted in several studies is the
potential for biochar to immobilize previously plant-available N. This could be from the
mineralization of labile, high C/N ratio of biochar drawing N into microbial biomass,
sorption of ammonium, or sequestration of soil solution into fine pores [30].

3.2.5. Phosphorus in Soil

Soil solution P concentrations are relatively low, the quantity of P in the soil solution
at a given time is generally on the order of <1 kg/ha, or 1% of the total quantity of P in
the soil [33]. Inorganic P occurs in soil, mostly in insoluble mineral complexes, some of
them appearing after the frequent application of inorganic fertilizers. These insoluble,
precipitated forms cannot be absorbed by plants [34]. Organic matter is also an important
reservoir of immobilized P that accounts for 20-80% of P in soils [34]. Only 0.1% of the
total P exists in a soluble form available for plant uptake [35] because of its fixation into
an unavailable form due to P fixation. The addition of P to the soil as soluble commercial
fertilizer or in the by-products causes an immediate increase in the P concentration of the
soil solution (Figure 3a). This P then participates primarily in adsorption and precipitation
processes, leading to fluctuating P values in the soil. Initially, these sorption processes are
easily reversible and added P is readily available for plant uptake, susceptible to losses in
runoff or leaching [33]. In the present pot experiment, there was no leaching or surface
runoff. Overuse of N has not only caused low N use efficiency and soil acidification [36] but
also resulted in a deleterious effect on rice quality, especially the appearance [37]. Figure 3b
illustrates the influence of the nitrogen to phosphorous ratio in soil indicates higher uptake
of available nutrients. In all the four treatments, where nitrogen has been applied, the
ratios showed a decreasing trend towards the end of the experiment. As reported by [38],
it implies that freely available or excess nitrogen promotes the uptake of phosphorous.
Although biochar in Treatment 2 had much less nitrogen, it was available to the rice plants
with moderate levels of P, in comparison to Treatments 3 and 4, thus resulting in the lowest
ratio. On the other hand, Treatment 4, performed similarly to Treatment 2 because of
biochar, making nitrogen readily available with the added advantage of rice straw compost
that would have supplied phosphorus, resulting in much higher yields. Note the variations
of the control without inadequate P compared to nitrogen in the soil.

3.2.6. Potassium in Soil

Potassium (K) is a macronutrient taken up by plants in large quantities. Potassium
performs important roles such as enzyme activation, photosynthesis, photosynthate translo-
cation, protein synthesis (i.e., nitrogen use), and plant water relations [6]. The potassium
of soil of treatments 3 and 4 was the highest as compared to treatment 1, which contains
NPK only. It could be attributed to the addition of compost at the beginning and during
the growing period of the crop. A negative exponential function of the form K = Kye™ !
could be fitted to the variation of soil K in treatment 5. (Figure 4a), where K and Ko are
potassium concentration at time t and initial concentration (57.88 mg/100g), respectively
and « (0.47) is the adsorption coefficient of potassium in the soil. The trend line can be



Plants 2022, 11, 75

12 0of 19

observed as shown in Figure 5 simulation. In all other treatments, precipitations of K have
taken place with desorption coefficients of exponential functions soon after 40 days had
lapsed. This result implies that the K levels remain high due to compost applications and
bio-char additions even for the following season. A lower level of K concerning those
treatments was found to be the case for the inorganic conventional system in Treatment 1,
necessitating K applications for the next cropping season.

Because in the present pot experiment there was no leaching or surface runoff, when
incorporated into soil substrate in pot trials, biochar, and local organic fertilizers altered the
soil physical structure (bulk density) and modified the soil chemical properties (pH, CEC,
and N, P and K supply). Low pH can limit plant growth by modifying the dynamic of crop
nutrients. Hence, biochar addition could be particularly beneficial in acidic soils [39].

3.2.7. Soil pH and Soil Organic Matter

The addition of organic matter to flooded soil raises the NH4" concentration of flood-
water and leads to a pH increase [40]. Decreasing soil pH following organic materials can
be partially attributed to the high release of organic acids causing mobilization of native
calcium present CaCOs in the soil. According to Agusalim et al. [41], organic C content in
rice husk biochar is lower than that of rice straw. The highest level of soil organic matter
was observed in rice husk biochar treated soil. This phenomenon indicated the recalcitrant
nature of carbon in rice husk biochar as has been suggested by many researchers [42,43].

3.3. Leaching Column Experiment
3.3.1. NO3 ™~ -N in the Leachate

Organic carbon decomposition by microbial activity influences many processes of the
nitrogen cycle. With time, nitrogen concentration decreased due to microbial utilization of
nitrate compounds and denitrifying as ammonia gas [44]. Anaerobically digested rice straw
compost had readily available NO3 ~-N. Management of urea-containing fertilizers requires
a clear understanding of the reactions that urea undergoes when added to the soils. Urea is
hydrolyzed to ammonia and carbon dioxide through the action of a soil urease enzyme.
In most soils, urea hydrolysis occurs rapidly after urea-containing fertilizers are applied.
Available N in organic sources is present in NHy+ or NO3 ™~ form but in amide form in urea.
Hydrolysis of urea takes 1-2 weeks [45]. The cumulative NO3 ~-N leaching losses of eighty-
three days of different treatments were as follows; treatment 1 was 602.16 mg/L, treatment
2 was 423.28 mg/L, treatment 3 was 332.28 mg/L and treatment 4 control was 185.24 mg/L.
According to the cumulative addition of nitrogen to the columns except for the control,
leaching loss of NO3;~-N percentages is as follows; treatment 1 was 65.7%, treatment 2
was 41.2% and treatment 3 was 21.8%. The efficiency of the urea-N in rice culture is very
low, generally around 30-40%, in some cases even lower [46]. The application of urea
was 110 kg /ha. Concerning the treatment 1 inorganic fertilizer, the percentage NO; ~-N
leaching losses was 26.07%. One-fourth of the N is in the nitrate form and is subject to loss
by leaching or denitrification [47]. The application of biochar to soil could increase soil
fertility and crop productivity by reducing leaching. However, the effects of biochar on
nutrient leaching and organic carbon retention have been reported to vary with the applied
biochar pyrolysis temperature, raw material, and soil type [15].

3.3.2. P in the Leachate

Microorganisms also play a central role in the natural phosphorus cycle. The use
of phosphate solubilizing microorganisms plays a vital role in solubilizing the insoluble
forms of phosphorus. Soil microorganisms act as sink and source of phosphorus (P) and
mediate key processes in the soil P cycle, e.g., P mineralization and immobilization [48]. The
fluctuations of phosphate may have cyclic effects which were 28 days (Figure 5b). The rate
increased gradually to a peak and then reduced to lower values. It can be mathematically
expressed as logistic growth equations, applicable for microbial growth and decay. The
microbial cyclic effects have been recorded by [49,50]. This cycle occurs utilizing the cyclic
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oxidation and reduction of phosphorus compounds, where electron transfer reactions
between oxidation stages range from phosphine to phosphate. The genetic and biochemical
mechanisms of these transformations are not yet completely understood [51].

3.3.3. K in the Leachate

According to Table 3, the cumulative K leaching losses of kilogram per hectare of differ-
ent treatments were as follows; treatment 1 was 17.33 kg/ha, treatment 2 was 13.18 kg/ha,
treatment 3 was 14.82 kg/ha and treatment 4 control was 11.59 kg/ha. Treatment 1 has
the highest value of K leaching and 2, 3, and 4 come in descending order. Using biochar
as a coating material of urea also saves the reduction loss of K. Biochar coated urea and
rice straw compost have potential in terms of reducing groundwater pollution of K due to
leaching compared to treatment 1.

3.34.pH

There are also relationships between fertilizer application and NO3 ~-N and PO,3~-P
leaching and pH. The maximum uptake of most nutrients occurs at a soil pH near neutral.
The availability of most macronutrients such as nitrogen, phosphorus, potassium, sulfur,
calcium, and magnesium, decreases as soil acidity increases. The relationship between soil
pH and nutrient uptake efficiency is that fertilizer use, and crop response are expected to
change as a function of soil pH [52].

4. Materials and Methods
4.1. Preparation of Slow-Releasing Nitrogen Fertilizer

Biochar was produced from rice husk [53]. The pyrolizer was designed to produce
biochar. The pyrolizer consists of the following main components; i. Hopper for feedstock
ii. Feeding mechanism iii. Combustion chamber (hollow cylindrical retort) iv. Charcoal
collector v. Torch. The reactor was loaded with 160 kg rice husk. Then by using the feeder, a
filled column of rice husk (20 kg) was obtained. Coconut husk and shells which were filled
into the charcoal collector was used as a fuel source. It was fired from the charcoal remover.
Once ignition had taken place, an airstream was introduced using a centrifugal blower.
The quantity of air was regulated by the inlet valve. The torch was used, and an airstream
was introduced into the inclined cylindrical chamber through the air inlet. Pyrolysis of rice
husk takes place in the inclined chamber (Temperature, 550 °C), and hence, it is performed
as an inclined flow reactor (Figure 6). The average temperature depends on the air mixing
ratio of the incline chamber. A temperature measuring pyrometer probe was inserted into
the reactor chamber and got the temperature. In this method, the quantity of feedstock,
time taken to produce charcoal were measured and recorded. After cooling the reactor to
room temperature, the char was collected from the reactor.

Torch

Hopper

Feeding mechanism

\ Rice husk biochar

\

Urea coa{ea rice husk biochar

Combustion chamber | RiCe husk

Charcoal
collector

Figure 6. The material used for the biochar production and urea coated biochar generated. A. Py-
rolizer; B. Slow releasing nitrogen fertilizer prepared using biochar.
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Rice husk was partially burnt, ground, sifted through sieve no 60 (250 um) and
obtained a fine powder. This fine powder was used as a coating material for urea. Carbon
powder and urea were mixed thoroughly and with the help of cassava starch. Granules
of 1.0 cm diameter were formed manually. Production of 1 kg of slow-releasing fertilizer
mixture having a ratio of biochar: urea (2:1). As a binding agent 30-50 g of dried cassava
starch was used (cassava boiled dried ground). Sodium hydroxide can be added about
3% of the weight of starch to enhance the strength and binding quality. After making
carbon-coated urea balls, they were kept in a desiccator for about three days. The nitrogen
content of urea was 46% and 0.3% in rice husk biochar (Figure 6).

4.2. Experimental Site for the Pot Experiment

A pot experiment was conducted in the Yala season at the Meewathura Farm, De-
partment of Agricultural Engineering, Faculty of Agriculture, University of Peradeniya,
Sri Lanka. Soil samples were collected from a farmer’s field at Megoda Kalugamuwa, Sri
Lanka at depths of up to 20 cm, and then dried, ground, and passed through a 2.0 mm
sieve. The soil samples were analyzed for total nitrogen, phosphorus, potassium, and soil
samples were analyzed for organic matter, pH, EC, and Eh [54].

4.3. Pot Experiment

Soil samples were collected from a farmer’s field at Megoda Kalugamuwa, Sri Lanka
at depths of up to 20 cm, and then dried, ground, and passed through a 2.0 mm sieve.
Fifteen kg of soil was placed each into twenty plastic pots (size of the pot 30 cm diameter
and 45 cm height) and the pots were tapped several times to settle the soil. Soils were
saturated with water and allowed for one week to reach equilibrium. Rice seedlings (Bg
358) grown on Petri dishes for one week were planted in each pot (three plants per pot).
The treatments were set up in a completely randomized design: Five treatments were used
for twenty pots each replicated four times (Table 4).

Table 4. Treatments were carried out in this study.

Treatment Number Fertilizer Mixture
1 Inorganic fertilizer only (Urea, TSP, and MOP)
2 Rice husk biochar coated urea, TSP, and MOP

Inorganic fertilizer (Urea, TSP, and MOP) with anaerobically

3 digested rice straw compost [55,56] only

4 Rice husk biochar coated urea, TSP, and MOP with anaerobically
digested rice straw compost anaerobic digestion [55,56]

5 No fertilizer added

Before the fertilizers were applied, the water level in each pot was maintained at 2 cm
from the soil surface to ensure that the system was waterlogged. The water level was
marked on the pots. The water level in the pots was maintained (for the vegetative growth
period) by adding water as the deficit of the original water level. The fertilizers were applied
to the soil surface. Urea (46 g N/100 g), TSP (20 g P/100 g), and MOP (60 g K/100 g) were
applied to all pots, except the control based on the Department of Agriculture (2009) recom-
mendation. Rice husk biochar contains 0.58 g N/100 g, 0.12 g P/100 g, and 0.2 g K/100 g
while rice straw compost 0.98 g N/100 g, 0.6 g P/100 g and 1.32 g K/100 g respectively.
In the case of treatments 2 and 4, one-third of urea from the recommended amount (Urea:
biochar- 1:2) per pot was applied. It was assumed that in treatments 2 and 4, rice husk
biochar would help to reduce leaching losses of urea. Zinc Sulphate at the rate of 3.92 mg
per pot was applied. Rice straw compost was applied at the rate of 2 tons/ha to treatments
3 and 4 twice during the cropping season. Compost additions to soil have the potential to
contribute to the improvement of soil physical properties and fertility of the soil.
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4.4. Soil Characterization and the Measurement of Agronomic Parameters of Rice Plants

Two undisturbed soil samples of about 50 g were taken for bulk density and soil
water determination, and a disturbing sample of about 100 g was taken for analysis of
chemical properties. The soil samples were collected once a week after the application of
basal dressing over three months. Soil texture, pH, EC, Eh, organic carbon, available P,
total N, and exchangeable K were determined using standard soil analytical methods [54].
Herbicides or insecticides were not added to the treatments. Weed control was done
manually. The number of tillers per hole was counted at the maximum stage of forming
tillers (45 days after planting). Plant heights were measured once a week. Before harvesting,
the number of panicles per hill was counted. At the time of harvesting 10 randomly selected
rice plants were uprooted from each plot and roots were thoroughly washed and kept inside
an oven at 70 °C for 3 days for dry weight determination of both below and above-ground
biomass. At maturity, plots were harvested discarding the border rows and the grain yield
of each plot was recorded at 14% moisture content. Three months after planting, plants
were uprooted, and soils attached to roots were removed using running water and plants
were oven-dried at 80 °C for 72 h and dry weight was recorded.

4.5. Leaching Column Experiment

Two sets of leaching columns were prepared using 1.2 m tall polyvinyl chloride (PVC)
pipes with a diameter of 0.15 m (Figure 7). Gas measuring and leachate recirculation orifices
were made at the top of the column. The gas collection was done by using polythene tubes.
A sampling port was attached to the bottom end of the column cap, and it was closed until
getting the samples.

Figure 7. Setup of leaching columns.

There was a plastic container connected to the system to maintain a constant height
of water (5 cm). Four PVC pipes of 1.2 m high and 0.15 m diameter were used to make
leaching columns. A 40 mm thick layer of pre-cleaned, washed, and dried gravel with
a particle size of 5-7.5 cm was used as the filter medium. Rice soil was taken from the
Megoda Kalugamuwa, Kandy, Sri Lanka.

Every column was filled with 15 kg of rice soils (bulk density of 1.3 kg/m?) as a
substrate and the columns were saturated with water for 2 weeks. Table 5 Shows the four
treatments were used for the columns as follows:
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Table 5. Treatments were carried out in this study.
Treatment Number Fertilizer Mixture
1 Inorganic fertilizer only (Urea, TSP, and MOP)
2 Rice husk biochar coated urea, TSP and MOP only
3 Anaerobically digested rice straw compost [55,56]
4 No fertilizer as a control

According to the Department of Agriculture (2009) recommendations, fertilizer for
3 1/2 months variety was used for the columns except for the control. The Department
of Agriculture (2009) recommendation was, 110 kg/ha of urea- (Basal dressing 10 and
top dressing, 30, 50, and 20 kg/ha after 3, 5, 7, and 8 weeks after planting, respectively).
50 kg/ha of TSP, for basal dressing only, 80 kg/ha of MOP- basal, and 8 weeks after planting
(30 and 30 kg/ha, respectively). ZnSO4, 5 kg/ha. Same amounts of N, P, and K were applied
for each column surface area. The 100 ml leachates were obtained (once a week for 12 weeks
period) from the leaching columns. Nitrate Nitrogen, phosphate phosphorus, potassium,
and pH were determined using standard soil analytical methods [20]. A completely
randomized design was used for this experiment.

4.6. Statistical Analyses

Analysis of variance (ANOVA) was performed and differences in mean values were
determined using t-test at p < 0.0001 and employing ANOVA and least significance dif-
ference procedures (SAS Institute (2011) SAS/STAT User’s Guide (Version 9.2). Statistical
Analysis System Inst, Cary, NC, USA).

5. Conclusions

Concerning the pot experiment, rice grain yield was significantly higher in rice husk
biochar coated urea, TSP, and MOP with anaerobically rice straw compost. (Treatment 4)
applied to the soil. The lowest yield was observed in the control (treatment 5. Considering
the pH of the soil and organic matter content of the pot experiment, treatment effects were
not significant. The cyclic effect of phosphate release is an important finding, and it could
be the central issue in defining microbial behavior in soils. The change of phosphate may
have 28-day cyclic effects. Biochar can be used as a soil amendment and organic fertilizer,
but adjustment of pH was required at high application rates. Rice husk biochar coated
urea can potentially be used as a slow-releasing nitrogen fertilizer which reduces leaching
of urea. Furthermore, the urea coating with biochar is less costly and helps to reduce the
fertilizer cost (70% of urea cost) and contribute to mitigating pollution of water bodies.
The addition of biochar to the soil significantly increased the soil properties such as pH,
electrical conductivity, organic matter, available phosphorus, available potassium, and
the C/N ratio. Biochar could act as a nutrient source and release nutrients such as N, P,
and K. Rice straw and rice husks are rich in silicon. Carbonized straw or husk is used
as a good silicon fertilizer. Silicic acid from the carbonized material, dissolved in the soil
solution and can be adsorbed to soil minerals. Biochar application with the compost should
be considered as an environmental and efficient agricultural practice for sustainable soil
management in the agricultural ecosystem.
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