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Abstract: The economic impact of phytopathogenic bacteria on agriculture is staggering, costing
billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having
more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on.
Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants,
they are employed far less in agriculture compared to human and animal populations. Moreover,
the majority of antibiotics used in plants are immediately washed away, leading to environmental
damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and
the potential for environmental contamination with antibiotic residues and resistance genes, the use
of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant
concern regarding AR in the world today, there are inadequate and outdated data on the AR of
phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB),
along with their environmental impact. In light of these findings, we suggest the use of biocontrol
agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.

Keywords: plant pathogenic bacteria; biocontrol agents; agriculture; environmental impact;
bacterial endophytes; antibiotic-resistant genes (ARGs)

1. Introduction

Phytopathogenic bacteria are responsible for causing plant diseases and can have
adverse effects on a wide variety of crops, resulting in economic losses and negative
environmental impacts. Research on phytopathogenic bacteria aims to deepen our un-
derstanding of their taxonomy, genetics, and plant pathology, including the mechanisms
underlying plant diseases. Recent advances in genomics and molecular plant pathology,
along with the emergence of new bacterial plant diseases, have led to rapid evolution and
change in this field [1,2].

The use of antibiotics to treat bacterial plant diseases is limited, and they are typically
reserved for high-value fruit crops due to concerns regarding antimicrobial resistance (AR).
Pathosystems where antibiotics have been used for an extended period have seen the
emergence of multi-drug-resistant (MDR) infections [3], which are more severe and have a
significant financial impact [4,5]. In fact, AR is projected to cost the global economy up to
USD 100 trillion in lost productivity and result in 300 million premature deaths by 2050 [6].
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Understanding how bacteria survive is critical to developing novel methods for com-
bating plant diseases. One such strategy is the development of persistent cells, which are a
tiny subset of phenotypic variants displaying multi-drug tolerance without undergoing
genetic change. They can deactivate metabolic processes, which are interfered with by
antimicrobials, allowing them to survive treatment. However, they may also be responsible
for disease recurrence [7].

Biological control is a promising method for inhibiting plant pathogens, enhancing
plant immunity, and altering the environment through the effects of advantageous mi-
crobes, substances, or healthy cropping practices [8–12]. Epiphytic bacteria, fungi, and
bacteriophages have all been successfully employed to control various plant diseases and
offer possible alternatives to antibiotics [13–18]. Additionally, expanding the genetic re-
sources accessible to breeders through genetic alteration and genome editing is an efficient
and sustainable method of managing plant diseases [19].

This review discusses the top five phytopathogenic bacterial genera, the antibiotics
used to control them, and their recent AR profile with variations in resistance over time.
We also address the mechanism of AR and its spread to food-borne pathogens, as well as
the impacts of AR on plants, humans, and the environment. Finally, we discuss the use of
bacterial, fungal, and viral biocontrol agents to control phytopathogenic bacteria.

2. Plant Bacterial Pathogens and Their Control by Antibiotics
2.1. Plant Pathogens and Diseases

There are many bacterial pathogens residing in plants. They have their own biochemi-
cal properties and modes of invasion. All of these bacterial pathogens cause worldwide
losses of over USD 1 billion every year [7,20]. It is in fact difficult to categorize plant
bacterial pathogens based on their pathogenicity. However, the journal Molecular Plant
Pathology conducted a survey—enlisting the participation of bacterial pathologists—in or-
der to categorize plant pathogens and rank them based on their severity [20]. They ranked
the top ten bacterial species based on that survey [20]. However, in this review, we briefly
discuss the top five genera of plant bacterial pathogens based on the abovementioned
survey. Hence, the plant bacterial pathogens subject to discussion in this review include
(a) Pseudomonas; (b) Ralstonia; (c) Agrobacterium; (d) Xanthomonas; and (e) Pectobacterium.

2.1.1. Pseudomonas spp.

One of the most prevalent plant diseases infecting the phyllosphere is P. syringae, but
its taxonomy is argumentative [21]. Currently, twenty species are available in the taxonomy,
and some more new species have been proposed (e.g., P. viridiflava) [21,22]. P. syringae
can exist as an epiphyte on the plant’s surface [20]. It is a rod-shaped, Gram-negative
bacterium with polar flagella [23] and the top most studied plant pathogen, which is
ranked as number one plant pathogenic bacterium by plant pathologists [20]. P. syringae
pathovars cause different types of diseases, including bacteria speck in tomato, halo blight
in beans, bleeding cancer in different woody plants, and bacterial cancer in kiwifruits. It can
colonize in different plant tissues, including seeds, leaves, fruits, and bark. Infections with
P. syringae include symptoms such as chlorosis, cancer, blight, and water-soaked lesion [24].
The economic losses caused by Pseudomonas in agriculture can vary widely depending on
factors such as the type of crop affected, the severity of the infection, and the effectiveness
of the disease management system [25]. P. syringae pv. actinidiae causes bacterial canker
in kiwifruits and leads to enormous economic losses in Italy, New Zealand, France, Spain,
Portugal, Chile, South Korea, and Japan. However, it is difficult to precisely estimate the
total economic losses caused by Pseudomonas.

The 13 phylogroups of P. syringae strains were identified between early branching and
canonical lineages. The canonical lineages comprise multiple plant-specialist phylogroups
with conserved virulence-associated and phenotypic characteristics [26]. P. syringae has
been separated into over 60 pathovars based on host isolation, host range, and other
characteristics [27]. External environmental factors have a significant impact on P. syringae
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infection [24]. P. syringae encounters the apoplast—a potentially carbohydrate-rich but
fiercely protected dwelling area for bacteria—after entering the plant [24].

P. syringae uses different types of virulent factors to attack plants. A variety of host–
pathogen interactions are found to be associated with P. syringae infection depending
on its virulence properties. These interactions include toxins, ice nucleation proteins,
secreted effectors, and antimicrobial resistance proteins. Type III secretion system is the
best studied virulence-linked factor, which is involved both in restricting and promoting
specific host–pathogen interactions [28–31]. P. syringae uses four primary toxins: coronatine,
phaseolotoxin, syringomycin, and tabtoxin [31]. The mode of action of these toxins depends
on the nature of the toxins [31]. The ice nucleation proteins of P. syringae cause frost damage
to crops [23].

By detecting pathogen-associated molecular patterns (PAMPs), plants have developed
a defense mechanism (stomatal closure) to prevent bacterial ingress through stomata.
A recent study identified the resistant variant in wild and ornamental cherry toward
P. syringae [32]. Understanding the genetic mechanism of resistant variants would be a
promising step toward understanding the resistance mechanism against this pathogen.

2.1.2. Ralstonia spp.

Soil-residing Ralstonia are one of the world’s most dangerous phytopathogenic bacterial
species, causing bacterial wilt disease in over 400 plant species and posing a serious threat
to agriculture [20,33]. Many commercially significant crops, including tobacco, tomato, and
potato, are infected by this bacterium [34]. Tomato bacterial wilt caused by Ralstonia has the
potential to wipe out the entire crop [35]. Ralstonia solanacearum is responsible for yield losses
of approximately 80% and 90% in eggplant and tomato, respectively [36]. Herbaceous plants
comprise the majority of hosts. Yield losses of potato caused by R. solanacearum may vary
from 33% to 90% [37]. In India, R. solanacearum causes 2–95% crop damage depending on
the season and cultivars [38]. The pathosystem in the case of woody hosts is substantially less
well understood [39].

R. solanacearum strains are classified as a heterogeneous group of species with four
phylotypes, five races, and six biovars based on their geographic origin [34]. Recently,
a new proposal has been suggested by a taxonomic and nomenclatural update, namely
that the R. solanacearum species complex (RSSC) should include three distinct species:
R. pseudosolanacearum (formerly phylotypes I and III), R. solanacearum (IIA and IIB), and
R. syzygii (formerly phylotype IV and blood disease bacterium) [40,41].

Soil- and water-borne Ralstonia species enter the host through the roots, causing wilting
by colonizing the xylem vessels in large numbers, resulting in vascular malfunction [33,42].
The extremely high amount of virulence and pathogenicity factors they manufacture has
been linked to the damage they inflict [43–45]. The speed and severity of wilt symptom
development is determined by the host’s age, health, and nutritional state, as well as
environmental factors and pathogen aggressiveness [39]. Both biotic and abiotic factors are
responsible for the infections caused by Ralstonia species. Abiotic stress factors—such as
inadequate root systems, improper planting procedures, bad site conditions, or infections
with primary pathogens, such as Ganoderma philippii—appear to be required for infection to
take place [39].

Physical treatments are ineffective; crop rotations are often impractical; and the pathogen
displays high aggressiveness and endurance in adverse environmental conditions. No man-
agement method appears to be fully advisable against bacterial wilt because crop protection
chemicals do not provide sufficient control and usually have a negative impact on the envi-
ronment and/or human health, favor the emergence of resistance, and are expensive [46–48].

2.1.3. Agrobacterium spp.

Over a century ago, Agrobacterium was recognized as the cause of crown gall—a plant
tumor [49]. Agrobacterium bacteria are soil-borne bacteria, which can reside in the rhizosphere
of plants, and they can be harmful if they carry the tumor-inducing (Ti) plasmid. T-DNA
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genes are expressed by the infected plant, resulting in hormone synthesis and crown gall
disease (uncontrolled proliferation of plant cells) [50]. Agrobacterium is one of the few bacterial
phytopathogens, which uses its host to build a niche rather than killing it [51]. These bac-
teria are polyphyletic pathogens with vast and narrow host ranges [52]. Crown gall causes
approximately 5% of global crop losses in over 2000 susceptible plants [53]. It affects around
100 greenhouse and nursery species, causing USD 16.2 billion in annual loss in the United
States [54]. Their taxonomic and phylogenetic classifications have yet to be determined. A.
tumefaciens can survive in soil and in the presence of plants. Many attributes undergo ma-
jor modifications in expression during the move from soil to a host environment. Features
associated with a motile, individual lifestyle are downregulated during growth in planta or
in the rhizosphere—which is imitated by cultivating A. tumefaciens under acidic conditions
(pH = 5.5)—while those related to sessile, communal activity are upregulated [55].

Opines are amino-acid/sugar or organic-acid conjugates, which are specially uti-
lized as nutrition by agrobacteria with the Ti plasmid. Around 40 different varieties of
opines have been identified; some of them cause the Ti plasmid to be transferred from one
bacterium to another, increasing pathogenicity and contributing to pathogenic bacteria’s
persistence in the environment [56,57]. Despite the fact that plants launch defense mecha-
nisms against Agrobacterium—which secrete chemical molecules, such as salicylic acid (SA),
jasmonic acid (JA), or ethylene—the bacterium has been found to escape such barriers and
establish long-term residence in tumors [58,59]. Auxin and cytokinin syntheses are induced
via T-DNA incorporation into the plant genome. Cell proliferation and tumor growth are
accelerated by high doses of these two phytohormones. Ethylene has two key functions in
the tumor: it lowers the diameter of plant vessels around the tumor to keep it hydrated,
and it induces the production of abscisic acid [60].

These pathogens must circumnavigate a wide range of environmental heterogeneity. The
microbes’ success within the host is shaped by host responses, and each environment provides
different nutrient availability and microbiota. Transferring between these habitats usually
necessitates the pathogens changing their physiology and behavior, as well as a shift in the
population’s evolutionary selective forces, opening the door to ecological dilemmas in which
features that are advantageous in one habitat may be deleterious in another [61,62].

2.1.4. Xanthomonas spp.

Xanthomonas spp.—ranking at number four in the top ten plant pathogens—is a Gram-
negative, yellow-pigmented bacterium, which comprises 35 species [63] and invades around
400 plants, including rice, citrus, banana, cabbage, tomato, pepper, bean, and so on [64]. It is
generally a rod-shaped obligate aerobe with a single polar flagellum, and its optimal growth
temperature range is 25 ◦C–30 ◦C [65]. The species of Xanthomonas show high specificity
for the host and tissue—invading the xylem and the intercellular spaces of the mesophyll
parenchyma tissue—and can be distinguished into pathovars [66]. Initially, the bacteria
grow on the leaf surface (epiphytic growth) and enter the vascular system or mesophyll
parenchyma tissue through wounds or other natural openings [1,4]. On the leaf surface, the
micro-organisms produce a complex community. There are very few studies focusing on this
aspect. However, in order to survive in this complex community structure, Xanthomonas has
to utilize its own multifarious mechanism. Like many other bacteria, Xanthomonas produces
its own single niche on the leaf surface [67]. It produces type IV and VI secretion to overcome
the difficulties produced by other communities. Xanthomonas produces antimicrobial peptides
through type IV secretion, which kills the Gram-negative bacteria [68]. X. citri overcomes the
challenge imposed by the predator Dictyostelium via type VI secretion [69].

The most common diseases caused by Xanthomonas include bacterial blight of rice,
bean, and cassava, citrus cancer of citrus plants, bacterial rot of crucifers, gumming disease
and leaf scald of sugarcane, enset wilt of banana, and so on [65,66,70,71]. These diseases
result in reduced crop yield, lower quality produce, increased production cost due to
disease management, and—in severe cases—complete crop loss [65,66,70,71]. Overall,
the economic losses from banana Xanthomonas wilt were estimated at USD 2–8 billion
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over a decade in east and central Africa [72,73]. These economic losses depend on the
regions, plants, and types of diseases. Citrus canker caused by Xanthomonas causes annual
losses of over USD 1 billion [74]. The environment, contaminated seeds, weeds, and
contaminated plant debris are the main sources of Xanthomonas transmission [65]. Relatively
higher temperature (25–35 ◦C) and humidity facilitate Xanthomonas in the invasion of host
plants [75–77]. Plant stomata and hydathodes are opened at higher humidity in order to
withstand water [78]. The opening of hydathodes at night and at high humidity is thought
to be a mechanism of Xanthomonas infection and dispersal [79]. Heavy wind and storm are
regarded as the main sources of Xanthomonas dispersal. Laboratory examination of X. citri
and X. alfalfae demonstrated that there is a strong correlation between heavy wind and
pathogen dispersal to the nearby host plant [80]. Windbreak application was successful in
reducing the outbreak caused by the pathogen [81]. Strong surveillance after heavy storm
helped detect the possible outbreaks [81]. People and farming tools are two major means
of dispersal of the pathogen. Banana and plantain pathogen X.campestris pv. musacearum
was reported to spread via contaminated agricultural tools, whereby the pathogen could
survive 2–3 weeks on the tools [82]. Many Xanthomonas dispersions were reported to be
associated with infected seeds [83,84]. The pathogen can reside inside the seeds for several
weeks [83]. Research on X. campestris and X. oryzae revealed that their duration of stay
varied depending on the hosts [84]. A laboratory experiment on Xanthomonas showed
that infections with the pathogen were apparent in plants when inoculated at different
development stages, but it could only colonize into the seeds when inoculated during the
flowering season [85]. A further study of X. campestris by the group revealed that it could
successfully colonize into the outer layer of seed coat and the endosperm and embryo [86].

Functional and comparative genomics revealed extensive genome variations within
the Xanthomonas genus, which helped it fit with diverse plant hosts and tissues. These
large-scale variations are mainly due to the presence of external plasmids and insertion
sequences (ISs) within the population [64]. Some Xanthomonas species consist of genomes
similar to alphaproteobacterial, betaproteobacterial, and gammaproteobacterial origin, and
some others are related to the Archaea, Eukarya, and viruses. The presence of genes similar
to other bacterial and phenotypically distinct organisms may be due to horizontal gene
transfer [87,88]. Xamthomonas contains a single circular chromosome, ranging from 4.8 Mb
to 5.3 Mb, with 60% GC content. X. fastidiosa has a genome around 2.7 Mb, which only in-
fects the host plant xylem and is transmitted by the insect vector. X. campestris pv. campestris
and X. oryzae pv. oryzae have an extended genome size, which can colonize in seeds and
survive in dead plants in soil [89]. Many of the genes in Xanthomonas associated with
virulence originate from external plasmids, ranging from 2 Kb to 183 Kb. The sequencing of
some of these plasmids revealed the presence of genes responsible for type III and type IV
secretions (T4SS). The pXCV183 plasmid of X. euvesicatoria encodes Dot/Icm T4SS, which
is similar to the human pathogen Legionella pneumophila [90].

2.1.5. Pectobacterium spp.

Pectobacterium is a genus of Gram-negative, facultative anaerobic, non-spore-forming,
and extracellular-pectinase-producing plant pathogenic enterobacteria belonging to the
Proteobacteriaceae family [91,92]. Previously, it was known as Erwinia—for instance,
Erwinia carotovora ssp. carotovora, which is now known as Pectobacterium carotovora ssp.
carotovora [91]. Members of the Erwinia genus were divided into three genera: Erwinia,
Pectobacterium, and Brenneria [93]. Pectobacterium invades different parts of plants, causing
blackleg, soft rot, and aerial stem rot in carrot, tomato, cabbage, potato, and many other
plants all over the world [91,92,94]. The pathogenesis of Pectobacterium mainly depends
on the production and secretion of enormous amounts of extracellular enzymes, such
as pectate lyases, proteases, polygalacturonases, and cellulases, which cause cell wall
degradation, tissue softening, and rotting, resulting in plant death [92,95].

Some abiotic factors—such as temperature, free water, and available oxygen—play
important roles in disease progression [95]. Pectobacterium shows varying pathogenic-
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ity with the change in temperature. Maximum pathogenicity was recorded between
28 ◦C and 30 ◦C. Decreased pathogenicity was found between 24 ◦C and 37 ◦C [96]. Pro-
teases, polygalacturonases, cellulases, and pectolytic activity decreased with the increase
in temperature, whereas pectate lyases did not show a significant change with the in-
crease in temperature [96]. However, the disease symptoms caused by Pectobacterium vary
depending on the hosts and bacterial species [95]. P. carotovorum ssp. carotovorum has wide-
ranging hosts, including carrots, potatoes, lettuce, cabbage, onions, and so on, all over the
world [97–99]. Pectobacterium atrosepticum and P. carotovorum ssp. carotovorum are the main
causes of soft rot and/or blackleg in temperate areas [99–101].

The Pectobacterium genus is composed of heterogeneous strains. Pectobacterium species
are also divided into different subspecies. The P. carotovorum species has four subspecies—
carotovorum, brasiliense, odoriferum, and actinidiae—which have differing appearances [102].
A total of 265 Pectobacterium strains were reported from 1944 to 2020 [103]. Thirteen species
of Pectobacterium have been identified to date [96,102,103]. Pectobacteruim shows substantial
genome variations among the species, although most virulent genes remain conserved.
A pangenome analysis of Pectobacterium shows a dynamic evaluation process via gene
loss or gain and rearrangement [104]. These genetic variations are the main causes of the
differences in pathogenicity among the strains of Pectobacterium [104].

Pectobacterium causes enormous economic losses worldwide. P. parmentieri—a recently
identified bacterium of the Pectobacteriaceae family—is highly pathogenic for the economi-
cally important crops and the causative agent of soft rot of potato. It can grow and infect in a
variety of environmental conditions worldwide, including Africa, Europe, North America, and
New Zealand. Several genes of this bacterium encode different virulent extracellular enzymes,
which cause cell damage in plants [105]. P. atrosepticum and P. carotovorum ssp. carotovorum
are the main causes of soft rot [100,101]. P. atrosepticum was recorded as a substantial threat
to potato production in Northern Ireland [106]. Pectobacterium and Dickeya are responsible
for blackleg and soft rot diseases in EU potato production, causing losses of approximately
EUR 46 million annually [107]. The losses recorded were 32%, 43%, and 25% for the seed
potato sector, the table potato sector, and the processing potato sector, respectively [107].

2.2. Antibiotics in Plant Pathogen Control

Plants are known to harbor numerous bacterial pathogens, which exhibit variations in
their biochemical properties and modes of invasion. The classification of plant bacterial
pathogens based on their pathogenicity is challenging due to these variations. In an attempt
to categorize and rank plant pathogens based on their severity, a survey was conducted by
the journal Molecular Plant Pathology with the participation of bacterial pathologists who
ranked the top ten bacterial species [20].

Bacterial plant diseases are difficult to manage due to the large populations of bacterial
pathogens in sensitive plant hosts and the limited availability of bactericides. Antibiotics have
been widely used as an alternative to control bacterial plant diseases since the 1950s, as they are
effective in reducing bacterial population size and preventing disease outbreaks in the absence
of long-lasting and powerful host disease resistance. Oxytetracycline and streptomycin are
currently the most frequently used antibiotics in plants [108]. In addition, kasugamycin,
gentamicin, and oxolinic acid are also used to control bacterial plant pathogens [108]. The
amount of antibiotics used in plant agriculture is minimal compared to other applications.
Plant-grade antibiotics are usually created as powders with 17%–20% active ingredients,
which are then dissolved or suspended in water at concentrations between 50 and 300 ppm
before application [108,109].

However, the use of antibiotics in agriculture has increased in recent years, and there
are now more specific uses of antibiotics against pathogens [109]. Eleven antibiotics are
recommended for use in crops (often in combination), with significant regional variation
in their application [109]. Antibiotics are prescribed for a variety of issues, and they are
frequently applied as a prophylactic spray to prevent or control low levels of bacterial
illness. Table 1 shows the most frequently used antibiotics against specific PPB. The
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European Union has prohibited the use of antibiotics in plant disease control due to
concerns regarding their potential effects on human health, although antibiotics are still
used in agriculture [3].

Table 1. Crops in which antibiotics are mostly used to control bacterial diseases and their recom-
mended antibiotics according to Verhaegen et al., 2023, and Verhaegen et al., 2024 [1,110].

Crop Diseases Causative Agent Recommended Antibiotic

Rice Bacterial panicle blight Burkholderia glumae Oxolinic acid,
StreptocyclineBacterial leaf blight X. oryzae pv. oryzae

Tobacco Wildfire P. syringae pv. tabaci Streptomycin

Tomato
Bacterial canker Clavibacter michiganensis pv.

michiganensis Oxytetracycline,
Gentamycin, StreptocyclineBacterial wilt R. solanacearum

Bacterial speck P. syringae pv. tomato
Citrus Citrus canker Xanthomonas axonopodis

pv. citri Streptomycin

Paprika Bacterial canker C. michiganensis
subsp. capsici Streptomycin

Maize Wilt and blight C. michiganensis
subsp. nebraskensis Streptomycin

Potato

Blackleg P. atrosepticum
Oxytetracycline,

Gentamycin, Streptocycline
Bacterial wilt R. solanacearum

Soft rot Pectobacterium carotovorum
Ring rot C. michiganensis

subsp. sepedonicus

Eggplant Bacterial wilt or
southern wilt R. solanacearum Oxytetracycline,

Gentamycin, Streptocycline
Cabbage Bacterial black rot X. campestris pv. campestris Oxytetracycline,

Gentamycin, StreptocyclineSoft rot P. carotovorum
Watermelon Black rot Xanthomonas spp. Gentamycin

Onion Brown rot Pseudomonas aeruginosa Streptocycline

2.3. Antibiotic Resistance Profile of Plant Pathogens

The global health problem of antibiotic resistance (AR) is exacerbated by the movement
of micro-organisms and genes between people, animals, instruments, and the environ-
ment [111–114]. Despite numerous barriers prohibiting both bacteria and genes from
moving freely, pathogens frequently acquire new resistance components from other species,
making it more difficult to prevent and treat bacterial illnesses. The creation of new disease
resistance traits through rare and difficult-to-predict evolutionary processes could have
significant effects [115].

Although antibiotics’ use in agriculture is lower than in human and animal healthcare,
their increased use has contributed to the creation of new resistant strains of bacterial
pathogens. For example, C. michiganensis showed both spontaneous and induced resis-
tance to streptomycin due to multi-drug efflux pumps or enzymes—which inactivate
streptomycin—and rpsL mutation [116]. Another study found that higher use of strepto-
mycin sprays in citrus orchards resulted in higher resistance of the Xanthomonas smithii
subsp. citri [117]. Similar resistance was observed with other antibiotics, where bacteria
acquired resistance due to chromosomal mutation or resistance gene acquisition.

In this review, we attempted to summarize the AR data from previous research on PPB.
Table 2 shows the AR pattern of PPB worldwide over 17 years, while Table 3 shows the
higher minimum inhibitory concentration (MIC) values of antibiotics found against PPB over
time. Both of these tables show enormous variation in PPB susceptibility to antibiotics. The
locations of places where the studies on antibiotic resistance discussed in this review were
carried out are shown in Figure 1A. The study areas are marked red in the figure, which
includes thirteen countries. This VOSviewer 1.6.20 network analysis combines insights from
16 related research publications on antibiotic resistance of PPB, which were studied in this
review, highlighting the complex interplay between antibiotic resistance and bacterial diseases
in agricultural settings (Figure 1B). The network underscores the geographical diversity of the
research, with studies spanning different regions of the world, and emphasizes the importance
of understanding the resistance mechanisms in order to develop effective disease management
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strategies. The analysis serves as a testament to the collaborative efforts in addressing the
global challenge of antibiotic resistance in plant pathogens.

Table 2. Antibiotic resistance pattern of PPB.

Antibiotic Bacterial % of Resistance
(Resistance/Total Samples) Resistance Mechanism Reference

Streptomycin

P. syringae 8.42% (8/95) Probable chromosomal mutation [31]
P. syringae 5.26 (3/57) Probable chromosomal mutation [118]

X. smithii subsp. citri 44.1%–88.7%
(49/111–219/247)

Presence of the strB gene,
chromosomal mutation [117]

Xanthomonas oryzae pv. Oryzae 26.67% (4/15) Presence of the aadA1 gene [119]
X. axonopodis 55.5% (11/20) Not mentioned [120]

C. michiganensis 1.68% (3/179) Mutation in the rpsL gene [116]
C. michiganensis subsp. michiganensis

84% (21/25) Mutation in the rpsL gene [121]

Erwinia amylovora 18.1% (20) Not mentioned [122]
X. arboricola pv. Pruni 7.1% (7/99) Presence of strAB genes [123]

E. amylovora 2.66% (34/1280) Presence of the strA/strB gene [124]

Tetracycline

P. syringae 1.01% (1/95) Genetic modification [31]
P. syringae 3.5% (2/57) Chromosomal mutation [118]

Agrobacterium tumefaciens 6.67% (02/30) Not mentioned [125]
A. tumefaciens 100% (4/4) Not mentioned [126]

Oxytetracycline X. arboricola pv. Pruni 7.1% (7/99) Presence of tetC, tetR genes [123]

Ampicillin

P. syringae 57.9% (55/95) Not mentioned [31]
P. syringae 61.4% (35/57) Chromosomal mutation [118]

P. carotovorum 22.73% (5/22) Not mentioned [127]
A. tumefaciens 100% (30/30) Not mentioned [125]

Amoxicillin A. tumefaciens 100% (30/30) Not mentioned [125]
Doxycycline A. tumefaciens 13.34% (04/30) Not mentioned [125]

Copper P. syringae 75% (69/92) Not mentioned [31]

Chloramphenicol
P. syringae 37.9% (36/95) Not mentioned [31]
P. syringae 10.53% (6/57) Chromosomal mutation [118]

E. amylovora 0% (20) Not mentioned [122]

Rifampicin P. syringae 16.8% (16/95) Not mentioned [31]
A. tumefaciens 100% (4/4) Not mentioned [126]

Kanamycin
P. syringae 1.01% (1/95) Genetic modification [31]

P. syringae 0% (0/57) Chromosomal mutation [118]
A. tumefaciens 0% (0/4) Not mentioned [126]

Gentamicin
Ralstonia pickettii 96.97% (32/33) Presence of ICE- and

ars-operon-related genes [128]

X. axonopodis 33.3% (20) Not mentioned [120]
E. amylovora 9.99% (20) Not mentioned [122]
P. syringae 1.75% (1/57) Chromosomal mutation [118]

Bacitracin
X. axonopodis 77.7% (20) Not mentioned [120]
E. amylovora 81.89% (20) Not mentioned [122]

Cefotaxime
X. axonopodis 100% (20) Not mentioned [120]
E. amylovora 100% (20) Not mentioned [122]

Cephalothin P. carotovorum 22.73% (5/22) Not mentioned [127]
Cephradine A. tumefaciens 26.66% (08/30) Not mentioned [125]

Cefuroxime
A. tumefaciens 10% (2/19) Not mentioned [129]

A. tumefaciens 0% (0/4) Not mentioned [126]
Spectinomycin P. syringae 3.5% (2/57) Chromosomal mutation [118]
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Table 3. Higher minimum inhibitory concentration (MIC) values of antibiotics found against PPB in
previous studies.

Antibiotic PPB MIC50/MIC90
(µg/mL)

Lowest Observed
MIC (µg/mL)

Highest Observed
MIC (µg/mL) Reference

Streptomycin

X. oryzae pv. Oryzae ≤100/300 1 300 [119]
C. michiganensis 4/128 4 128 [116]

C. michiganensis subsp.
michiganensis 250/500 2 500 [9]

Ampicillin P. syringae 6/6 6 6 [130]
Chloramphenicol P. syringae 4/4 4 4 [130]

Colistin (polymyxin E) P. syringae 0.094/0.094 0.094 0.094 [130]
Erythromycin P. syringae 4/4 2 4 [130]

Kanamycin X. oryzae pv. Oryzae 100/>100 1 >100 [119]
Netilmicin X. oryzae pv. Oryzae 100/100 1 100 [119]

Sulfamethoxazole P. syringae 192/192 192 192 [130]
Tetracycline P. syringae 0.25/0.25 0.19 0.25 [130]

Gentamicin
X. oryzae pv. Oryzae 50/100 1 100 [119]

R. pickettii >256/>256 4 >256 [128]
Rifampicin X. oryzae pv. Oryzae 5/10 0.1 10 [119]
Tobramycin X. oryzae pv. Oryzae 10/50 1 50 [119]

Spectinomycin X. oryzae pv. Oryzae >500/>500 1 >500 [119]

Note: MIC50 represents the concentration of each antibiotic inhibiting 50% of the isolates; MIC90 represents the
concentration of each antibiotic inhibiting 90% of the isolates.

Figure 1. Cont.
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Figure 1. Locations where studies on the antibiotic resistance pattern of PPB were carried out
(marked red) (A). Interconnected research landscape of the reviewed articles: Antibiotic resistance
and bacterial pathogens in agriculture (B). The network was prepared using VOSviewer software,
version 1.6.20.

3. Mechanisms of Antibiotic Resistance

Organisms have a natural ability to adapt to changing or adverse conditions, includ-
ing antibiotic exposure, leading to AR [111,112,131]. However, different micro-organisms
employ distinct mechanisms to become resistant to antibiotics, and various factors con-
tribute to their resistance [115]. Bacterial pathogens are known for their genetic plasticity,
which can cause mutational modifications, transfer of genetic material, or changes in gene
expression, resulting in resistance to nearly all antibiotics used in clinical practice [4,132].
Acquisition of resistance plasmids or chromosomal mutations are the two primary mecha-
nisms involved in AR [113,114]. Plasmids bearing resistance genes can result in antibiotic
degradation through enzyme synthesis or enzymatic modification, while mutations leading
to antimicrobial resistance can alter antibiotic activity by modifying the antibiotic target
site, activating harmful molecule excretion, reducing drug uptake, or changing important
metabolic pathways [4]. Figure 2 summarizes the mechanisms of AR. Mutation resistance
involves the development of mutations in a subset of bacterial cells from susceptible popu-
lations, leading to conserved cell viability in the presence of the antibacterial molecule. The
resistant bacteria replace the susceptible population. However, mutagenic changes leading
to drug resistance may be challenging to maintain for the resistant population and are only
sustained in the presence of antibiotics [4].

Co-resistance is another type of resistance mechanism, where resistance to one antibi-
otic can cause resistance to another or to a heavy metal [133]. A recent study investigated
gentamicin and arsenite co-resistance and the putative molecular mechanisms [128]. Thirty-
two gentamicin-resistant (GR) isolates out of thirty-three were resistant to arsenite and
carried integrative and conjugative elements (ICEs) and ars-operon-related genes, indicat-
ing that arsenite resistance might have developed in GR lineages [128].
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3.1. Mechanism of Spread of Antibiotic Resistance to Food-Borne Pathogens

Antibiotic resistance is a major public health threat, and its spread to food-borne
pathogens is a serious concern. Antibiotic use creates an environment in which micro-
organisms must adapt, leading to the emergence of resistant bacteria. While antibiotics can
eliminate some disease-causing bacteria, they also kill beneficial bacteria, which protect us
from infection. Resistant bacteria proliferate and can transfer their resistance mechanisms
to other pathogens via plasmids carrying antibiotic-resistant genes (ARGs), including
phytopathogens, soil bacteria, and zoonotic bacteria, which are sometimes present in the
surrounding environment and in the food chain [134].

Antimicrobial use is essential for protecting human health, but it also poses a risk of
developing antibiotic-resistant micro-organisms [131]. Bacteria can adapt to antibiotics and
develop resistance, and the indiscriminate use of antibiotics in agriculture is contributing
to the emergence of new strains of resistant bacteria, including plant pathogens, which
pose a significant threat to agriculture. In addition, the antibiotics used in agriculture can
contaminate the water system, leading to the development of antibiotic-resistant micro-
organisms in aquatic microbiota, which can eventually be transferred to humans and
animals upon consumption. As the plant microbiomes—particularly rhizosphere micro-
organisms—are intimately linked to soil, water, and the atmosphere, ARGs can proliferate
across the ecosystems and become dangerous when they reach human bodies through
bacterial infection [2]. Using ATP binding cassette transporters, the root exudates generated
by root cells may be sent to the plant rhizosphere where they can attract particular microbial
populations. ARGs can be produced by a recombination of genes or mutations caused
by the antibiotics found in root exudates [2]. Tn5393—a well-known example of an ARG
vector in PPB—was detected outside of PPB in Salmonella enterica and Klebsiella pneumoniae,
and its strikingly similar variants (carrying streptomycin resistance genes) developed into
complicated connections with other MGEs and ARGs [1].

The use of antibiotics in fish farms can also contribute to the spread of antibiotic resis-
tance [135–139]. Insects, birds, and animals that feed on agricultural plants and seeds can
further disseminate resistant bacteria and genes. Furthermore, migratory birds have been
shown to spread multiple antibiotic-resistant pathogens in various studies, highlighting
the widespread nature of this problem [140–142]. Antibiotic-resistant pathogens have also
been reported in chickens, further exacerbating the issue [113].
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As a result, food-borne bacteria and pathogens are acquiring resistance genes, leading
to the emergence of untreatable diseases. AR genes from different edible parts of plants
have been reported, as summarized in Table 4, and Figure 3 illustrates the mechanisms of
spread of antibiotic resistance throughout the food chain, starting from the agricultural field.
Moreover, a recent study reported the presence of antibiotic resistance in plant-growth-
promoting bacteria [143]. Therefore, urgent action is needed to address this growing
problem and ensure the continued effectiveness of antimicrobial therapies [113,135–142].

Table 4. Antibiotic compounds (ACs) and antibiotic-resistant genes (ARGs) detected in the edible
parts of plants. All data pertaining to antibiotic-resistant genes in edible plants were taken from Marti
et al., 2013 [144].

Sample Plant Antibiotic Compounds Amount Detected (µg/kg) Antibiotic-Resistant
Genes Detected

References on
ACs Detection

Radish root

Gentamicin 0.051
incP oriT, incQ oriV, int3, aad(A),

str(A), str(B), sul1, erm(B), blaOXAIl,
int2, tet(A), erm(E), blaCTX-M, blaVIM,

blaTEM, erm(F)

[145–147]
Streptomycin 0.015

Oxytetracycline 8.3
Sulfadoxine 0.1–0.4
Lincomycin 0.9–3.1

Sulfamethazine 1.1

Carrot

Sulfamethazine <0.98

incP, oriT, incQ, oriV, aad(A), str(A),
str(B), sul1, erm(C), int1, tet(A), tet(S),
sul1, erm(B), erm(E), blaVIM, blaTEM,

qnr(B), tet(B), tet(T), blaOXA-20

[145,148,149]

Monensin <3.44–4
Erythromycin 0–0.52

Chloramphenicol 0.96–3.99
Norfloxacin 2.52–6.54
Tetracycline 0–1.33

Sulfamethazine 0–0.37
Penicillins G & V 0.05–0.3

Lettuce leaf

Tetracycline 1.35–1.85

incP, oriT, incQ, repB, incW, int3,
tet(A), tet(Q), tet(S), aad(A), str(A),

sul1, erm(B), blaOXA1, blaVIM, blaTEM

[149–152]

Chloramphenicol 0.86–2.72
Norfloxacin 2.88–7.43

Azithromycin 0.8–4
Ciprofloxacin 3.8–4
Kasugamycin 5–10
Streptomycin 5–10
Tetracycline 77–211

Oxytetracycline 35–318
Chlortetracycline 346–1364
Sulfamethazine 7813–25,993

Sulfamethoxazole 8582–30,589
Sulfadimethoxine 1773–7876

Tomato

Tetracycline 199–1009

tet(T), str(A), incP oriT, incY, int2, int3,
tet(A), tet(S), aad(A), str(A), str(B),
erm(B), erm(E), blaCTX-M, blaVIM,

blaTEM, tet(T), erm(F), blaPSE,
blaOXA-20

[148,150,151]

Oxytetracycline 590–3231
Chlortetracycline 231–864
Sulfamethazine 9573–42,445

Sulfamethoxazole 17,193–38,467
Sulfadimethoxine 6113–20,887

Kasugamycin 5–10
Streptomycin 5–10

Penicillins G & V 0.05–0.3

Cucumber

Tetracycline 89–496

incP, oriT, incP, trf A1, str(B), sul1,
erm(B), blaOXAII

[148,150]

Oxytetracycline 175–1603
Chlortetracycline 310–1320
Sulfamethazine 5359–16,319

Sulfamethoxazole 5633–11,330
Sulfadimethoxine 4924–12,692
Penicillins G & V 0.05–0.3

Pepper
Chlortetracycline <10 int3, tet(T), str(B), sul1, vat(B),

blaOXAII

[145,153]

Sulfamethazine <10
virginiamycin <10

Mushroom

Tetracyclines 0.3–1.5
Sulfonamides 0.3–1.5

Penicyllins 0.3–3
Macrolides 0.3–3

Fluoroquinolones 0.3–1.5
cephalosporins 0.3–1.5

Orange Penicillin G 0.1–0.25 [148,154]Penicillins G & V 0.05–0.3

Lemon Penicillin G 0.1–0.25 [148,154,155]Penicillins G & V 0.05–0.3
Grapefruit Penicillin G 0.1–0.25 [154,155]
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3.2. Impacts of Antibiotic Resistance

Antibiotics are widely used as growth promoters in animals and for treating infections
in both humans and animals, including aquaculture [156–158]. Some antibiotics used in
agriculture and aquaculture—such as erythromycin, gentamycin, enrofloxacin, neomycin,
and streptomycin—are structurally related to those used to treat human infections [159].
As a result, antibiotic-resistant bacteria in agriculture and aquaculture can enter the human
food chain, causing cross-resistance and reducing the effectiveness of antibiotics in treating
pathogenic infections.

The extent of antibiotic uptake by plants varies depending on the type of antibiotics
and plants, and it is directly proportional to the amount of antibiotics used. Antibiotic
residues have various adverse effects on plants, including impaired growth, fewer leaves, and
lower chlorophyll content [150]. Cucumber, tomato, and lettuce treated with tetracycline and
sulfonamides showed lower shoot and root weight compared to the control group [150].

Even at low doses, antibiotics can have a significant impact on plant characteristics.
These effects—which include delayed germination, lower biomass, and post-germinative
development—can reduce the output of farmland fertilized with manure treated with
antibiotics. Herbs were found to be more responsive to antibiotics than grasses, with the
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effects depending on species and functional category [160]. Species-specific reactions to
antibiotics could alter the species’ composition of natural communities on field margins,
potentially affecting their ability to compete. Such species-specific reactions could also
change the composition of the plant species’ community, indirectly affecting higher trophic
level species, such as pollinating and herbivorous insects [160]. The toxicity of commercially
available single antibiotics and antibiotics in combination was assessed with the root
development of Sinapis alba L [161]. Sulfadiazine was found to be the most toxic, while
tetracycline and enrofloxacin were found to be the least toxic [161].

The impact of antibiotics on higher plants can be both morphological and physiological,
leading to breakdowns in chlorophyll production and damage to photosystems [160,162]. A
study investigating the effect of nine antibiotics on Triticum aestivum found that penicillins,
cephalosporins, and tetracyclines had an impact on the photosynthetic electron transport
rate, while tetracyclines, ciprofloxacin, and erythromycin greatly reduced the content of
photosynthetic pigments, including chlorophylls and carotenoids [163].

Veterinary antibiotics can also affect plant performance by being released into farm-
ing fields through grazing livestock or manure and being absorbed, stored, altered, or
sequestered by plant metabolic processes. A study showed that penicillin, sulfadiazine,
and tetracycline antibiotics can have an impact on the elemental components of plants,
including macro- and micro-elements, with the most significant influence being produced
by penicillin. Roots were found to be the most responsive to antibiotics compared to stems
and leaves, and even at low concentrations, antibiotics in the soil could disrupt the scaling
relationships between roots and other plant organs, which could affect the plant’s metabolic
processes and overall performance [164].

3.2.1. Impact on Public Health

AR is a major global health concern, as highlighted by several studies [111–113].
The widespread use of antibiotics necessitates research into their impact on microbiota
and health. The gut microbiota plays a crucial role in maintaining not only intestinal
but also overall health and can be disturbed by a variety of factors, including antibiotics.
Antibiotic use can result in decreased microbial community, modifications to the functional
characteristics of the microbiota, and the emergence and adaptation of antibiotic-resistant
organisms, which can all negatively impact the health of hosts and make them more
vulnerable to infection by pathogens [165].

Infant’s resistome profile and gut bacteria colonization can be affected by perinatal
and peripartum antibiotic treatment, as evidenced by research [166]. Dams exposed to
cefoperazone during pregnancy were found to have offspring with changed gut microbial
populations and increased susceptibility to naturally occurring and chemically induced
colitis [167]. Maternal antibiotic intake during pregnancy has also been linked to a change
in the microbial makeup of infants [168,169]. Antibiotic use during pregnancy has been
associated with functional impairment in development and cognition, obesity, immunolog-
ical changes, and the onset of diabetes in children. Additionally, it has been linked to an
increased risk of asthma and allergy in fetuses [170–173].

In adults, the use of antibiotics has been shown to cause changes in their gut and oral
flora. For instance, a study found that ciprofloxacin treatment for 10 days reduced the
abundance of Bifidobacterium but had no effect on the levels of Lactobacillus and Bacteroides,
whereas clindamycin treatment for the same number of days caused Lactobacillus and
Bifidobacterium to decrease, and Bifidobacterium did not normalize until one year after the
end of treatment [174]. Figure 4 shows the effects of different antibiotics on the abundance
of gut microbiota in humans.

Studies on healthy infants and children who have never been exposed to antibiotics
have shown the existence of genes conferring resistance to β-lactams, fluoroquinolones,
tetracycline, macrolides, sulfonamides, or numerous drug classes. Enterococcus spp.,
Staphylococcus spp., Klebsiella spp., Streptococcus spp., and Escherichia/Shigella spp. were
found to be the main carriers of ARGs [175–177]. Bacteria in the gut can transmit genes both
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horizontally and vertically to similar and dissimilar bacteria because of their proximity and
the ability of mobile genetic elements (MGEs) [178]. Because ARGs make treating infections
more challenging, expensive, and ineffective, their presence in humans is a global concern.
Moreover, since AR bacteria can be passed from mother to child through breastfeeding,
ARGs in the gut microbiota of infants can come from those of their mothers [178].

Plants 2024, 13, x FOR PEER REVIEW 16 of 35 
 

 

 
Figure 4. Effect of various antibiotics on the abundance of gut microbiota, with an increase indicated 
by the green color on the left, and a decrease indicated by the red color on the right (reproduced 
with permission from Wiley [165]). 

Studies on healthy infants and children who have never been exposed to antibiotics 
have shown the existence of genes conferring resistance to β-lactams, fluoroquinolones, 
tetracycline, macrolides, sulfonamides, or numerous drug classes. Enterococcus spp., 
Staphylococcus spp., Klebsiella spp., Streptococcus spp., and Escherichia/Shigella spp. were 
found to be the main carriers of ARGs [175–177]. Bacteria in the gut can transmit genes 
both horizontally and vertically to similar and dissimilar bacteria because of their prox-
imity and the ability of mobile genetic elements (MGEs) [178]. Because ARGs make treat-
ing infections more challenging, expensive, and ineffective, their presence in humans is a 
global concern. Moreover, since AR bacteria can be passed from mother to child through 
breastfeeding, ARGs in the gut microbiota of infants can come from those of their mothers 
[178]. 

Gut bacteria are responsible for the production of numerous essential metabolites, 
such as short-chain fatty acids (SCFAs) and amino acids, which have been identified in 
studies [179]. Antibiotics can affect the transcription of important functional genes, which 
code for the transport proteins, enzymes involved in carbohydrate metabolism, and pro-
teins involved in protein synthesis [180,181]. This modification of gene transcription can 
result in bacterial resistance to various antibiotics and host defenses, leading to difficulties 
in treating human infections and equipment/pipe blockages in healthcare facilities and the 
food industry [129]. The functional changes induced by antibiotics in the microbiota lead 
to alterations in the microbial community and—consequently—the metabolites generated 
by the bacteria [182]. 

Bacteria use pattern recognition receptors (PRRs) to communicate with their hosts by 
producing signaling molecules, such as bile acids, SCFAs, fatty acids, lipopolysaccharide, 
lipoteichoic acid, flagellin, 5‘—C—phosphate—G—3’ DNA, and peptidoglycan. These 
signaling molecules can interact with free fatty acid receptors, G-protein-coupled recep-
tors, and nuclear receptors to provide energy to other cells and regulate immune cell 

Figure 4. Effect of various antibiotics on the abundance of gut microbiota, with an increase indicated
by the green color on the left, and a decrease indicated by the red color on the right (reproduced with
permission from Wiley [165]).

Gut bacteria are responsible for the production of numerous essential metabolites,
such as short-chain fatty acids (SCFAs) and amino acids, which have been identified
in studies [179]. Antibiotics can affect the transcription of important functional genes,
which code for the transport proteins, enzymes involved in carbohydrate metabolism, and
proteins involved in protein synthesis [180,181]. This modification of gene transcription can
result in bacterial resistance to various antibiotics and host defenses, leading to difficulties
in treating human infections and equipment/pipe blockages in healthcare facilities and the
food industry [129]. The functional changes induced by antibiotics in the microbiota lead
to alterations in the microbial community and—consequently—the metabolites generated
by the bacteria [182].

Bacteria use pattern recognition receptors (PRRs) to communicate with their hosts by
producing signaling molecules, such as bile acids, SCFAs, fatty acids, lipopolysaccharide,
lipoteichoic acid, flagellin, 5′—C—phosphate—G—3′ DNA, and peptidoglycan. These
signaling molecules can interact with free fatty acid receptors, G-protein-coupled receptors,
and nuclear receptors to provide energy to other cells and regulate immune cell func-
tion [183,184]. However, when bacteria are treated with antibiotics, PRRs such as Toll-like
receptors are reduced, leading to downstream regulation of innate defenses [185].

Several studies have shown that antibiotics can cause direct harmful effects on host tis-
sues, including oxidative tissue damage, mitochondrial damage, and reduced ribosomal gene
expression [186,187]. The use of antibiotics has also been linked to an increased risk of breast
cancer and miscarriage [188–190]. Antibiotics can directly affect host metabolism without
the use of micro-organisms as a mediator. For example, high levels of AMP—which reduce
the effectiveness of antibiotics and promote phagocytic activity—are among the host metabo-
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lite alterations, which are primarily local to the infection site. Antibiotics can also weaken
immunological response due to the inhibition of immune cells’ respiratory activity [191].

3.2.2. Impact on Environment

Various antibiotic classes are present in the environment, and the existence of antibiotic
residues is determined by the pharmacokinetic profile of antibiotics [192]. The biological
activity of antibiotics in different environmental matrices is determined by their bioavailability
and interaction with environmental factors, such as pH, organic carbon content in soil, water
type, and the type of organism present [192]. Understanding how antibiotics degrade in the
environment is crucial. Antibiotics with a lower adsorption potential readily transfer into the
aquatic environment, while those with a higher adsorption potential tend to accumulate and
remain in soil [193,194]. Penicillins and cephalosporins tend to accumulate in sewage sludge
and sediments, possibly forming complexes with cations, which could explain the bacterial
cephalosporin resistance observed in sewage treatment facilities [163].

The effect of streptomycin and tetracycline on soil fertility and microbial activity varies
depending on the soil type. Streptomycin reduces nitrification and soil fertility in humus-
poor soil, whereas tetracycline reduces denitrification and jeopardizes soil microbial activity
in humus-rich soil [195]. Both antibiotics increase microbial biomass while inhibiting the
growth of white mustard seeds, indicating an increase in the allelopathic activity of micro-
organisms in soil when antibiotics and their metabolites are present. Streptomycin has
low solubility in humus-poor soils, posing a significant threat to agricultural productivity,
particularly in low-fertility areas [195].

The spread of antibiotic-resistant genes (ARGs) in the environment is one of the most
significant threats to human health and the environment. ARGs have been discovered in
soil, freshwater and saltwater oceans, river water, the food chain, and even in humans
(Table 5) [129,141,157,159,179,180]. Contamination of these environments with antibiotics
and AR bacteria is driving the spread of bacterial resistance [196]. ARGs have also been
found in viruses, in addition to bacteria [182]. Although some ARGs have historically been
found in pristine or uncontaminated Antarctic soil habitats, widespread human usage of
antibiotics is a significant contributor to their spread [183].

Table 5. Antibiotic compounds (ACs) and antibiotic-resistant genes (ARGs) detected in different
living forms and environments.

Samples Antibiotic
Compounds

Amount Detected
(ng/kg)

Antibiotic-Resistant
Genes Detected

References on
ACs Detection

References on
ARGs Detection

Drinking water
or groundwater

Sulfapyridine 0.052

tetM, tetO, tetQ, ermF, sul1 [197–200] [198,200]

Sulfamethoxazole 0.3–18.6
Ciprofloxacin 0.4–224.4
Enrofloxacin 0.2–11.2
Norfloxacin 0.4–3.6
Florfenicol 3.3–26.1

Erythromycin 0.05

River water or
surface water

Sulfapyridine 0.2–3.1

blaCTX, blaTEM, tetA, tetB, tetM,
tetW, tetO, tetQ, tetX, ermB, ermC,
ermF, aac(6′)-Ib-cr, qepA, qnrS, sul1,

sul2, vanA, mecA, ampC
[196–203] [198,200]

Sulfamethoxazole 0.3–13.0
Ciprofloxacin 0.2–18.8
Enrofloxacin 0.2–52.2
Levofloxacin 0.3–6.0
Norfloxacin 0.2–78.1
Florfenicol 1.6–15.3

Doxycycline 1.9–3.5
Metronidazole 0.4–1.6
Erythromycin 0.1–1.7

Clarithromycin 0.35
Roxithromycin 1–913

Ofloxacin 2.2–2.9
Azithromycin 0.14–30.27
Norfloxacin 0.11–2200
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Table 5. Cont.

Samples Antibiotic
Compounds

Amount Detected
(ng/kg)

Antibiotic-Resistant
Genes Detected

References on
ACs Detection

References on
ARGs Detection

Wastewater

Sulfapyridine 0.4–2.2

blaCTX, blaTEM, blaOXA, blaSHV,
tetA, tetB, tetM, tetW, tetO, tetQ,

tetX, ermB, ermC, ermF,
aac(6′)-Ib-cr, qepA, qnrS, sul1, sul2,

vanA, mecA, ampC

[197–201,203] [198,200,204]

Sulfamethoxazole 0.6–20.9
Ciprofloxacin 0.91–99.3
Enrofloxacin 0.86–3579.6
Levofloxacin 0.5–19,981.6
Norfloxacin 0.6–24.6

Chloramphenicol 0.99
Florfenicol 2.4–6.8

Doxycycline 1.8–264.4
Metronidazole 0.64–1.45

Ampicillin 900–1600
Erythromycin up to 6.0

Clarithromycin 18–1800
Roxithromycin 32–1492

Ofloxacin 1210
Azithromycin 329.55
Norfloxacin 44.04–2900

River sediment

Ciprofloxacin 0.16–21.74

intI1, sul2, blaTEM, floR, ermB, sul1,
ereA, tetW, tetM, tetC, mecA,

blaOXA-58, blaKPC-3,
[94,97–101,104]. [205–207]

Enrofloxacin 0.16–24.42
Levofloxacin 0.82–2.89
Norfloxacin 0.14–2.20

Chloramphenicol 0.98–1.53
Ciprofloxacin 0.68–112.7
Enrofloxacin 0.4–112.69
Levofloxacin 0.77–100.91
Norfloxacin 0.04–6600

Chloramphenicol 0.62–16.10
Doxycycline 1.44–57.32
Ampicillin 4600–43,800

Clarithromycin 330–9930
Azithromycin 43,000

Soil

Ciprofloxacin 0.3–18.2 aac(6′)-IB-CR, sul2, tetA, tetX, tetW,
sul1, ermF, blaTEM, aadA15, aadA13,
aadA, blaLCR-1, aac(3)-Ia, blaOXA-347,

tetC, mef C, aph(6)-Ib, aadA16,
dfrA1, aph(3′)-Ib, tetM, shv, ermC,

[197] [208–210]
Enrofloxacin 0.4–5.5
Levofloxacin 0.2–6.5
Norfloxacin 0.2–4.6

Chloramphenicol 1.0–10.5
Doxycycline 1.1–5.5

Human plasma,
serum, urine,

and feces

Ceftriaxone 1.01–200
cfxA, aacA, ermB, ermD, tetQ, tetW,

tetO, sul2, tet32, tolC, aadA1,
blaSHV, blaSHV(156G), acrB,

blaSHV(238G240E), tetM, ompF, ermA,
mef A, tetA, tetB, bacA, vanR, aadE,

vanS, tet32, macB, bcrA,

[211–217] [204,218–220]

Metronidazole 0.05–50
Amoxicillin 0.0015–0.015/50
Ampicillin 0.0015–0.015/50

Levornidazole 0.005–2.0
Linezolid 0.07/4.7 × 106

Oxacillin 2–100 × 106

Ceftazidime 2–100 × 106

Piperacillin 2–100 × 106

Pig manure and
fecal samples

Ciprofloxacin 0.33–13.71
etQ, lnuC, tet40, aadE, ermF, tet44,

ermB, cfxA, aph(3′)-IIIa, cfxA6, tetX,
tetL, tetW, tetO, mef A,

[197,202] [120]
Enrofloxacin 0.45–3.86
Levofloxacin 0.51–5.66
Norfloxacin 0.42–1057.60
Doxycycline 1.04–36.46

Metronidazole 0.33–0.42

Poultry meat,
manure, and
fecal samples

Enrofloxacin 5.37–55.4

aadA, aadA2, aadA3, strB, ermB,
sul2, tetK, tetM, tetW, tetX, aac3-1,

tetA, acrA, ampC, pKD13, tetB,
ermA, aadA1, ermC, strA, mphA,

aadA14, blaCARB8, blaCARB10,
aph(3′)-Ic, aadA24, aph(6′)-ld, tet39,
aph(3′)-IIa, lsaE, tetL, lnuB, vanA,

vanB, vanC2

[204,221–223] [113,224–226]

Sulfadimethoxine 5.37–55.4
Sulfamerazine 5.37–55.4

Tylosin 5.37–55.4
Metronidazole 1.0

Chloramphenicol 0.4
Carbendazim 0.2
Diethofencarb 2.5

Sulfabenzamide 2.0
Erythromycin 1.0
Enrofloxacin 460
Doxycycline 50

Fish farms

Chloramphenicol 0.0548 ± 0.0099 mexB, mexF, mexW, mexD, acrB,
oprN, adeB, mexE, emrD, mdtG,

mdtF, tolC, bcR, acrA, mdtH, sul1,
tet32, tetM, tetO, tetT, tetW, aadA1,
aadA2, catA1, emrB, matA, mef A,

msrA

[204,227,228] [135–139]
Quinolones 1000–11,600

Sulfonamide 100–7000
Penicillin 11,000–20,400

Tetracyclines 300–1300
Ciprofloxacin 1000
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4. Biocontrol Agents to Control Plant Pathogens Rather Than Antibiotics
4.1. Use of Endophytes
4.1.1. Use of Bacterial Endophytes

Bacterial endophytes have shown promising antagonistic activity against various food-
borne and plant pathogenic bacteria. They achieve this by generating biocidal compounds,
triggering the plant’s defense systems, or directly parasitizing the pathogen, thus limiting
the proliferation of phytopathogens [229]. The most effective bacterial genera known for
their broad-spectrum activity against micro-organisms are Bacillus and Pseudomonas, which
produce different antimicrobial compounds effective against diverse fungal and bacterial
plant pathogens [13,18]. In field tests, the application of both Pseudomonas and Bacillus
strains as seed treatment improved tomato seed quality and significantly reduced the
incidence of C. michiganensis bacterial canker [230,231].

In addition to C. michiganensis, other bacteria, such as Streptomyces sp. strain
HL-12, Bacillus subtilis, Trichoderma harzianum, and Rhodosporidium diobovatum, have demon-
strated antibacterial activity against Pseudomonads [232,233]. Notably, Staphylococcus pasteuri
and Staphylococcus warneri showed promise as biocontrol agents against the bacterium
Xanthomonas citri subsp. citri, which causes citrus bacterial canker [234].

Different strains of Bacillus velezensis have also shown efficacy against various fungal
and bacterial pathogens. For example, Bacillus velezensis FZB42 has demonstrated high
effectiveness against Xanthomonas campestris pv. campestris isolated from cabbage [235],
while Bacillus velezensis IP22 isolated from fresh cheese was found to be highly active against
Xanthomonas euvesicatoria, which causes pepper bacterial spots [236]. The antimicrobial
activity of Bacillus velezensis is attributed to different lipopeptides and polyketides [235].
Furthermore, co-culture platform studies have revealed the efficacy of Bacillus safensis ZK-1
against the kiwifruit canker pathogen P. syringae pv. actinidiae, Pseudomonas alcaligenes ZK-2
against the turfgrass disease dollar spot pathogen Clarireedia paspali, and Bacillus velezensis
ZK-3 against the rice bacterial blight pathogen X. oryzae pv. oryzae and rice blast fungus
Magnaporthe oryzae [237].

Two strains of Pantoea agglomerans, PHYTPO1 and PHYTPO2, were found to be excel-
lent biocontrol agents against tomato bacterial wilt caused by R. solanacearum (Smith) [35].
Additionally, the rhizosphere competence, effective biological control of tomato wilt symp-
toms in greenhouses, and effects on the native rhizosphere prokaryotic communities were
examined for two bacterial strains, Bacillus velezensis (B63) and Pseudomonas fluorescens
(P142), both of which displayed in vitro antagonistic activity toward R. solanacearum (B3B).
Under field conditions, B. velezensis (B63) and P. fluorescens (P142) treatment significantly
reduced wilt disease symptoms [238].

The ability of Bacillus subtilis, Bacillus pumilus, Bacillus megaterium, and Pseudomonas flu-
orescens to suppress P. carotovorum subsp. carotovorum was evaluated under in vitro and
in vivo testing. B. megaterium was found to be quite efficient when used simultaneously
or two hours after pathogen injection. Additionally, under artificially infected conditions,
B. pumilus provided strong protection for the potato tuber, which was being preserved [239].

4.1.2. Use of Fungal Endophytes

Endophytes can produce a range of antibacterial substances in addition to antifungal
substances, which can protect the host plant against bacterial infections. These antibacte-
rial substances can vary in their spectrum, with some offering broad-spectrum protection
and others providing defense against specific types of bacteria [16]. Figure 5 shows the
mechanisms of these biocontrol agents in killing PPB, plant growth promotion and stress
response in addition to the antibacterial activity. Endophytic fungi can produce various
secondary metabolites, including terpenoids, alkaloids, phenylpropanoids, aliphatic com-
pounds, polyketides, acetol, hexanoic acid, acetic acid, and peptides, which have broad
antibacterial properties [16,17]. Certain endophytes of the Microdiplodia genus, for exam-
ple, can generate phomadecalin E and 8-acetoxyphomadecalin C—two terpenoids, which
are effective against antagonistic strains of Pseudomonas aeruginosa [16]. Some strains of
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P. aeruginosa can cause soft root rot in plants such as Panex ginseng, Arabidopsis, and
Ocimum basilicum, as well as opportunistic human infections [240,241].
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In addition to Microdiplodia, Chaetomium globosum is another fungal endophyte, which
produces broad-spectrum antibacterial substances with activity against several pathogenic
bacteria and anti-biofilm properties [242]. Another fungal endophyte, Trichoderma harzianum,
which was isolated from Rosmarinus officinalis, has shown significant antimicrobial activity
against P. aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, B. subtilis, and E. coli [243].
In vitro and in vivo evaluations of the ability of Trichoderma harzianum, Trichoderma viride,
and Trichoderma virens to inhibit P. carotovorum subsp. carotovorum-induced bacterial soft
rot have also been conducted. When administered simultaneously or two hours before
pathogen inoculation, T. viride and T. virens significantly reduced the symptoms of soft rot
in potato tuber slices, which had been inoculated [239].

Recent research has suggested that the endophyte may be used as a biocontrol agent
against phytopathogenic bacteria [17]. For example, Diaporthe phaseolorum, Aspergillus fumigatus,
and A. versicolor—endophytes from healthy tomato (Solanum lycopersicum) plants—have been
found to produce antibacterial metabolites, such as acetol, hexanoic acid, and acetic acid, which
exhibit effective biocontrol activities against the tomato bacterial spot (Xanthomonas vesicato-
ria) [17]. Additionally, extracts from Cupressaceae hosts containing extracellular metabolites of
endophytic Aspergillus spp. have been found to exhibit variable degrees of antibacterial activity
against Bacillus sp., E. amylovora, and P. syringae, although the metabolites were not identi-
fied [244]. It is not clear whether the endophytic fungus directly creates these antimicrobial
compounds, or whether the host plant produces them in response to endophyte inoculation [16].
Further research is needed to better understand the secretion of these chemicals and related
gene expression [16].

4.2. Use of Viral Vectors to Encounter Pathogens

Phage-based biological control is a promising option for a specific and cost-effective
control of plant pathogens [245]. Research has shown that most bacteriophages with antibac-
terial activity against phytopathogens originate from the Podoviridae and Myoviridae fami-
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lies [14,15,246–249]. A recent study demonstrated that a cocktail of bacteriophages belonging
to the Podoviridae and Myoviridae families was effective against Pectobacterium species [250].

In addition, researchers have isolated new lytic phages—vRsoP-WF2, vRsoP-WM2,
and vRsoP-WR2—from river water. These phages belong to the Podoviridae family and the
T7likevirus genus, and they were effective in reducing the incidence of bacterial wilt caused
by R. solanacearum in irrigation water and host plants [33]. Another phage, phiPccP-1—a
member of the Unyawovirus genus and the Studiervirinae subfamily of the Autographivirinae
family—demonstrated lytic activity against Pectobacterium odoriferum Pco14 and two other
Pectobacterium species in Pyeongchang, South Korea. Furthermore, the application of
phiPccP-1 significantly reduced the development of soft rot disease in the mature leaves of
harvested Kimchi cabbage up to 48 h after Pco14 inoculation [251].

The Siphoviridae family also shows promising results, with bacteriophage CMP1 and
CN77 demonstrating lytic activity against C michiganensis. A peptidase-active endolysin from
these viruses selectively lysed C michiganensis without affecting other bacteria [252,253].

X. oryzae pv. oryzae is a major pathogen, which causes illnesses in rice worldwide,
and recent studies have identified two Myoviridae-family bacteriophages—Xoo-sp13 and
Xoo-sp14—which infect this bacterium in China, highlighting their potential as targets for
phage therapy due to their wide host range [254,255]. Additionally, the filamentous phage
XaF13 (Inoviridae family) isolated from Mexico was found to infect the phytopathogenic
bacterium Xanthomonas vesicatoria [256], and the bacteriophage Xccϕ1 was evaluated for its
effectiveness against the phytopathogen X. campestris pv. campestris, revealing the possible
advantages of bacteriophages in modifying biofilm structure, decreasing bacterial growth,
and manipulating plant metabolism and defense mechanisms [257].

Despite their potential benefits, the use of bacteriophages as biopesticides in agri-
culture is limited due to their unique biological characteristics [258]. The challenging
registration procedure and negative characteristics associated with bacteriophages as ac-
tive molecules have resulted in a limited number of bacteriophage-based biopesticides
on the market. However, Table 6 presents a shortlist of other bacteriophages, which have
shown significant antibacterial activity against phytopathogenic bacteria, with most of
them belonging to the Podoviridae and Myoviridae families.

Table 6. List of bacteriophages found to be effective against different phytopathogenic bacteria.

Bacterial Pathogens Experimental Plant Bacteriophage Used Phage Family Reference

P. carotovorum subsp.
carotovorum, P. wasabiae Solanum tuberosum (potato) ΦPD10.3 and PD23.1 Myoviridae [14]

P. carotovorum subsp.
carotovorum Lactuca sativa (lettuce) PP1 Podoviridae [249]

P. atrosepticum Solanum tuberosum (potato) Peat1 and phiM1 Autographiviridae [259]

Pectobacteriun Brassica rapa
(Kimchi cabbage) phiPccP-1 Autographiviridae [251,260]

Dickeya solani Solanum tuberosum (potato)

LIMEstone1 and
LIMEstone2

Myoviridae
[247]

ΦD1, ΦD10 and ΦD11 [248]

ΦPD10.3 and PD23.1 [14]

P. syringae pv. actinidiae Actinidia deliciosa (kiwifruit)
PPPL-1 and KHUφ38 Podoviridae [261]

KHUφ34
Myoviridae

[261]

Φ6 [262]

P. syringae pv. syringae Prunus avium (cherry) Φ1215, Φ1226, 137, Φ358,
Φ369) [263]

R. solanacearum

Musa acuminate (banana) M5 and M8 Podoviridae [246]

Solanum lycopersicum
(tomato) and Solanum

tuberosum (potato)
Φsp1 Myoviridae [15]



Plants 2024, 13, 1135 21 of 32

Overall, these studies suggest that phage-based biological control could be a useful
tool in the fight against plant pathogens, and further research is needed to develop more
effective and specific phage-based treatments.

4.3. Use of Genetically Modified Organisms

Genetically modified bacteria have been created and distributed with plants in experimen-
tal field plots to make it easier to track them and evaluate their effects on the local microbiome.
The survival and expression of advantageous features of these bacteria in field environments
are highly dependent on local environmental conditions. Another alternative approach for
genetically modified organisms is the incorporation of genes responsible for encoding different
antimicrobial peptides in plants. However, some microbes capable of biosynthesizing these
peptides have not been used successfully in field trials. Studies have shown that transcrip-
tion factors play a crucial role in establishing the sensory transcription regulatory networks
necessary for plant immunity in response to pathogen-induced cellular responses [264].

Recent research has shown that the recombinantly generated endolysin from the
CMP1 bacteriophage is completely resistant to C. michiganensis in tomato plants [265].
Serratia marcescens strain B2 has been found to effectively manage cyclamen and rice
fungal infections, although abiotic and biotic variables can negatively impact its activity.
To overcome this limitation, a genetically altered rice-indigenous bacteria were created
by inserting S. marcescens-isolated genes and placing them under the control of various
promoter types. These genetically modified bacteria successfully inhibited Pyricularia
oryzae-caused rice blast disease and were unaffected by abiotic or biotic influences [266].

Tomato plants (Solanum lycopersicum) expressing the Bs2 resistance gene from pepper
have demonstrated increased resistance to bacterial spot disease caused by Xanthomonas
species in replicated multi-year field studies conducted under commercial-type growth set-
tings. VF 36-Bs2 plants displayed the lowest disease severity among all tomato varieties
studied, with the Bs2 gene decreasing disease to exceptionally low levels in the highly sus-
ceptible VF 36 variety. In addition, transgenic lines produced approximately 2.5 times as
much commercial fruit as their non-transformed parent lines [267]. Overexpression of plant
ferredoxin-like protein (PFLP) in transgenic plants has been known to provide remarkable
resistance to various bacterial infections. The PFLP gene was introduced into Arabidopsis, and
these transgenic plants demonstrated resistance to soft rot bacterial pathogen P. carotovorum
subsp. carotovorum [268]. The Fusarium oxysporum resistance gene I-3 has also been introduced
into cultivated tomato (Solanum lycopersicum) from wild tomato species [269].

5. Conclusions

The importance of monitoring the antibiotic resistance (AR) patterns of plant pathogens,
including fungi, cannot be overstated. However, there is a lack of data on this topic, mak-
ing regular surveillance essential. It is recommended that regulatory authorities conduct
regular AR surveillance programs to provide guidance, regulate antibiotic use, and monitor
antibiotic resistance in the field. Non-pathogenic strains should also be examined, as they
can contribute to the spread of antibiotic resistance. Alternative methods, such as biocontrol
agents, show great potential for controlling phytopathogens and should be implemented
in full field trials with appropriate farmer training. Additionally, genetic engineering can
be utilized to produce endophytes, which are effective against phytopathogens, providing
another promising avenue for disease control in agriculture.
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