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Abstract: Foeniculum vulgare (Apiaceae) is an aromatic fennel with important practices in medicinal
and traditional fields, used in the treatment of digestive complications, and gastrointestinal and
respiratory disorders. Its leaves and stems, tender and fresh, are used in the production of pasta
dressing and main courses, while its seeds, with a strong smell of anise, are excellent flavoring for
baked goods, meat dishes, fish, and alcoholic beverages. The aim of this work is concerning the
extraction of essential oil (EO) from the leaves of F. vulgare subsp. vulgare var. vulgare, investigating
antimicrobial, antibiofilm, and antioxidant efficacy. In particular, GC-MS analysis showed how the
chemical composition of EO was influenced by the massive presence of monoterpene hydrocarbons
(α-pinene 33.75%) and phenylpropanoids (estragole 25.06%). F. vulgare subsp. vulgare var. vulgare EO
shows excellent antimicrobial activity against both Gram-positive and Gram-negative strains. This
EO can inhibit biofilm formation at very low concentrations and has a good ability to scavenge oxygen
radicals in vitro. F. vulgare subsp. vulgare var. vulgare EO also has an increased activity of superoxide
dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes and decreased ROS
levels in zymosan opsonized PMNs (OZ).

Keywords: F. vulgare subsp. vulgare var. vulgare; Apiaceae; antimicrobial activity; antibiofilm property;
antioxidant activity

1. Introduction

Apiaceae is a family of flowering plants, comprising 444 genera. This family has a
wide distribution: from northern temperate regions to mountainous landscapes, up to
tropical areas [1]. This geographical diversity is not accompanied by the structural diversity
of plants. In fact, all the genera of this family are characterized by strong flavors and
smells due to the presence of schizogonic ducts containing oil [2], mucilage, and resins,
typical of both the aerial parts (leaves, stems, and fruits) and the roots [3]. The presence of
different metabolites (coumarins, flavonoids, saponins, and terpenoids) allows the use of
these plants in different sectors: food use (nutrition, drinks, and spices), pharmaceutical
and cosmetic areas. Furthermore, many of them are used in traditional medicine for the
treatment of gastrointestinal, reproductive, and respiratory diseases [2,4,5].

Moreover, from these plants it is possible to distil essential oils (EOs) with high yields
and with great chemical variability [6,7]. Very different biological properties have been
investigated and confirmed over the years; in addition to the antibacterial [8], antifun-
gal [9,10], antioxidant [11], anti-inflammatory [12], and antitumor activities [13], their
insecticidal potential has been very promising [14,15].

Belonging to the Apiaceae family, F. vulgare subsp. vulgare var. vulgare is a perennial
with soft, feathery, almost hair-like foliage growing up to 6.6 ft (2 m) tall. This plant can
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look similar to dill. Leaves are striate, 3–4 pinnate, with segments filiform, up to 1.6 in (4
cm) long. The flowers are small, yellow, and found in large flat-topped umbels. Blooming
occurs between July and October. Fruits from oblong to ovoid, 0.12–0.20 in (3–5 mm) long.
Seeds ripen from September to October [16]. The dry fruit are used, also, in the culinary
field. It is spontaneous species in the coastal regions of the Mediterranean Sea, but, by now,
it has become widely naturalized in many parts of the world.

Furthermore, from our chemotaxonomic study [17], a clear distinction emerged, not
only morphological, but also chemical, between two subspecies of fennel, piperitum, and
vulgare. The subspecies piperitum has bitter seeds, while the vulgare subspecies has sweet
seeds that are used as flavoring agents in baked goods, meat and fish dishes, alcoholic
beverages, etc. for their characteristic aniseed smell [18].

The importance of this plant lies in the massive production, from the different plant
parts, of the EO [19]. Extractable EOs, with a hint of anise, used in the culinary field [20],
are generally characterized by the presence of phenylpropanoids such as (E)-anethole and
estragole, and monoterpene hydrocarbons such as α-pinene and α-phellandrene) [18].

The EO obtained by hydrodistillation of the fruits showed clear antibacterial activity
against Escherichia coli, Bacillus megaterium and Staphylococcus aureus [21], E. coli 0157:H7,
Listeria monocytogenes and S. aureus [22,23], while the one extracted from the seeds had
antimycobacterial and anticandidal activity [24]. However, it is also possible to underline
excellent results as antioxidant [25], antidiabetic [26], and insecticidal agents [27].

Based on this promising background, the EO of the leaves of F. vulgare subsp. vulgare
var. vulgare, obtained from a Sicilian population, has been tested and evaluated for potential
antimicrobial, antibiofilm, and antioxidant activities. In particular, thanks to the high yields,
the oil of F. vulgare subsp. vulgare var. vulgare has been tested as an antimicrobial agent
against different Gram-positive and Gram-negative strains, showing excellent results. This
EO was able to inhibit biofilm formation at very low concentrations (1–5 µg/mL) and had
good oxygen radical scavenging ability in vitro. In addition, this EO has increased activity
of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzymes
and reduced levels of ROS in opsonized zymosan PMNs (OZ).

2. Results and Discussion
2.1. Chemical Profiling of F. vulgare subsp. vulgare var. vulgare EO

Hydrodistillation of the leaves of F. vulgare subsp. vulgare var. vulgare produced an
intense yellow EO with a strong aniseed aroma. The chemical composition of this EO
was previously described and reported by Ilardi et al. [17]. As shown in the graph of
Figure 1, this mixture consisted mainly of monoterpene hydrocarbons (65.64%), with α-
pinene (33.75%), β-pinene (5.13%), myrcene (5.25%), 3-carene (6.12%), and γ-terpinene-like
(9.45%) main components.
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interesting studies [29–32]. To test so, we performed an inhibition halo assay, which pro-
vides a qualitative approach to understanding whether a particular compound possesses 
antibacterial activity. Figure 2 (panel 1A) displays a bacterial plate with the E. coli indica-
tor strain, a model bacterium for Gram-negative, showing sensitivity to essential oil. Panel 
1B of the same figure shows S. aureus, a model of a Gram-positive indicator strain, which 
also manifests sensitivity towards F. vulgare subsp. vulgare var. vulgare EO. The graph in 
Figure 2 (panel 2), having arbitrary units in mL, allows us to have a more precise idea of 
the antibacterial activity of our EO. The bigger the amount of EO used in the experiment, 
the greater the inhibition halo obtained, suggesting a proportionality between the quan-
tity of used EO and its antimicrobial activity. 

Figure 1. Chemical composition of EO obtained from the leaves of F. vulgare subsp. vulgare var.
vulgare. The graph shows the total percentage of the single chemical classes and the majority of
compounds identified by GC-MS.
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The second most abundant chemical class was that of phenylpropanoids (30.36%),
with the presence of estragole (25.06%) and (E)-anethole (5.30%). On the other hand, the
oxygenated monoterpene compounds were present in minimal quantities (2.29%). The
entire chemical composition is reported in Table S1. Based on these observations, the
antimicrobial, antibiofilm, and antioxidant potential of F. vulgare subsp. vulgare var. vulgare
EO was explored.

2.2. Antimicrobial Activity of F. vulgare subsp. vulgare var. vulgare EO

F. vulgare subsp. vulgare var. vulgare has been used as an ethnic remedy for the cure
of numerous infectious disorders of bacterial, fungal, viral, and mycobacterial origin. In
the past, several studies have been carried out to assess its antimicrobial activity [24,28].
The compounds presented in the EO distilled from fennel leaves were used in different
interesting studies [29–32]. To test so, we performed an inhibition halo assay, which
provides a qualitative approach to understanding whether a particular compound possesses
antibacterial activity. Figure 2 (panel 1A) displays a bacterial plate with the E. coli indicator
strain, a model bacterium for Gram-negative, showing sensitivity to essential oil. Panel
1B of the same figure shows S. aureus, a model of a Gram-positive indicator strain, which
also manifests sensitivity towards F. vulgare subsp. vulgare var. vulgare EO. The graph in
Figure 2 (panel 2), having arbitrary units in mL, allows us to have a more precise idea of
the antibacterial activity of our EO. The bigger the amount of EO used in the experiment,
the greater the inhibition halo obtained, suggesting a proportionality between the quantity
of used EO and its antimicrobial activity.
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Figure 2. Kirby-Bauer assay. (Panel 1) shows the inhibition halo of F. vulgare subsp. vulgare var.
vulgare against (A) E. coli and (B) S. aureus. (Panel 2) shows the inhibition halo expressed in AU/mL.
Values are expressed as the average of three biological replicates; standard deviations are always less
than 10%.

To learn more about the data on antibacterial activity, a viable cell count quantita-
tivetype of test was performed. As shown in Figure 3 (panel A) the Gram-negative strains E.
coli, P. aeruginosa, and S. Typhimurium manifest mortality against F. vulgare subsp. vulgare
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var. vulgare EO, E. coli being the most sensitive, having 100% mortality at the highest
concentration (200 µg/mL). The same figure (panel B) shows the dose-response curves
for Gram-positive bacteria: S. aureus, M. smegmatis, and B. cereus. F. vulgare subsp. vulgare
var. vulgare EO is effective against all strains, causing 100% mortality at the maximum
concentration (200 µg/mL) for both S. aureus and B. cereus. The antimicrobial activity of
EOs is assigned to several small terpenoids and phenylpropanoids compounds, which, in
pure form, also demonstrate high antibacterial activity [33].
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Figure 3. Determination of the F. vulgare subsp. vulgare var. vulgare EO antimicrobial activity
at different concentrations evaluated by colony counting assay (A,B). The % Bacterial survival is
represented on the y-axis obtained from the ratio of colony counts of treated and control. The assays
were performed in three biological replicates; standard deviations are always less than 10%.

We performed MIC experiments using the microdilution method. Table 1 shows the
results. As expected, the lowest MIC values were calculated for E. coli, S. aureus, and B.
cereus (250 µg/mL).

Table 1. Determination of the minimum inhibitory concentration values of bacterial growth (MIC100

expressed as µg/mL) of F. vulgare subsp. vulgare var. vulgare EO against Gram-negative and Gram-
positive bacteria. The values were obtained from a minimum of three biological replicates.

Strains MIC100 [µg/mL]

E. coli DH5α 250
P. aeruginosa PAO1 ATCC15692 >250

S. Typhimurium ATCC14028 >250
S. aureus ATCC6538P 250
M. smegmatis MC2155 >250
B. cereus ATCC10987 250

Through fluorescence microscopy, we tried to obtain some information about the F.
vulgare subsp. vulgare var. vulgare EO mechanism of action, using E. coli and S. aureus
indicator strains. The bacteria were treated with the EO at the maximum concentration
used in the other tests, and two dyes were added: DAPI, a live cell DNA intercalator
that gives blue coloration, and propidium iodide, a dead cell DNA intercalator that gives
a red coloration through the damaged membrane. As shown in Figure 4, under optical
microscopy conditions, the E. coli treated cells (panel C) show the same shape and color
as the control (panel A). E. coli treated cells appear in blue (panel D), thus indicating
no damage to the cell membranes, as well as those of the control (panel B). The same
experiments on S. aureus confirmed the previously obtained results. Via optical microscopy,
the treated cocci (Figure 4, panel G) are no different from the control ones (panel E), and
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the S. aureus cells appear in blue even after the treatment (panel H), similar to the control in
fluorescence microscopy (panel F). Even for the Gram-positive strains, we can state that
the bacterial membrane was intact after treatment with the EO. Essential oils and their
components are known to be active against a wide variety of Gram-negative and Gram-
positive bacteria. However, Gram-negative bacteria are more resistant to their antagonistic
effects than Gram-positive ones, because of the lipopolysaccharide present in the outer
membrane [34].
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Figure 4. Evaluation of the antimicrobial action mechanism of F. vulgare subsp. vulgare var. vulgare
EO, by fluorescence microscopy. Panels show E. coli bacterial cells (A–D) and S. aureus bacterial cells
(E–H). Panels (A,C,E,G) show the cells observed under the optical microscope, and (B,D,F,H) under
the fluorescence microscope. Untreated bacterial cells (A,B,E,F); cells treated with F. vulgare subsp.
vulgare var. vulgare (C,D,G,H). Scale bars: 1 µm (A–H).

2.3. Antibiofilm Activity of F. vulgare subsp. vulgare var. vulgare EO

A crystal violet-based colorimetric assay was used to test the antibiofilm activity of
F. vulgare subsp. vulgare var. vulgare EO. Figure 5 graph shows the M. smagmatis bacterial
biofilm formation percentage, depending on the added oil concentration. The mycobac-
terium used is a non-pathogenic strain, a model for the microbial biofilms’ formation [35].
In this type of experiment, very low concentrations of EO were used (from 0 to 5 µg/mL),
which have no effect on microbial growth, in such a way that the effect of reduction in
the formation of the biofilm is linked only to the compound used and not to a decrease
in cell vitality. The light gray curve in Figure 5 shows a good biofilm inhibition capacity
(over 50%) at the highest concentration used. It is remarkable to use small quantities of a
compound, in our case EO, to inhibit the formation of bacterial biofilms. This aspect has an
essential impact on the potential use of the EO both in a natural environment to preserve
the plants against pathogens [36] and in a medical one [34].



Plants 2022, 11, 3573 6 of 13

Plants 2022, 11, x FOR PEER REVIEW 6 of 13 
 

 

Figure 4. Evaluation of the antimicrobial action mechanism of F. vulgare subsp. vulgare var. vulgare 
EO, by fluorescence microscopy. Panels show E. coli bacterial cells (A–D) and S. aureus bacterial cells 
(E–H). Panels (A,C,E,G) show the cells observed under the optical microscope, and (B,D,F,H) under 
the fluorescence microscope. Untreated bacterial cells (A,B,E,F); cells treated with F. vulgare subsp. 
vulgare var. vulgare (C,D,G,H). Scale bars: 1 μm (A–H). 

2.3. Antibiofilm Activity of F. Vulgare subsp. Vulgare var. Vulgare EO 
A crystal violet-based colorimetric assay was used to test the antibiofilm activity of 

F. vulgare subsp. vulgare var. vulgare EO. Figure 5 graph shows the M. smagmatis bacterial 
biofilm formation percentage, depending on the added oil concentration. The mycobacte-
rium used is a non-pathogenic strain, a model for the microbial biofilms’ formation [35]. 
In this type of experiment, very low concentrations of EO were used (from 0 to 5 μg/mL), 
which have no effect on microbial growth, in such a way that the effect of reduction in the 
formation of the biofilm is linked only to the compound used and not to a decrease in cell 
vitality. The light gray curve in Figure 5 shows a good biofilm inhibition capacity (over 
50%) at the highest concentration used. It is remarkable to use small quantities of a com-
pound, in our case EO, to inhibit the formation of bacterial biofilms. This aspect has an 
essential impact on the potential use of the EO both in a natural environment to preserve 
the plants against pathogens [36] and in a medical one [34]. 

 
Figure 5. Colorimetric assay to evaluate the % of biofilm formation of M. smegmatis, at different 
concentrations of F. vulgare subsp. vulgare var. vulgare EO (1, 2.5, 5 μg/mL). The negative control is 
represented by DMSO (80%) and the positive control by Kanamycin. The assays were performed in 
three biological replicates; standard deviations are always less than 10%. 

2.4. Antioxidant Activity of F. Vulgare subsp. Vulgare var. Vulgare EO 
The EO of F. vulgare subsp. vulgare var. vulgare is rich in hydrocarbon monoterpene, 

which has an antioxidant activity [37]. Figure 6 shows the increasing percentage of scav-
enging activities of ABTS and H2O2 radicals, as the concentration (1–1000 μg/mL) of EO 
increases. The data shown in Figure 6 are expressed in Table 2 as IC50 values, representing 
the EO concentration that causes a 50% reduction in ABTS and H2O2 radicals. The F. vul-
gare subsp. vulgare var. vulgare EO shows anti-H2O2 activity with IC50 values of 100 μg/mL 
and the lowest anti-radical effect (IC50 value > 100 μg/mL) for ABTS. Cell survival experi-
ments were performed against HaCat cells (immortalized human keratinocytes) at differ-
ent concentrations up to 250 μg/mL. By MTT assay after 24 and 48 h of incubation with 
the F. vulgare subsp. vulgare var. vulgare EO, the treated cells were comparable to the con-
trol ones. From these experiments we can conclude that the EO of F. vulgare subsp. vulgare 
var. vulgare is not toxic for this cell line under the experimental conditions used. 

Figure 5. Colorimetric assay to evaluate the % of biofilm formation of M. smegmatis, at different
concentrations of F. vulgare subsp. vulgare var. vulgare EO (1, 2.5, 5 µg/mL). The negative control is
represented by DMSO (80%) and the positive control by Kanamycin. The assays were performed in
three biological replicates; standard deviations are always less than 10%.

2.4. Antioxidant Activity of F. vulgare subsp. vulgare var. vulgare EO

The EO of F. vulgare subsp. vulgare var. vulgare is rich in hydrocarbon monoterpene,
which has an antioxidant activity [37]. Figure 6 shows the increasing percentage of scav-
enging activities of ABTS and H2O2 radicals, as the concentration (1–1000 µg/mL) of EO
increases. The data shown in Figure 6 are expressed in Table 2 as IC50 values, representing
the EO concentration that causes a 50% reduction in ABTS and H2O2 radicals. The F. vulgare
subsp. vulgare var. vulgare EO shows anti-H2O2 activity with IC50 values of 100 µg/mL
and the lowest anti-radical effect (IC50 value > 100 µg/mL) for ABTS. Cell survival experi-
ments were performed against HaCat cells (immortalized human keratinocytes) at different
concentrations up to 250 µg/mL. By MTT assay after 24 and 48 h of incubation with the
F. vulgare subsp. vulgare var. vulgare EO, the treated cells were comparable to the control
ones. From these experiments we can conclude that the EO of F. vulgare subsp. vulgare var.
vulgare is not toxic for this cell line under the experimental conditions used.
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Figure 6. Determination of the antioxidant activity of F. vulgare subsp. vulgare var. vulgare EO. Panel
(A) shows the abatement activity of ABTS radicals obtained after 10 min of incubation and reported as
% of ABTS removed with respect to the control. Panel (B) shows the hydrogen peroxide scavenging
activity, measured after 30 min of incubation, and reported as % of H2O2 removed relative to the
control. Data were presented as mean and standard error and they were analyzed with a paired t-test.
Bars not accompanied by the same letter were significantly different at p < 0.05.
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Table 2. Representation of the IC50: Inhibiting Concentration Free Radical at 50%. ABTS: 2,20-azino-
bis (3-ethyl-benzothiazoline-6-sulfonic acid); H2O2: hydrogen peroxide. The positive control is
ascorbic acid for ABTS; and resveratrol for H2O2.

Sample IC50 of ABTS
(µg/mL) Sample IC50 of H2O2

(µg/mL)

F. vulgare subsp.
vulgare var. vulgare >1000 F. vulgare subsp.

vulgare var. vulgare 100

Ascorbic acid 0.03 Resveratrol 0.05

2.5. ROS Generation and Antioxidant Enzymes Activity on Polymorphonuclear Leukocytes (PMN)

The antioxidant activity was investigated by testing the EO extract of F. vulgare subsp.
vulgare var. vulgare on OZ-stressed PMNs. Both ROS levels and the activity of SOD, CAT,
and GPx enzymes were evaluated (Figure 7). Following the stress induced by OZ, there is a
significant increase in ROS, but by treating PMN with EO, a gradual reduction proportional
to the increase in concentration was observed. Indeed, already in the PMNs treated with
1 µg of EO, a significant reduction of the ROS levels was observed, and moreover, in the
PMNs treated with 100 µg and 200 µg of EO, the ROS levels show levels comparable to
the control (PMN not stressed). Regarding the activity of antioxidant enzymes in PMNs
treated with EO, they show the same trend. Indeed, the activity of CAT, SOD, and GPx
increases statistically with increasing EO concentration.
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Figure 7. ROS generation and activities of antioxidant enzymes in PMN treated with EO of F. vulgare
subsp. vulgare var. vulgare at the concentrations of 1, 10, 100, 200 µg/mL with or without OZ
(500 µg/mL). Data were presented as mean and standard error and they were analyzed with a paired
t-test. Bars not accompanied by the same letter were significantly different at p < 0.05.

A decrease in ROS is probably due to the increased activity of antioxidant enzymes;
in fact, in the ROS detoxification cascade, SODs are the first antioxidant defense enzymes,
catalyzing the dismutation of superoxide anions. The H2O2 generated by, e.g., O2

− dismu-
tation by SODs, is further detoxified by the action of catalases.

The observed antioxidant activity has correlated with the chemical composition of the
EO. It seems plausible that their main constituents, such as estragole (25.06%), γ-terpinene
(9.45%), and α-pinene (33.75%), may play a significant role in the antioxidant action of EO.
This is confirmed by a different study on the antioxidant activity of several EO components,
in which many of the compounds present in these EOs show antioxidant effectiveness [38].

3. Materials and Methods
3.1. Plant Material and Isolation of Essential Oil

Leaves on the stems of F. vulgare subsp. vulgare var. vulgare were collected in July 2020
in Rocca Busambra, Palermo (Italy) and identified by Prof. Vincenzo Ilardi (3750′51.60′ ′ N;
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1321′20.75′ ′ E; 700 m a.s.l.). An herbarium sample is present in the Herbarium Mediter-
raneum Panormitanum, Palermo, Italy. Using the Clevenger’s apparatus, 120 g of fresh
leaves were hydrodistilled according to the indications reported by the European Pharma-
copoeia [39]. The EO, obtained with a yield equal to 0.68% (v/w), once dried with sodium
sulphate, showing an intense yellow color, was stored in the freezer at 20 ◦C.

3.2. GC-MS Analysis

Analysis of EO was performed according to the procedure reported by Rigano et al. [40].

3.3. Bacterial Strains

Gram-negative strains Escherichia coli DH5α, Pseudomonas aeruginosa PAOI ATCC
15692, and Salmonella Typhimurium ATCC14028; and Gram-positive strains Staphylococcus
aureus ATCC6538P, Bacillus cereus ATCC10987, and Mycobacterium Smegmatis mc2 155, were
used to evaluate antimicrobial activity.

3.4. Antimicrobial Activity Assay

The presence of antimicrobial molecules in EO of F. vulgare subsp. vulgare var. vulgare
was detected using the method of Kirby-Bauer with modifications [41]. Three different
volumes (1, 10, and 50 µL) of EO concentrated 22 mg/mL were placed on Luria bertani
agar plates that were overlaid with 10 mL of soft agar (0.7%) and pre-mixed with 10 µL
of E. coli DH5α and S. aureus ATCC6538P grown for 24 h at 37 ◦C. The negative control
was 50 µL dimethylsulfoxide (DMSO) 80% used to resuspend the F. vulgare subsp. vulgare
var. vulgare EO; the positive control was represented by the antibiotic ampicillin (1 µL)
concentrated 22 mg/mL. Plates were incubated overnight at 37 ◦C and the antimicrobial
activity was calculated according to the relation cited below [42].

A/mL =
Diameter clearance zone (mm)× 1000

Volume taken in the well (µL)
(1)

Another method to evaluate the antimicrobial activity involved the cell viability
counting of the Gram-positive and Gram-negative strains. Bacterial cells were incubated
with both essential oils at 1, 10, 100, and 200 µg/mL concentration. Bacterial cells without
essential oils represented the positive control and instead cells with DMSO at 80% were
used as the negative control. The following day, the surviving percent of bacterial cells
was estimated by counting the number of colonies [43]. Each experiment was carried out
in triplicate and the reported result was an average of three independent experiments.
(p value was <0.05).

3.5. Determination of Minimal Inhibitory Concentration

Minimal inhibitory concentrations (MICs) of F. vulgare subsp. vulgare var. vulgare EO
against the Gram-positive and Gram-negative strains were determined according to the
microdilution method established by the Clinical and Laboratory Standards Institute (CLSI).
A total of ~5 × 105 CFU/mL were added to 95 µL of Mueller-Hinton broth (CAM-HB;
Difco) supplemented or not with various concentrations (1–250 µg/mL) of F. vulgare subsp.
vulgare var. vulgare EO [44]. After overnight incubation at 37 ◦C, MIC100 values were
determined as the lowest concentration responsible for no visible bacterial growth. Each
experiment was performed in triplicate and the reported result was an average of three
independent experiments.

3.6. Antibiofilm Activity Assay

Crystal violet dye was used to evaluate the biofilm formation of M. Smegmatis mc2 155.
A 24 wells plate was prepared in which each well contained a final volume of 1 mL; the
negative control was represented by only bacterial cells and medium, the positive control
was represented by bacterial cells with antibiotic kanamycin 2 µg/mL, the other samples
contained cells and EO [1, 2.5, and 5 µg/mL]. The plate was incubated at 37 ◦C for 36 h.
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The OD of the crystal violet present in the distaining solution was measured at 570 nm
by spectrophotometric reading, carried out with a Multiskan microplate reader (Thermo
Electron Corporation, Waltham, MA, USA) [45]. The biofilm formation percentage was
calculated by dividing the OD values of samples treated with EO and untreated samples.

3.7. DAPI/PI Dual Staining and Fluorescence Microscopy Image Acquisition

For dual staining, 100 µL of the bacterial culture of E. coli DH5α and S. aureus
ATCC6538P (bacteria were grown to mid-logarithmic phase) was incubated in the dark for
2 h at 37 ◦C in agitation in the presence or absence of F. vulgare subsp. vulgare var. vulgare EO,
a concentration of 200 µg/mL. After the incubation, 10 µL of bacterial culture was mixed
with DAPI solution (40, 6-diamidino-2-phenylindole dihydrochloride; Sigma Aldrich, Mi-
lan, Italy) (1 µg/mL DAPI final concentration) and PI (propidium iodide; Sigma Aldrich,
Milan, Italy) 20 µg/mL. Samples were observed using an Olympus BX51 fluorescence
(Olympus, Tokyo, Japan) using a DAPI filter (excitation/emission: 358/461 nm) [46].

3.8. ABTS Scavenging Capacity Assay

This assay was performed according to the reported method [47], with some modifi-
cations, which are based on ABTS radical cation scavenging. Then, 1 mL ABTS solution
was added to 100 µL of EO (1; 10; 100; 200, and 250 µg/mL concentrations). The ab-
sorbance was measured at 734 nm against a blank, and the percentage inhibition of ABTS
radical was determined from the following equation: ABTS•+ radical scavenging activity
(%) = (1 − AS/AC) × 100, where AC is the absorbance of the ABTS solution and AS is the
absorbance of the sample at 734 nm. The concentration required for 50% inhibition was
determined and represented as IC50. Each experiment was performed in triplicate and the
reported result was an average of three independent experiments.

3.9. Hydrogen Peroxide Scavenging Assay

Quantitative determination of H2O2 scavenging activity was measured by the loss
of absorbance at 240 nm, as previously described by Beers and Sizer [48]. Different con-
centrations of EO (1; 10; 100; 200, and 250 µg/mL) were incubated at 20 ◦C in 1 mL of
hydrogen peroxide solution [50 mM Potassium Phosphate Buffer, pH 7.0; 0.036% (w/w)
H2O2]. After 30 min, the hydrogen peroxide concentration was determined by measuring
the absorbance at 240 nm. The percentage of peroxide removed was calculated as follows:
peroxide removed (%) = (1 − AS/AC) × 100, where AC is the absorbance of 1 mL of
hydrogen peroxide solution and AS is the absorbance of the sample at 240 nm.

3.10. Eukaryotic Cell Culture

HaCat (human keratinocytes) cells are spontaneously transformed aneuploid immortal
keratinocyte cell line from adult human skin, widely used in scientific research [45,46].
These cells were maintained in Dulbecco Modified Eagle Medium (DMEM), supplemented
with 10% fetal bovine serum and 1% penicillin-streptomycin. Cells were cultured at 37 ◦C
in a humidified atmosphere of 5% CO2. The EO of F. vulgare subsp. vulgare var. vulgare was
added in a complete growth medium for the cytotoxicity assay [49,50].

3.11. ROS Generation and Antioxidant Enzymes Activity on Polymorphonuclear Leukocytes (PMN)

Whole blood was obtained with informed consent from healthy volunteers. Six healthy
fasting donors were subjected to peripheral blood sampling with K3EDTA vacutainers
(Becton Dickinson, Plymouth, UK). The PMN were isolated following the protocol described
by Harbeck et al. [51]. The isolated PMNs were measured in the presence or absence of
various concentrations of EO of F. vulgare subsp. vulgare var. vulgare, without or with
opsonized zymosan (OZ).

Dichlorofluorescein (DCF) assay was performed to quantify ROS generation according
to Manna et al. [52]. The PMN were treated with EO of F. vulgare at different concentrations
(1; 10; 100; 200; µg/mL) without or with OZ (500 µg/mL) for 6 h and then incubated with
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the non-polar and non-fluorescent 2′,7′-dichlorodihydrofluorescin diacetate (DCFH-DA),
at 10 µM final concentration, for 15 min at 37 ◦C. The ROS quantity was monitored by
fluorescence on a microplate reader. Results were expressed as fluorescence intensity.

A commercial kit (BioAssay System, San Diego, CA, USA) was used to determine
superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzymatic
activity in PMN cells according to the manufacturer’s recommendations. The activity of
enzymes was expressed as U/L [53]. The EO of F. vulgare subsp. vulgare var. vulgare was
tested at the concentration of 1; 10; 100; 200; µg/mL. The experiments were performed in
the presence and absence of OZ (500 µg/mL).

3.12. Statistical Analysis

The data were examined by one-way analysis of variance (ANOVA), followed by
Tukey’s multiple comparison post-hoc test. In Figures 6 and 7, values are presented as
mean st. err; numbers not accompanied by the same letter are significantly different at a
p value < 0.05.

4. Conclusions

Most of the pharmacological studies have been conducted using uncharacterized
crude fennel extracts. It is difficult to reproduce their results or identify the bioactive
compounds. Therefore, chemical standardization and bioactivity-driven identification
of bioactive compounds is required. However, fennel’s extensive traditional use and
proven pharmacological activities indicate that there is still immense scope for its chemical
exploration. In this study, the oil of F. vulgare subsp. vulgare var. vulgare was characterized
by the occurrence of a high amount of phenylpropanoids (30.36%), such as estragole
(25.06%) and (E)-anethole (5.30%), and of the monoterpene hydrocarbon α-pinene (33.75%).
Its antimicrobial, and antioxidant properties have been investigated and the foundations
have been laid for future studies. We have discovered remarkable antibiofilm properties
at very low concentrations, which may represent a pioneering study for the use of the
essential oil of the aerial parts of fennel to avoid the formation of biofilms and combat a
scientific and public health problem of great importance. They should focus on validating
the mechanism of action responsible for the various beneficial effects, and on understanding
which plant-based compounds are responsible for such effects. The information requested,
when available, will enhance our knowledge and appreciation for the use of fennel in
our daily diets. Furthermore, the result of such chemical studies could further expand its
existing therapeutic potential.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants11243573/s1, Table S1. Chemical composition of the EOs of leaves of F. vulgare subsp.
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