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Abstract: Climate change in the Mediterranean area is making summers warmer and dryer. Grapevine
(Vitis vinifera L.) is mostly important for wine production in Mediterranean countries, and the vari-
ety Tempranillo is one of the most cultivated in Spain and Portugal. Drought decreases yield and
quality and causes important economic losses. As full irrigation has negative effects on quality and
water is scarce in this region, deficit irrigation is often applied. In this research, we studied the
effects of two deficit irrigation treatments, Sustained Deficit Irrigation (SDI) and Regulated Deficit
Irrigation (RDI), on the transcriptome of grape berries at full maturation, through RNAseq. The
expression of differentially regulated genes (DEGs) was also monitored through RT-qPCR along
berry development. Most transcripts were regulated by water stress, with a similar distribution of
up- and down-regulated transcripts within functional categories (FC). Primary metabolism was the
more severely affected FC under water stress, followed by signaling and transport. Almost all DEGs
monitored were significantly up-regulated by severe water stress at veraison. The modulation of an
auxin response repression factor, AUX22D, by water stress indicates a role of this gene in the response
to drought. Further, the expression of WRKY40, a TF that regulates anthocyanin biosynthesis, may be
responsible for changes in grape quality under severe water stress.

Keywords: berry skin; deficit irrigation strategies; RNA-Seq; sHSP; ethylene; auxins

1. Introduction

Abiotic stresses are a foremost restricting factor impairing grapevine growth, yield,
productivity, and long term survival in traditional Mediterranean climate areas and in new
production regions. Drought is one of the most critical environmental factors affecting
plant water uptake, and short and long-term adaptation of grapevine varieties to climate
change [1].

In regions with hot and dry summer seasons, major adaptations of plant metabolism
are required to cope with those adverse environmental conditions. Such adaptations include
regulation of transcription and gene expression, and wide transcriptome reprogramming
as a response to the stress [2]. Therefore, transcriptomic studies are of particular relevance
to understand the mechanisms of plant stress responses. Plant hormones play an important
role in the modulation of the complex plant physiological and molecular responses to
drought, coordinating water loss and the maintenance of cellular growth, as is the case of
abscisic acid [3]. However, this is only one among the many key players in the complex
molecular networks that lead to the inhibition/induction of key proteins in stress signal
reception, transmission, and responses, such as kinases, phosphatases, transcription factors,
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and defense response genes [4–6]. Some key transcription factor (TF) families such as MYB,
WRKY, and bZIPs have been found to be involved in various processes depending on the
type of stress. In fact, several TFs have been object of genetic engineering to improve stress
tolerance in some species of interest (for review, see [7]).

Grapevine is one of the most important crops worldwide and the wine industry is
one of the most globalized and competitive. Impending global climate change stands to
severely impact the wine industry and the economy of southern Europe, through decreases
in yield and grape quality [8,9]. Episodes of intense drought associated with heat increase
the demand for evaporative cooling, thus accelerating the loss of water. This impairs the
long-term survival of the plant. Furthermore, higher temperatures and intense droughts
during the season anticipate phenology by several days and also, when occurring close
to berry maturation, they increase the alcohol content of the berry, changing the wine’s
sensory profiles [10]. During ripening, sugar accumulation increases with temperature but
secondary metabolites, such as anthocyanins, are negatively affected by high temperature
while berry acidity, in particular malic acid content, decreases [11]. A comprehensive
understanding of the mechanisms of response of grape berries to limited water availability
is a prerequisite to the advance of breeding and cultural practices necessary for enhancing
grapevine tolerance to limited water availability, and to implement sustainable deficit
irrigation plans. Each grapevine variety has a unique response to stress [12], that can be
characterized at the clone level [13].

With that challenge in mind, we set out to comprehend the impact of different levels of
deficit irrigation (Sustainable Deficit Irrigation and Regulated Deficit Irrigation) on the berry
transcriptome of the widely cultivated grapevine variety Tempranillo. The modulation of
expression of key transcripts related to the drought-induced defense mechanisms were also
monitored in key phenological stages, to characterize its response to stress.

2. Results

The values of pre-dawn leaf water potential along the season in both deficit irrigation
treatments (Sustainable Deficit Irrigation, SDI, and Regulated Deficit Irrigation, RDI) are
depicted in Figure 1. A pattern of severe water stress was observed in RDI, with ΨPD
reaching values lower than−0.7 MPa on several days between veraison and full maturation.
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Figure 1. Pre-dawn leaf water potential (Ψpd) during the season (day of the year) in Sustained Deficit
Irrigation (SDI) and regulated Deficit Irrigation (RDI), plants at Esporão vineyard (38◦23′42.0′′ N
7◦32′51.4′′ W: Sampling at green pea (G), veraison (V) and full maturation (M) indicated with
black arrows.

2.1. Overall Transcriptomic Response to Water Deficit

To determine the number of transcripts exclusive to each irrigation strategy, a Venn
diagram was built. At full maturation (M), 22,844 transcripts were identified, in RDI and
SDI (Figure 2a). A total of 1129 transcripts were exclusively expressed in SDI, less than
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half the number of those expressed in RDI, 2357. This is an indication that the irrigation
strategies under study induced major changes in transcript modulation in water stressed
plants. Therefore, to appraise which transcripts were differentially regulated by each
irrigation strategy, the expression ratio was calculated, considering SDI as control (Table S2).
To visualize the transcript ratio distribution, a barplot was made with ratio intervals of
RDI/SDI. Most transcripts show a ratio between −1.5 and 1.5 (Figure 2b), an indication
that they have similar expression on both irrigation strategies, demonstrating that they
were not regulated by the level of water deficit. A few transcripts (approximately 30) had
their expression ratio on the extreme sets (ratio ≤ −5 or ratio ≥ 5), showing significant
response to water stress.
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Figure 2. (a) Venn diagram showing sample-specific transcript analysis considering only the tran-
scripts with length ≥ 150 bp and a threshold of RPKM ≥ 1 for a transcript to be considered as
active in full maturation samples under Regulated deficit irrigation (RM) and under Sustained deficit
irrigation (SM); (b) Number of transcripts distribution per ratio interval (RDI/SDI) in Tempranillo
full maturation samples. A scale break was applied from ≈1000 and ≈50,000 transcripts.

The ratio RDI/SDI reflects a differential regulation of expression in genes belonging to
various functional categories that is modulated by water stress. The percentage of genes
up- and down-regulated per functional category was plotted and is shown in Figure 3.
Comparing the main functional categories there are similarities between the percentages
of up- and down-regulated transcripts. However, it is possible to mention that the cate-
gories, cell process, PM (Primary Metabolism)—amino acids metabolism, PM-protein, and
biotic stress have a higher percentage of down-regulated transcripts (between 15 and 40%,
depending on the category) than up-regulated transcripts. The reverse occurred in the
categories PM-miscellaneous, signaling and transcription factors, although the differences
did not exceed 20–30%. Overall, the categories PM-photosynthesis and response to abiotic
and biotic stress are the least represented, with values below 2% in up- and between 0.5
and 4.5% in down-regulated.

The functional categories signaling and transcription factors were analyzed in more
detail (Table 1). In the signaling category, DEGs (differentially expressed genes) were
distributed in nine subcategories. Kinases was the most represented subcategory, with
up- and down-regulated DEGs, while members of the calcium sensor subcategory were
only up-regulated. As for the hormone related DEGs, they presented a greater number of
up-regulated transcripts, in particular auxins and cytokinins. Transcription factors had
twelve subcategories, the most represented was zinc finger (with up- and down-regulation)
while MYB transcription factors were only up-regulated.
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Figure 3. Functional category analysis of significantly regulated DEGs in Regulated deficit irrigation
(RDI) relative to Sustained deficit irrigation (SDI). The values of gene expression used for the analysis
were obtained in the RNA-seq analysis and all the transcripts represented in the figure showed
significant differences in gene expression between SDI and RDI at full maturation (RDI/SDI ratio
< 0.25: down-, and >4: up-). (a) Up-regulated DEGs; (b) Down-regulated DEGs. PM: Primary
Metabolism.

Table 1. Detailed analysis of the transcripts up- and down-regulated in the functional categories
Signaling and Transcription Factors; according to the results shown in Figure 2.

Up-Regulated Down-Regulated

si
gn

al
in

g

Cinase 32 13
GTPase 4 1

Calcium sensor 8 0
Fosfatase 4 3

ABA 4 2
Auxin 9 2

Ethylene 5 2
Cytokinin 4 0

Jasmonic salicylate 4 1

tr
an

sc
ri

pt
io

n
fa

ct
or

s

WRKY 2 0
ABI3 1 0
BZIP 3 2

Zinc Finger 9 5
MYB 9 1
NAC 2 0
GIF 1 0

RWP-RK 1 0
Homeobox domain 3 0

BHLH 1 1
G2 1 1

Regulation overview 17 7

2.2. Modulation of Expression of Selected Differentially Expressed Genes (DEGs)

The ten genes with the highest and lowest levels of expression are shown on Table 2.
Most of them are members of the Metabolism Functional Category. The gene with the highest
expression ratio is VIT_217s0053g00010.1, a non-annotated transcript, with no similarities to
any expressed sequence. The gene with the second highest ratio (VIT_209s0018g00240.2) is a
WRKY transcription factor, thus within the Transcription factor Functional Category. As for
the most down-regulated gene (VIT_212s0035g01900.3), it encodes a pectin methylesterase,
involved in cellular processes. As most of those ten DEGs were still non annotated and
some of the annotated ones belong to the primary metabolism category, well known to be
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down-regulated upon stress, we opted to choose the DEGs for qPCR analysis within the
whole list of significantly up-and down-regulated genes and not just from the restricted
number shown in Table 2. Therefore, 26 DEGs were chosen, within stress responsive
functional categories (Table S3 for names, primer sequences and expression levels in the
RNAseq experiment). Their relative expression was evaluated through RT-qPCR, with
two different comparisons. The expression of RDI and SDI transcripts was compared at
veraison and full maturation, using green pea (G) as control, and the expression between
RDI and SDI transcripts was compared at veraison and full maturation (Figure 4).

Table 2. Top ten up- and down-regulated DEGs obtained at full maturation through RNA-seq
analysis. An empty gene name entry indicates that no name was found on CRIBI/TAIR.

Transcript ID Ratio RPKM RM RPKM SM Gene Name Gene Functional
Category

D
ow

n-
re

gu
la

te
d

VIT_217s0053g00010.1 69 1099 16 No Name
VIT_209s0018g00240.2 32 32 0 WRKY40 Regulation overview
VIT_206s0004g03550.1 29 29 0 APX1 Metabolism
VIT_211s0052g01710.3 27 27 0 Metabolism
VIT_205s0102g00140.1 25 454 18 No Name
VIT_218s0001g12240.1 22 22 0 ERF1-3 Metabolism
VIT_212s0028g01130.1 18 1735 97 No Name
VIT_210s0003g04505.1 16 524 33 No Name
VIT_200s0505g00060.1 16 68 4 Metabolism
VIT_207s0031g00190.1 16 16 0 DEAR3 Signaling
VIT_217s0053g00010.1 69 1099 16 No Name

U
p-

re
gu

la
te

d

VIT_212s0035g01900.3 −119 0 118 PME44 Cellular process
VIT_204s0044g00710.5 −16 3 49 UGP2 Metabolism
VIT_210s0003g04880.1 −15 0 15 RFNR2 Metabolism
VIT_208s0040g00870.1 −14 0 14 BZIP17 Regulation overview
VIT_218s0122g01440.3 −12 0 12 AAE1 Unclear
VIT_200s0338g00020.1 −11 0 11 Unknown
VIT_205s0077g00430.1 −10 2 17 GolS1 Metabolism
VIT_211s0052g01720.1 −10 0 10 ARF3 Cellular process
VIT_202s0087g00770.2 −10 0 10 RLI2 Transport overview

The analysis of expression in RDI throughout berry development (Figure 4a) showed
medium levels of upregulation of four sHSPs and AAE1, while two ERFs, WRKY40 and
2βDIOX were down-regulated at veraison, when compared to green pea stage. At full
maturation, only AAE1 and HSP17.9B were significantly up-regulated. In SDI, all DEGs
were significantly down-regulated at veraison, and most kept a down-regulation pattern
through maturation, except for AAE1 and ERD4, significantly up-regulated (Figure 4b).
At veraison, the comparison of RDI with SDI revealed significant up-regulation of all
the DEGs, only a few of which were still up-regulated at full maturation (AAE1, APX1,
AUX22B, ERF105A, ERF105B and WRKY40). The only significantly down-regulated DEG at
full maturation in RDI was HSP18.2C (Figure 4c).
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Figure 4. Heat map representing gene expression ratios quantified by RT-qPCR of the DEGs of
interest (2βDIOX, AAE1, APX1, AUX22D, COX6B, CRP, DREB, ERD4, EREB, ERF025, ERF105A,
ERF105B, ERF1-3; HSP17.9A, HSP17.9B, HSP18.2A, HSP18.2B, HSP20, HSP22, HSP23.6, HSP26.5,
P450, PME1, RINGU, UG1P, WRKY40) in (a) sustained deficit irrigation (SDI) in veraison (V), and full
maturation (M), when using the phenological stage green pea, G, as control; in (b) regulated deficit
irrigation (RDI) in V and M, also using G as control; and in (c) RDI compared to SDI (as control), in V
and M. RT-qPCR values were standardized with the CT values of the reference genes Actin 2; TIF,
and TIF-GTP. Different letters indicate significant differences (p-value < 0.05) in the expression of
each DEG between the development stages. Values within |log2(gene expression level)| < 2 are not
significantly different from the respective controls (G vs. V and M in (a,b); RDI vs. SDI in (c)).

3. Discussion

The main objective of this project was to monitor the expression of transcripts of
interest in the berry skins of Tempranillo in three stages of development (G, green pea; V,
veraison; M, full maturation) under two different deficit irrigation conditions, SDI (control,
mild water stress) and RDI (severe water stress). To achieve this goal, global gene expression
was obtained by RNA-Seq at full maturation and target gene expression was monitored in
the three developmental stages using RT-qPCR.

In a global first analysis, a common feature of the distribution graphs of the transcripts
into functional classes in SDI and RDI is the fact that the Primary Metabolism category
represents the highest percentage of the graph, occupying about 50%. One of the main
explanations for this result is the fact that the Primary Metabolism category involves many
processes of extreme importance for the survival of the plant, such as the metabolism of
carbohydrates, lipids, nitrogen, sulfur, carbon fixation, among others. Of these processes,
carbohydrate metabolism tends be down-regulated, since the decrease in basic metabolism
processes is typical in stress conditions [14,15], as those of RDI.

The response to water stress, as to any other type of stress factor, is mediated by plant
hormones [16,17]. A typical response to water stress is the synthesis of abscisic acid (ABA),
which is transported to the shoots, inducing changes in the expression of genes related
to the plant’s response to drought [18,19]. ABA synthesis also promotes stomatal closure,
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which reduces water loss through transpiration [20]. In the current RNA-seq study, there
were more up-regulated transcripts of the ABA category than down-regulated. Ethylene
also takes part in the response to stress by strengthening the antioxidant machinery and by
interacting with other signaling molecules to trigger a cascade of adaptive responses [21],
as confirmed by the results of ERF gene expression. In the case of auxins, when under
severe water stress (RDI), the plant activated genes within this category, which differs from
the results reported by Zhang et al. [22], and by Carvalho et al. [23], where the inhibition of
the auxin pathway enabled the plants to withstand drought. In fact, the decrease in IAA
can provide tolerance by facilitating the action of ABA [20]. However, in the present work,
ABA and auxins appear to work synergistically, a response that may be variety-dependent,
as Touriga Nacional grown in similar experimental conditions, showed an inhibition of the
auxin pathway [23].

Our results also show that there is a high number of transcripts encoding kinases that
are activated when the plant is under severe water stress, certainly because these proteins
are the main components of intracellular signaling and are responsible for rapid responses
to changes in the environment [24]. In plants there are kinases linked to several processes of
development and control of primary and secondary metabolism, including photosynthesis
and anthocyanin biosynthesis [25–27]. Abiotic stress induces the transcription of molecules
that respond to calcium [28], which also occurred in the present study.

As transcription factors are mediators between the appraisal of environmental signals
and the expression of stress response genes, they act as switches of regulatory transcription
cascades enabling the adaptation of plants to environmental changes [29,30]. In the present
RNA-seq analysis, MYB and Zinc Finger families had several up-regulated genes in RDI,
which is in line with the literature [31,32]. Studies focused on gene expression have
shown that genes in the Zinc Finger family, such as C2H2 and C3HC3, are induced by
several types of abiotic stress, including drought [33,34]. The MYB family has also been
described in the regulation of responses to abiotic and biotic stresses [35], with elements
such as AtMYB88, which increased the tolerance to abiotic stress when overexpressed in
Arabidopsis, restricting the divisions that occur at the end of the stomatal cell line [36].

In a more detailed analysis, using RT-qPCR, two main families of genes were studied
in detail, those coding for Heat shock proteins (HSP) and Ethylene Responsive Factors
(ERF), along with other genes that are also associated with responses to abiotic stress. In
Tempranillo at veraison, all the genes studied had significantly higher levels of expression
in RDI than in SDI, while at full maturation, the differences were atoned. This result differs
from the one obtained in Touriga Nacional under equivalent experimental conditions [23],
and where the peak of gene expression occurred at full maturation. Tempranillo’s response
to water deficit was also studied in leaves, and an overall decrease in gene expression was
observed, accompanied by punctual increases in genes necessary for survival [37].

During the first two weeks of berry development, its size increases markedly, as auxins
directly promote cell division and growth [38,39]. However, it has been documented that
auxins have a negative role during grape ripening [40], which, in the current work, was
true for the treatment with low levels of stress. The transcript coding AUX22D, an auxin
response repression factor which forms heterodimers with ARFs (auxin response factors),
is described as increasing with berry development [41]. Unlike that report, in SDI and
RDI, AUX22D significantly decreased throughout berry development. This decrease was
modulated by water stress level, with the control decreasing to significantly lower levels
than the severe water stress.

The HSP family responds to a wide range of abiotic stresses [42], conferring tolerance
by preserving the integrity of cell membranes and proteins, and it is known that after the
stressor factor ends, they return to baseline levels [43]. In grapevine berries several HSP
are predominantly induced during ripening [44,45] due to berry dehydration [46], but they
can also be present at other stages of development [47]. For these reasons, it was expected
that the HSPs analyzed would have increased their expression in RDI at full maturation, as
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they did at veraison, but in fact, they decreased to levels significantly lower than before the
application of stress (at the green pea stage).

The ERF family TFs confer plants’ tolerance to stress through different mechanisms,
such as inducing the expression of genes associated with resistance to stress [48], hormonal
cross-talk [49], and genes involved in the response to reactive oxygen species (ROS) [50–53].
Therefore, it was expected that the ERF family genes studied would be up-regulated during
water stress. However, the ERFs studied accumulated significantly in response to drought
only at veraison. At full maturation, only two isoforms of ERF105 were significantly up-
regulated by drought. These intriguing profiles suggest that different ethylene signaling
pathways can be induced at different phases of berry development, possibly also in re-
sponse to stress [54]. In fact, they could play a role in the regulation of WRKY40, which had
the same pattern of expression as both isoforms of ERF105. In fact, in Vitis amuriensis, one
such relation was described in the response to cold stress, where VaERF092 regulates the
expression of VaWRKY33 [55]. WRKY40 is described as controlling anthocyanin biosynthe-
sis in red apple [56] and could be responsible for changes in grape quality under severe
drought stress.

4. Materials and Methods
4.1. Field Conditions and Sampling

Berry samples were collected during the growing season in grapevine plants of the
variety Tempranillo, in an experimental field located at Herdade do Esporão, Reguengos
de Monsaraz (38◦23′42.0′′ N,7◦32′51.4′′ W). The plants were subjected to two irrigation
strategies, Sustainable Deficit Irrigation (SDI), corresponding to 36% potential crop Evap-
otranspiration (ETc), as the control, and Regulated Deficit Irrigation (RDI), the deficit
irrigation treatment, at 24% ETc. Water stress levels were monitored regularly along the
season (Figure 1) through measurements of pre-dawn leaf water potential (ψPD), using
a pressure chamber, Model 600, PMS Instruments Company (Albany, OR, USA). Berries
were collected at three key phenological stages: green pea (BBCH stage 75, G), veraison
(BBCH stage 81, V), and full maturation (BBCH stage 85–89, M). Three samples from both
irrigation strategies and the three berry development stages were composed of clusters
from ten plants each, comprising three berries from the top, three from the middle, and
three from the bottom sections of one cluster per plant. The berries were transported on
ice to the lab where the skins of 40 berries per sample were removed, reduced to powder
in liquid nitrogen and kept at −80 ◦C until further analysis. RNA-seq was performed on
two replicates of M samples while RT-qPCR was performed on three replicates of samples
collected at the three phenological stages.

4.2. RNA Extraction for RNA Seq and for RTqPCR

RNA extraction was performed with Spectrum Plant Total RNA kit (Sigma–Aldrich,
St. Louis, USA), according to the manufacturer’s instructions. After the extraction, RNA
samples were treated with RNase-free DNase I (Qiagen, Hilden, Germany) according to
the manufacturer’s protocol. RNA was quantified through spectrophotometry in a Syn-
ergy HT Multiplate Reader (BioTek, Friedrichshall, Germany) with a Take3 Multi-Volume
Plate (BioTek), with Gene5 software (BioTek). Sample quality and integrity were assessed
through the A260/A280 ratio and through visual analysis on 2% agarose electrophoresis,
respectively. Only samples with a ratio between 1.8 and 2.1 and with the two ribosomal
RNA bands clearly visible were used for RNA-sequencing (RNA-seq).

4.3. Transcriptome Sequencing and Mapping, and Gene Expression

Sequencing was performed in the Genomics and Transcriptomics Platform, Univer-
sity of Torino, Italy (https://cpt.univr.it/en/genomics-and-transcriptomics-platform/,
accessed on the 14 September 2016), as described in Carvalho et al. [23]. Read counts of
sequencing, fragment length, and GC percentage of fragments before and after trimming
are shown on Table S1.

https://cpt.univr.it/en/genomics-and-transcriptomics-platform/
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In all samples, the number of Reads per Kilobase transcript per Million reads (RPKM)
was individually calculated, and it matched the cleaned reads library from each sample
to the reference transcriptome (versions 12X_v2.1 of Vitis vinifera vinifera cv. PN40024,
downloaded from Grape Genome Database on CRIBI (https://genomes.cribi.unipd.it/
grape/, accessed on the 14 September 2016), as described in Carvalho et al. [23].

4.4. Bioinformatics Analysis, Validation and Overview

RStudio R i386 3.3.2 [57] was used for the analyses, with the script used by Carvalho
et al. [23]. The function cor (method = “Pearson”, use = “pairwise.complete.obs”) was used
for bioinformatics validation. Natural logarithm was applied to the RPKMs obtained and
the correlations were assessed. Plots for all samples were drawn using the function ggplot
from the package ggplot2 (2.2.1) [58] and are shown on Supplemental Figure S1. A linear
regression was traced using the function geo_smooth, from ggplot2. Since both correlations
(coefficient of determination 0.94 for SDI and 0.88 for RDI; p-value < 2.2 × 10−16) were
strong, the data contained in the replicates were merged and the average of the replicates
was used for further analyses.

4.5. Differentially Expressed Genes

In all transcripts the value of RPKM in the RDI treatment was divided by the RPKM
measured in SDI (here used as the control) to assess how the expression levels of the
transcripts changed in RDI relatively to SDI (Table S2). A cut off value of 1.5 was considered
for significance, as in Carvalho et al. [23]. The differentially expressed genes (DEGs) were
then ordered by their RDI/SDI values and the ten most up-regulated and the ten most down-
regulated were used for further bioinformatics studies. The sequences were identified from
the Grape Genome Database on CRIBI (https://genomes.cribi.unipd.it/grape/, accessed
on the 14 September 2016) by matching the transcript ID, and submitted to a blastn [59] on
TAIR, the Arabidopsis Thaliana Genome Database (https://www.arabidopsis.org, accessed
on the 14 September 2016), as this database is more complete than CRIBI.

4.6. Sample-Specific Transcripts

Venn Diagrams were used to assess the transcripts that were exclusively present in
each sample, using the function venn.diagram from package VennDiagram (1.6.17) [60].
The transcripts exclusive to each treatment (RDI: RPKM > 1 and SDI: RPKM ≤ 1) were
selected to compare between the two irrigation strategies. The argument scaled = FALSE
was applied to avoid proportional circles.

4.7. Real Time Quantitative PCR (RT-qPCR)

cDNA was prepared using oligo-dT primers (STABvida, Caparica, Portugal) and
the kit RevertAid Reverse Transcriptase (Thermo Fisher Scientific, Waltham, MA, USA),
according to the manufacturer’s instructions, using 0.5 µg RNA. The cDNA thus obtained
was stored at –20 ◦C until further analysis.

The transcripts used for qPCR were within functional categories of interest, such as
response to stress, hormones, signaling, metabolism, and regulation, and were signifi-
cantly regulated in the RNAseq analysis. Primers were designed with Beacon designer 4
(PREMIER Biosoft, Davis, CA, USA) Software. The sequences used were retrieved from
the RNA-seq experiment, and the levels of expression in that experiment and the primer
sequences used for RT-qPCR are indicated in Table S3. RT-qPCR was performed in an iQ5
Real Time PCR (Bio-Rad, Hercules, CA, USA), and 96 wells transparent reaction plates were
used. Three biological replicates and two technical replicates were conducted. The mix
was composed of EvaGreen Master mix (SsoFast_EvaGreen supermix, Bio-Rad), prepared
according to the manufacturer’s instructions, 10 µM of primer, diluted cDNA (2.5 ng µL−1),
and Mili-Q H2O to obtain a final volume of 20 µL. The PCR program was the following:
initial denaturation at 95 ◦C for 2 min; 50 cycles of denaturation at 95 ◦C, annealing at 60 ◦C

https://genomes.cribi.unipd.it/grape/
https://genomes.cribi.unipd.it/grape/
https://genomes.cribi.unipd.it/grape/
https://www.arabidopsis.org
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for 30 s and elongation at 72 ◦C for 45 s, with a reading of fluorescence at the end of each
cycle, followed by a final elongation at 72 ◦C for 5 min.

The baseline subtracted logarithmic amplification plot of the fluorescence signal (∆Rn)
was obtained with the readings gathered between cycles 5 and 17. The Rn threshold was
set at 50 to obtain Cq values, that were exported to excel, for quantification. The ∆∆Cq
method [61] was used to quantify relative gene expression, using as references Actin 2
(ACT), Vitis vinifera translation initiation factor 3 subunit G (TIF), and Vitis vinifera translation
initiation factor eIF-2B subunit alpha (TIF-GTP). These genes were chosen due to their stability
under abiotic stress conditions [62].

4.8. Statistical Analysis

Significant variations of gene expression in RDI (using SDI as control) were considered
if |log2 (gene expression level)| > 2. The same rule was used in the comparison along
berry development, with the phenological stage green pea as control. Variations between
veraison and maturation in RDI; and between RDI and SDI in each phenological stage
were assessed through Student’s t-test (Excel, Microsoft, Albuquerque, NM, USA) for
p-value < 0.05.

5. Conclusions

In conclusion, primary metabolism was the functional category most affected under
severe water stress, followed by signaling and transport. Almost all the genes selected
to be studied by RT-qPCR experienced significant increases in expression at veraison, the
developmental stage that was most affected by water stress, and a pattern that appears
variety-specific. At full maturation, as Tempranillo berries responded to water stress with a
down-regulation of general metabolism, gene expression decreased to a minimum, with
increases of the genes associated with pathways that confer tolerance to stress.

One of those stress response mechanisms is the induction of HSPs. In Tempranillo
berries, however, they were relevant in the response to stress at veraison, but not at full
maturation. The response to water stress at late developmental stages may fall under the
regulation of auxins, as the modulation of the expression of an auxin response repression
factor, AUX22D, by water stress, indicates. Further, ERF105 may play a role in the regulation
of the expression of WRKY40, a TF that controls anthocyanin biosynthesis, and that could
be responsible for changes in Tempranillo grape quality under severe drought stress. This
response suggests an interplay between ethylene signaling pathways and anthocyanin
production, which may have consequences in wine quality.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12091778/s1, Table S1. Sequencing results, in terms of read
counts (# reads), fragment length and GC percentage (%GC) before and after trimming, in the two
SDI and RDI full maturation samples. Table S2. List of DEGs in each pairwise comparison (RPKM,
FC, pvalue, expression index in each sample, and gene description). Table S3. List of Differentially
Expressed Genes (DEGs) obtained through RNA-seq and further analyzed through RT-qPCR. The
primers utilized in RT-qPCR and the expression ratios obtained in RNA-seq are also presented.
Figure S1. Correlation between the logarithmized Reads per Kilobase transcript per Million reads
(RPKMs) of two biological replicates (in the X and Y axes). Dots represent the transcripts. Pearson
Method was used to calculate linear regression (black line). Coefficient of determination (R-squared)
and the linear regression equation are provided; (a) full maturation SDI; (b) full maturation RDI.
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