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Abstract: Sugar content is an essential indicator for evaluating crisp pear quality and categorization,
being used for fruit quality identification and market sales prediction. In this study, we paired a
support vector machine (SVM) algorithm with genetic algorithm optimization to reliably estimate
the sugar content in crisp pears. We evaluated the spectral data and actual sugar content in crisp
pears, then applied three preprocessing methods to the spectral data: standard normal variable
transformation (SNV), multivariate scattering correction (MSC), and convolution smoothing (SG).
Support vector regression (SVR) models were built using processing approaches. According to the
findings, the SVM model preprocessed with convolution smoothing (SG) was the most accurate, with
a correlation coefficient 0.0742 higher than that of the raw spectral data. Based on this finding, we used
competitive adaptive reweighting (CARS) and the continuous projection algorithm (SPA) to select
key representative wavelengths from the spectral data. Finally, we used the retrieved characteristic
wavelength data to create a support vector machine model (GASVR) that was genetically tuned. The
correlation coefficient of the SG–GASVR model in the prediction set was higher by 0.0321 and the
root mean square prediction error (RMSEP) was lower by 0.0267 compared with those of the SG–SVR
model. The SG–CARS–GASVR model had the highest correlation coefficient, at 0.8992. In conclusion,
the developed SG–CARS–GASVR model provides a reliable method for detecting the sugar content
in crisp pear using hyperspectral technology, thereby increasing the accuracy and efficiency of the
quality assessment of crisp pear.

Keywords: hyperspectral imaging; crisp pear; sugar content; machine learning

1. Introduction

Pears are one of the world’s most popular fruits [1]. Pears, compared to other fruits,
have a higher dietary fiber content and can have more favorable effects on the human
gastrointestinal tract, making them popular among consumers [2].

The sugar content in pears can influence their flavor, so it is an essential predictor
of pear quality. The pear quality control procedure in many countries now involves the
detection of sugar content [3]. Currently, the quality inspection and classification of most
fruits primarily rely on manual examination [4], which is subjective and inefficient [5].
Now, the quality features of most fruit can be directly detected, exhibited, and identified
using recent advancements in computer vision technology such as RGB and hyperspectral
images. Additionally, optical imaging technologies such as spectral imaging are becoming
increasingly popular with the development of hyperspectral sensors for the automated
detection and nondestructive grading of fruit quality [6]. These systems can be used to
collect a large amount of digital data related to fruit properties [7]. When processing large
batches of fruit-grading activities, the fruit quality detection accuracy and detection time of
contemporary optical imaging technology are higher and lower, respectively, than those
of previous approaches [8]. Notably, the application of contemporary optical imaging
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equipment for nondestructive testing can substantially reduce labor costs while increasing
testing efficiency.

Hyperspectral imaging techniques can be used to efficiently capture internal fruit
quality information, as differences in fruit quality are reflected in differences in waveband
and spatial distribution information [9]. These methods have performed well in testing
the fruit quality, accurately detecting the attributes of several fruits, including glucose
content [10], persimmon skin hardness [11], banana water content [12], strawberry skin
abrasions [13], and citrus maturity [14]. Gamal El Masry et al. employed hyperspectral
imaging technology in the visible and near-infrared (400–1000 nm) regions in 2006 to
build a model to nondestructively quantify indicators such as the total soluble solid (TSS)
content in strawberries [15]. In 2016, Jiangbo Li et al. applied long-wave near-infrared
hyperspectral imaging technology to evaluate the soluble solid content (SSC) in pears [16].
Dongyan Zhang et al. used hyperspectral imaging technology to quantify the sugar content
in a specific pear variety (Danshan) in 2018 [17]. In 2023, Min Xu et al. used hyperspectral
technology with the deep-learning-based stacked autoencoder (SAE) method to construct a
deep learning model to quickly detect the TSS in Kyoho grapes. As such, nondestructive
testing (NDT) [18] represents a suite of analytical techniques employed for the evaluation
of a material’s properties without causing damage.

Most scholars have chosen to screen features from several bands in hyperspectral data
to find characteristic bands that are strongly associated with fruit quality. These methods
can efficiently handle some of the features that may be included in the whole spectrum when
combined with hyperspectral imaging technology. In these models, various wavelengths
can cause a number of issues such as collinearity, redundancy, and noise interference [19].
To address these issues, the feature extraction algorithm and the quality of the extracted
features can be enhanced to improve the model’s prediction performance [20]. A variety
of variable selection algorithms have been created for feature extraction technology to
generate parsimonious models. Nogaard et al. developed interval partial least squares
(iPLS), a graph-oriented local modeling approach, which they tested on a near-infrared
(NIR) spectral dataset based on 60 beer samples. The spectral correlation coefficient was
calculated: the root mean square error was 0.17%, which was four times less than that of
the whole spectrum [21]. Munera investigated the interior quality of persimmons using
hyperspectral imaging technology and predicted hardness using the continuous projection
and partial least squares regression models, achieving an Rp2 prediction accuracy of
0.80 and an RMSEP of 3.66 [11]. Choi et al. employed typical normal transformation
and smooth convolution preprocessing together with the partial least squares regression
approach to develop a model using the near-infrared spectroscopy data of pear sugar
concentration. The correlation coefficient on the prediction set ranged between 0.90 and
0.96; the root mean square error ranged from 0.29 to 0.33 [22]. Although these variable
selection algorithms are novel, their algorithm fusion techniques are straightforward. The
algorithm is neither tuned nor preprocessed step-by-step, limiting further increases in
model detection performance [9].

In this study, we aimed to address the aforementioned issues by developing a method
combining feature extraction engineering methodologies. We used a genetic algorithm
(GA) to enhance the support vector machine algorithm (SVR), which was then paired
with three preprocessing methods: standard normal transformation (SNV), multivariate
scattering correction (MSC), and smooth convolution (SG), as well as competitive adaptive
reweighting. The competitive adaptive reweighting (CARS) algorithm and the continuous
projection algorithm (SPA) were the two feature extraction approaches. Using hyperspectral
data, we developed a model for detecting the sugar content in crisp pear, offering both
theoretical reference and technological assistance for the grading and nondestructive testing
of crispy pear quality. The following are the novel features of this study:

(1) A crisp pear sugar content dataset was developed and published using hyperspectral
imaging technology;
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(2) The feasibility and ideal model of the optimized genetic algorithm were investigated
for predicting the sugar content in pear.

2. Related Studies
2.1. Hyperspectral Technology

Spectroscopy is an interdisciplinary study of physics and chemistry, examining the
interaction of electromagnetic waves with substances in a spectrum [23]. Because the atoms
that comprise each substance have distinct spectral lines, spectra can be used to identify
substances and determine their chemical compositions [24]. This is known as spectral
analysis. Hyperspectral imaging technology has the characteristics of both traditional
imaging and spectral analysis and can be used to simultaneously obtain the spatial and
spectral information of a detected object, as well as to detect physiological characteristics
of, for example, fruit, via detecting light absorption, transmission, and reflection [25]. For
example, hyperspectral imaging technology has been used to identify early fruit rot [26]
and estimate strawberry moisture content and maturity [27].

2.2. Genetic Algorithm (GA)

The evolutionary principles of nature inspired the genetic algorithm (GA). The GA
is a search technique used for discovering optimal solutions that is applied in a variety
of optimization problems [28], for example, studying multiobjective optimization models
for a sustainable agricultural industry structure [29] and the optimization of apple disease
segmentation and classification based on strong correlation and feature selection [30].
As such, the GA was used in this study to optimize the SVM model generated using the
spectral data from crisp pear obtained using hyperspectral technology to accurately identify
the sugar content in crisp pear.

2.3. Support Vector Machine (SVM)

A support vector machine (SVM) is a binary generalized linear classifier that uses
supervised learning to classify data that performs particularly well when dealing with
small sample sizes and in nonlinear and high-dimensional situations [31]. An SVM is
currently capable of handling multiclassification problems and performing application
tasks in agricultural detection owing to extensive research and development; for example,
see [32] for the application of a support vector machine in precision agriculture and [33] for
its application in the multicategory recognition of maize seedlings/weeds in visible/near-
infrared imagery.

3. Materials and Methods
3.1. Data Production

The sample collection area is shown in Figure 1. A total of 168 crisp pear samples were
collected in November 2022, in Yucheng District, Ya’an City, Sichuan Province (29.9890 lati-
tude north, 102.9820 longitude east). The samples were consistent in terms of size, surface
integrity, and maturity. The experiment began with meticulous wiping and random num-
bering of each pear sample. Then, each sample was placed in the experimental setting
for 24 h to guarantee that the sample’s temperature was synchronized with the ambient
temperature, establishing the groundwork for later detection work.

Figure 1 shows the specific geographical location of the study, as well as the specific
origin of the pear samples. The Gaia Sorter hyperspectral sorter, manufactured by Beijing
Zhuoli Hanguang Company, was employed to gather data, as illustrated in Figure 2a. The
system included a high-resolution CCD camera (1344× 1024 pixels), a spectrometer (Image-
Spectral Image, working wavelength range of 387 nm to 1034 nm, capable of collecting
spectral information in 256 wavelength bands), a diffuse reflection light source (primarily
a bromine tungsten lamp with a power of 200 W), an electric translation stage, and a
computer system. All acquisition activities were performed in a specialized dark box, as
illustrated in Figure 2b, to avoid the impact of external light on image acquisition.
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Figure 1. A total of 168 crisp pear samples were collected in November 2022, in Ya’an City, Sichuan
Province, China (29.9890 latitude north, 102.9820 longitude east).

Figure 2. (a) Hyperspectral sorter; (b) structural schematic diagram of hyperspectral system: 1. CCD
camera; 2. spectrometer; 3. diffuse reflection light source; 4. electric translation stage; 5. computer.

We employed SpecView Version 3 (V3) software to precisely adjust the parameters of
the instrument before collecting hyperspectral images of the samples to ensure the capture
of high-quality images. These parameters included exposure time, spectral resolution,
and the electronically controlled mobile platform’s action parameters. Furthermore, the
instrument was warmed for 30 min before use to ensure constant temperature and light
intensity during the experiment. Given the potential impact of ambient conditions and the
instrument on hyperspectral images, the original images were also subjected to ordinary
black-and-white corrective processing [34]. Equation (1) shows the adjustment formula:

I =
I0 − B
W − B

(1)

where I is the corrected image, I0 is the original image, B is the black standard image, and
W is the white standard image.

We set the camera exposure time to 11 ms, the distance between the camera objective
lens and the platform to 190 mm, and the moving platform speeds to 0.5 cm/s and 1 cm/s.
Furthermore, the camera’s spectral range was 387–1034 nm, with a spectral resolution of
2.8 nm.

The spectrometer’s imaging method was as follows. First, the spectrometer scanned
each row of pixels in the sample to be measured to produce a single row of image and
spectral information. Second, the electric translation stage advanced the sample along
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the predetermined path, successively exposing and imaging the placed CCDs in the lon-
gitudinal direction. As such, the comprehensive three-dimensional hyperspectral image
data from the sample were acquired when paired with horizontal and vertical imaging
information. Each crisp pear sample’s spectral data had a fixed 1344 × 1024-pixel resolution
and included 256 wavelength bands. Given the equipment noise at both ends of the spec-
trum range, we selected 237 wavelength data for each sample in the 400–1000 nm range to
analyze. Following the processing of these 168 pieces of data, they were separated into a
training set (118 samples) and a prediction set (50 samples) in a 7:3 ratio. Figure 2 depicts
the raw spectrum data. We revealed three distinct absorption valleys in the 0–100 nm to
200–300 nm wavelength ranges.

Figure 3 depicts the raw spectrum data. The spectral data of 168 unprocessed pear
samples were collected. A Fanover digital sugar content refractometer was used in this
study to determine the physical and chemical sugar contents in crisp pear. The device had
a resolution of 0.1% and an accuracy of 0.2% for measuring fruits and vegetables with a
sugar content of up to 32%. It performed steadily at ambient temperatures ranging from 10
to 40 °C, allowing for the reliable detection of sugar content in our tests. The sugar content
in 168 crisp pear samples was assessed by following the NY/T2637-2014 standard [35].
This refractometer was used to test sugar content in Brix units under a constant laboratory
temperature of 19 °C. To assure the accuracy of the measurements, the refractometer’s
measuring window was cleaned with distilled water and dried with special lens cleaning
paper before each measurement. Then, we removed the pulp from the equatorial portion of
the pear, squeezed off the juice, and placed it on the refractometer’s window. Each sample’s
Brix value was measured three times independently, with the average serving as the final
record. The 168 samples were divided into training and test sets in a 7:3 division during
the experiment. Table 1 shows the division of the training and test sets prior to the formal
processing of the spectral data, as well as the calculation of the parameters.

Figure 3. Raw spectral data.The curves of different colors represent the different wavelengths collected
by different samples during data collection. The horizontal coordinate represents wavelength data
and the vertical coordinate represents reflection data.

Table 1 shows the division of the training set and test set and the parameter calculation
for each part before the formal processing of spectral data. The sugar level in the training
set samples ranged from 7.4 to 12.5, as shown in Table 1, and that in the test set samples
ranged from 8.4 to 10.5. The test set’s standard deviation, 1.52, was less than that in the
training set of 2.83, indicating that the test set’s data distribution was more concentrated.
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Table 1. The training set and the dataset were divided according to a ratio of 118:50; the distribution
of the data under different criteria is summarized.

Dataset
Sample

Size
Minimum Maximum Average (Statistics)

Standard DeviationValue Value Value

Hyperspectral
sample set

Training
set 118 7.4 12.5 10.5 2.83

Segmentation Test set 50 8.4 10.5 9.7 1.52

3.2. Data Preprocessing

The convolution smoothing (Savitzky–Golay, SG) algorithm is an accurate and efficient
method for smoothing spectral data. This algorithm calculates the average value within
the smoothing window through weighted least squares fitting, thereby highlighting the
importance of the center point [36]. This method uses polynomials to perform the least
squares fitting of spectral data to achieve data smoothing. This requires selecting a fixed-
size window, treating all spectral data within the window as a whole, representing each
measurement point x =

[
−m, 1−m, . . . , 0, 1, . . . m

]
, and using the polynomial formula

shown in (2) to complete the fitting:

p(x) =
N

∑
k=0

akxk (2)

The residual between the original spectrum and the fitted line was calculated, and its
minimum value was used as the boundary point to solve the optimal coefficient matrix
B = X(XTX)−1XT . Then, this coefficient matrix was convolved with the spectral data
from each sample, accurately smoothing the original spectral data. This not only ensured
the integrity of the data but also strengthened the role of the center point in the entire
dataset, providing a more accurate and stable basis for subsequent spectral analysis. In
addition to the convolution smoothing algorithm, the standard normal transformation
(SNV) and multivariate scattering correction (MSC) algorithms are common spectral data
preprocessing algorithms. The three data preprocessing effects of standard normal transfor-
mation (SNV), multivariate scattering correction (MSC), and convolution smoothing (SG)
are shown in Figure 4.

Figure 4. Comparison chart of processed hyperspectral data after (a) multivariate scattering correc-
tion, (b) convolution smoothing, and (c) standard normal transformation. The curves of different
colors represent the different wavelengths collected by different samples during data collection.
The horizontal coordinate represents wavelength data and the vertical coordinate represents reflec-
tion data.

The trend of each color band in Figure 4 represents the variation in hyperspectral
reflectance response for each experimental sample. Different color bands represent different
experimental samples.
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3.3. Feature Selection Method

The CARS methodology is based on the Monte Carlo sampling method, in which
adaptive reweighted sampling (ARS) is the main technology. The main advantage of
this algorithm is that it can effectively use the ARS strategy to select wavelength points
with higher absolute regression coefficient values; then, this algorithm screens out the
subset corresponding to the minimum error using cross-validation, thereby efficiently
identifying the optimal variable combination [37]. During the CARS implementation step,
some samples are randomly selected from the correction set for modeling, whereas the
remaining samples are used as the prediction set. The number of samplings (N) must be
determined ahead of time. The program then uses an exponential decay function to exclude
wavelength points with fewer weighted regression coefficients. Each round of sampling
uses the ARS approach to select wavelengths from the previous round’s variable collection.
Here, we effectively produced N sets of candidate feature wavelength subsets and their
accompanying attributes after N rounds of sampling. Finally, the characteristic wavelength
is chosen from the subgroup with the lowest value. Each variable is given a weight by
the CARS algorithm. The higher the weight, the larger the variable’s contribution to the
model, and the probability of being selected proportionately increases. The specifics of this
process’s computation can be found in Formulas (3) and (4):

T = XW (3)

y = Tc + e = XWc + e = Xb + e (4)

Here, X is a spectral matrix with M rows and P columns; T is the score matrix of X; W
is a linear combination system of X and T; C is a regression coefficient vector representing
the partial least squares model established with T; and e is the error vector. The weight ω is
defined as follows:

ωi =
| bi |

∑
p
i=1 | bi |

(5)

When implementing the CARS algorithm, the number of Monte Carlo samplings
N needs to be determined in advance. This algorithm relies on cross-validating each
candidate variable subset and comparing their root mean square errors (RMSECVs) when
selecting the optimal variable subset. Among these variable subsets, the subset with
the smallest RMSECV is selected as the optimal variable subset. Importantly, the CARS
algorithm eliminates uninformative or low-information variables by performing two key
steps, exponential decay function (EDF) and adaptive reweighted sampling (ARS), during
each round of running. Specifically, EDF defines the proportion of variables retained in
each run, which is calculated as follows:

ri = ae−ki (6)

Under certain conditions, a and k are treated as constants. Specifically, in the first run,
the wavelength used for modeling is the full wavelength, so r1 = 1. By the Nth run, two
wavelengths are used for modeling, as shown in Equation (7), where constants a and k are
defined in Formulas (8) and (9):

rn =
2
p

(7)

a =

(
P
2

) 1
(N−1)

(8)

k =
ln
( p

2
)

N − 1
(9)

In the process of wavelength selection, we first use the exponential decay function
(EDF) to quickly eliminate those variables with lower weights. Second, using the adaptive
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reweighted sampling (ARS) method, according to the survival of the fittest principle, from
the remaining p× ri, we select a new subset of variables. Third, the cross-validation method
is used to calculate the root mean square error (RMSECV) of this new subset, which is used
as a benchmark for the next round of iteration. This series of loop iterations is a continuous
optimization based on the results of the previous round, aiming to gradually approach the
optimal solution. This process not only ensures the stability and accuracy of the model but
also increases the efficiency and practicality of the calculations.

3.4. Principle of Genetic Algorithm

The starting population in the genetic algorithm optimization method used in this
study was composed of a series of solutions, each of which was represented by a chromo-
some and reflected a specific set of parameter configurations. The system then followed
a sequence of selection, crossover, and mutation operations based on the defined fitness
function, with the goal of screening and optimizing the individuals in the population. Indi-
viduals with good fitness were retained first, whereas those with low fitness were gradually
phased out. This screening and optimization cycle continued until the specified termination
conditions were met. Algorithm 1 depicts the detailed method of this algorithm.

Algorithm 1 Genetic algorithm optimization

Input:
Problem definition (including chromosome representation, fitness function, etc.)
Population size: pop_size
Crossover probability: crossover_rate
Mutation probability: mutation_rate
Maximum iterations: max_generations

Output: Best chromosome or near-optimal chromosome
function INITIALIZE

return [RandomChromosome() for _ in range(pop_size)]
end function
function SELECTPARENTS(pop)

return two chromosomes based on fitness from pop
end function
function CROSSOVERANDMUTATE(p1, p2)

if random() < crossover_rate then
combine p1 and p2

end if
mutate resulting chromosomes with mutation_rate

return two offspring
end function
function EXECUTE

population← INITIALIZE
for i← 1 to max_generations do

new_population← []
for j← 1 to ⌊pop_size/2⌋ do

parent1, parent2← SELECTPARENTS(population)
new_population.extend(CROSSOVERANDMUTATE(parent1, parent2))

end for
population← new_population

end for
return highest fitness chromosome from population

end function

The genetic algorithm’s selection operation step picks excellent individuals from the
old population based on a given probability using tactics such as roulette selection, random
competition selection, and best retention selection. A certain crossover operator causes
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partial portions of chromosomes to be transferred between two individuals, resulting in
the generation of new chromosomes. The most common crossover methods used for this
are single-point, two-point, and uniform crossover. The goal of the mutation operations
is to develop individuals with improved performance by changing particular sections of
individual chromosomes. The fitness function, as a vital signal for measuring individual
performance, is critical in the selection operation and ensures the algorithm’s correctness
and reliability. The use of the genetic algorithm increases not only the model’s convergence
speed and effect but also the accuracy of detecting the sugar content in crisp pear.

3.5. Principle of Support Vector Machine Algorithm

The support vector machine’s main purpose is finding a decision boundary that
maximizes the classification interval, also known as the maximum margin hyperplane.
Many hyperplanes, as illustrated in Figure 5, can be used to discriminate between two types
of samples, but the ideal hyperplane is the one that minimizes the sum of the distances
from all sample locations to the plane. This distance is referred to as the classification
interval [31].

Figure 5. Support vector machine classification diagram. The solid line simulates the decision
boundary that maximizes the classification interval of the data points, and the space between the two
dashed lines represents the maximum confidence interval that exists under the decision boundary.

The derivative model, support vector regression (SVR), is an extension of SVM in
regression prediction that has the goal of minimizing the total deviation between the
predicted and actual values. The core of SVR lies in selecting an appropriate kernel function.
We used the radial-basis kernel function (RBF) to build a prediction model. Differently
from the discrete output of classification problems, the output of regression problems is
continuous. For example, in this study, RBF was used to represent the predicted value
of sugar content in pears. Unlike the classification problem, where the outputs “1” and
“2” indicate the intact and bruised pear status, respectively, the output in the regression
problem is continuous, which reflected the sugar content in the pears in this study. In
addition, when processing spectral data, considering linear and nonlinear conditions, the
SVR model adopts different regression function formulas, that is, Formula (10) under
linear conditions and Formula (11) under nonlinear conditions, to achieve more accurate
predictions. Under nonlinear conditions, kernel functions x and Lagrange multipliers
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alphai and alpha∗i are all key parameters and require careful adjustment and inspection to
ensure the best model performance.

f (x) =
n

∑
i−1

(αi − α∗i ) < xi (10)

f (x) =
n

∑
i=1

(αi − α∗i )k < xi (11)

In summary, by creatively combining SVM and SVR, we predicted the sugar content
in crisp pear, thus providing a reliable technique for assessing the quality of this fruit.

3.6. Improved Support Vector Machine Based on Genetic Algorithm

The parameter choices of the radial-basis function (RBF), particularly the kernel func-
tion parameter (g) and penalty factor (C), play an important role in the application of a
support vector machine (SVM) [38]. The kernel function parameter (g) directly impacts
the model’s generalization ability: a larger (g) value leads to the model being excessively
complex and impairs prediction accuracy for unknown samples. This is typically observed
as overfitting. Conversely, lower (g) values may result in the model being undertrained,
i.e., underfitting. Similarly, the penalty factor (C) substantially impacts model performance:
a larger (C) value limits the tolerance for training errors and raises the risk of overfitting,
whereas a lower (C) value may impair the model’s general performance, leading to un-
derfitting. As a result, to attain the most accurate SVM prediction performance, these
two parameters must be precisely set. For this purpose, a genetic algorithm was used in
this study to optimize the SVM parameters g and C and to develop a prediction model that
accepts crisp pear sugar content spectral data as the input and crisp pear sugar content
prediction value as the output. The model was developed and evaluated in the MATLAB
R2023a environment, and the RBF kernel function was used as the SVM kernel parameter.
Figure 6 shows the MATLAB implementation process for SVM and its optimization method.

Figure 6. Implementation flow chart of SVM algorithm based on genetic algorithm optimization.

In this study, the genetic algorithm’s optimization was designed to minimize the
error rate of the support vector machine (SVM), with the error rate serving as the fitness
function. The procedure started with a population that is randomly generated, with each
population member representing a set of hyperparameter values. The error rate for each
population member was calculated by training and testing the SVM model, and this error
rate was used as the fitness value. We continued to optimize the hyperparameters C and g
by selecting the individual with the highest fitness as the parent and establishing a new-
generation population through crossover and mutation procedures. This genetic algorithm
iterated until either the set number of iterations or the fitness criterion was met. Finally, the
algorithm returned the optimum parameter values [39], which were used to build the SVM
model to increase prediction accuracy and dependability [40].

4. Experimental Results
4.1. Evaluation Indicators

We used the Pearson correlation coefficient (r) squared, root mean square error RMSE
(root mean square error), modeling determination coefficient of the training set and predic-
tion set of the prediction model R2

c , verification coefficient of determination R2
p, and root

mean square error of the correction and prediction sets to evaluate the development model
for predicting crisp pear sugar content RMSEC. RMSEP [41] reflects the fitting effect of the
predicted values with the true values in the model training and prediction sets. The value
of the coefficient of determination ranges between zero and one, where, the closer the value
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to one, the higher the accuracy of the prediction model and the better the fitting degree.
RMSEC and RMSEP reflect the degree of deviation between the predicted values for the
samples in the training and prediction sets and the true values. The closer the value is to
zero, the smaller the deviation of the model prediction value and the higher the inversion
accuracy [42]. The calculation formulas are as follows:

RMSEC =

√
1
nc

nc

∑
i=1

[Yt(i)−Yc(i)]
2 (12)

RMSEP =

√
1

nν

nν

∑
i=1

[Yt(i)−Yν(i)]
2 (13)

R2
c = 1− ∑nc

i=1[Yt(i)−Yc(i)]2

∑nc
i=1[Yt(i)−Ym]2

(14)

R2
p = 1− ∑nv

i=1[Yt(i)−Yν(i)]2

∑nv
i=1[Yt(i)−Ym]2

(15)

where nc and nv are the number of samples in the crisp pear correction set and prediction
set, respectively; Yt(i) is the true measured value of the ith sample; Yc(i) and Yv(i) are the
predicted values of the samples in the crisp pear correction and prediction sets, respectively;
and i and Ym and are the correction and prediction sets, respectively, which are the averages
of real measurements.

4.2. Basic Experiments and Settings

We first selected two classic basic regression approaches, linear regression and random
forest, to further investigate the performance of the proposed optimization model in tests.
Both techniques have demonstrated consistent and outstanding performance in a range of
settings [43]. As a result, we argued that starting from their performance might provide a
beneficial reference for later optimization of performance. As a result, we first compared
these two fundamental methodologies. The data were randomly divided in a 7:3 ratio, with
the test set accounting for 30% and the training set accounting for 70%. Figure 7 depicts the
prediction results of the two models.

Figure 7. Prediction results of the linear regression model (a) and random forest model (b), respec-
tively. The shaded part in red indicates the error range for fitting data points under this curve.

The performance of both baseline methods in processing spectral data was unsatisfac-
tory. The R2 obtained with the linear regression model was only 0.37, and the RMSE was
0.80. The random forest model achieved slightly more accurate results, with an R2 of 0.50
and an RMSE of 0.78. These results required improvement. To explore the effectiveness of
the proposed SVM algorithm model, we directly modeled the original data using SVM and
compared it with RF and LR. The comparison results are shown in Table 2.

The experimental findings revealed that the SVM algorithm outperformed the other
two algorithms and the traditional approach according to the correlation coefficient on
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both the test and prediction sets. Although SVM’s performance on the training set is not
optimal, this does not show the true predictive power of SVM. In the evaluation of the
prediction model, more attention should be paid to the model’s ability to process unknown
data, and the SVM model has significantly better indicators in processing test set data
than other methods, so the SVM model has more effective prediction ability than other
methods. The LR algorithm obtained an exceptionally low correlation coefficient of zero
due to overfitting, which did not imply that LR had high prediction ability. The prediction
set’s root mean square error intuitively demonstrated SVM’s superiority in the prediction
process compared with the other two classical techniques. These results indicated the SVM
method’s capacity to cope with small samples, nonlinearity, and high dimensionality, as
well as the success of modeling based on the SVM algorithm in this study. Below, we focus
on the preprocessing, feature wavelength extraction, and support vector machine model
optimization of the hyperspectral sugar content prediction algorithm in detail.

Table 2. The performance of three benchmark models under different test indexes is compared.

Preprocessing R2
c RMSEC R2

p RMSEP

Support Vector Machine 0.6985 0.6358 0.7093 0.5619
Random Forest 0.8986 0.3648 0.5047 0.7832

Linear Regression 0.1050 0.1579 0.3703 0.7975

4.3. Data Processing Effectiveness

Spectral data must be preprocessed before formal modeling to reduce nonsystematic
flaws such as instrument noise and dark current [44]. We used three techniques to generate
support vector regression (SVR) to analyze the influence of several preprocessing methods:
standard normal transformation (SNV), multivariate scattering correction (MSC), and
convolution smoothing (SG). Table 3 describes the model and its prediction effect.

Table 3. The performance of three pretreatment methods compared with the original data under the
SVM model is compared.

Preprocessing R2
c RMSEC R2

p RMSEP

Raw Data 0.6985 0.6358 0.7093 0.5619
Standard Normal Transformation 0.7163 0.5288 0.7573 0.4490
Multivariate Scattering Correction 0.7114 0.5562 0.7402 0.4793

Convolution Smoothing 0.7475 0.5212 0.7835 0.4442

The evaluation indicators in Table 3 show that, compared with the baseline methods
shown in Figure 4, the correlation coefficient of the preprocessed data was higher and the
root mean square error was smaller. Compared with the baseline methods, substantial
performance improvements were achieved after the original data were modeled using SVR
(R2

p = 0.7093, RMSEP = 0.5619). Additionally, when the original data were subjected to the
three preprocessing technologies of SNV, MSC, and SG, the effect was further strengthened,
the correlation coefficient index was increased, and the root mean square error was reduced.
The performance of SG–SVR was particularly notable (R2

p = 0.7835, RMSEP = 0.4442). We
provide a line chart of predicted and true values in Figure 8 to present these results.

The SVR model generated using the original data was near to the true value in the early
data stages, as shown in the upper left of Figure 8, but, when the genuine value changed
little, its prediction accuracy was considerably reduced. The SVR model constructed with
SG-preprocessed data achieved robust prediction performance closer to the true value. This
demonstrates how SG preprocessing technology can increase data quality and, thus, the
model’s robustness and detection accuracy.
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Figure 8. Line chart of predicted and true values under different data processing techniques: (a) the
prediction result of the original data; the hyperspectral data after (b) convolution smoothing and
(c) standard normal transformation. (b) The line chart corresponding to the standard normal transfor-
mation data; the prediction map corresponding to the (c) multivariate scattering correction method
and (d) convolution smoothing method.

Although preprocessing can successfully reduce the impacts of noise and scattering
on spectral data analysis, redundant and overlapping band data still exist in full-spectrum
data [45]. Using full-band modeling not only results in computing inefficiencies, but also
lowers the model’s prediction accuracy [46]. As a result, typical wavelength screening is
necessary for full-spectrum data following SG preprocessing to minimize the dimension
of the data and remove information that is unnecessary to the detection indications. This
speeds up model training and increases forecast accuracy [47]. The competitive adaptive
reweighting algorithm (CARS) and sequential projection algorithm (SPA) were employed in
this study to detect the characteristic spectral wavelengths of the Brix of crisp pear. Figure 9
depicts the filtered characteristic wavelengths.

Figure 9 shows that 42 feature variables were retrieved after applying the CARS
algorithm to extract features from the spectral data, accounting for 17% of the total number
of hyperspectral variables. The retrieved characteristic bands were mostly centered within
40 nm, and the characteristic variable distribution was reasonably continuous. Figure 10
shows that the SPA yielded a total of 10 distinctive bands, accounting for 4% of the total
number of hyperspectral spectra. Its distinctive bands were primarily concentrated within
50 nm, with a relatively high frequency of characteristic bands occurring at the trough.
Figure 11 depicts typical results of wavelength screening using the CARS method. The
number of Monte Carlo samples in this approach was set to 50, the cross-validation number
was set to 10, and the ideal principal component number was set to 10. Figure 11 depicts
how the number of distinctive wavelengths changes as the number of Monte Carlo sampling
iterations rises. Figure 11 shows that, when the number of iterations rose, the root mean
square error cross-validation (RMSECV) of each subset changed. The early phases of
this transition indicated that the model’s prediction error gradually decreased via the
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deletion of redundant and irrelevant information. However, as the iterations progressed,
the inaccuracy increased, which may have been due to over-screening and picking too
many features.

(a) (b)

Figure 9. Two types of feature band extraction algorithms were used to extract band differences: the
extraction result of (a) CARS algorithm and (b) SPA.

(a) (b)

Figure 10. The regression coefficient path diagram during the CARS sampling operation (a) and the
relationship between the number of SPA features and RMSE (b).

Figure 10 depicts the path map of the variable’s regression coefficient during the
sampling operation. In Figure 10a, the prominent red vertical line properly identifies the
minimum RMSECV, as well as the best subsection, chosen with the CARS algorithm. The
dimensionality of data can be reduced by projecting them step-by-step to discover the
most important features using the sequential projection algorithm (SPA). In this study, we
used SPA to screen out the characteristic wavelengths that were most important to the
prediction aim from 237 wavelengths of the sugar content spectrum. Figure 10b depicts the
link between the number of features and the root mean square error (RMSE). The RMSE
rapidly lowered as the number of selected characteristics rose, as shown in Figure 10. This
means that, as more relevant features were incorporated into the model, the prediction
accuracy was further increased.

We created an SVM model using feature data and compared the results obtained on
the training and prediction sets with those of two alternative feature extraction strategies,
as shown in Table 4. Table 4 shows that the prediction set performance of the SVM model
constructed using the two feature wavelength extraction approaches was quite similar,
with CARS performing relatively well. The CARS algorithm’s optimal point for feature
extraction, RMSECV, was 0.4550, the number of iterations was 34, and 42 essential feature
wavelengths were successfully screened out. SPA effectively screened out the 10 most
representative distinctive wavelengths from the original 237 wavelengths when the RMSE
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reached the lowest threshold of 0.6542. Despite SPA filtering fewer and lighter feature
wavelengths, the indicators were inferior to those extracted with CARS. The cause for this
is that, during the feature-screening phase, the SPA deleted too many features, resulting
in the remaining wavelengths being insufficient for accurately reproducing the original
spectral properties. Because the SPA performed poorly in screening higher wavelengths,
we applied CARS in the following tests to extract distinctive wavelengths.

(a) (b)

Figure 11. Characteristic wavelength screening results obtained with CARS. (a) Change in the number
of CARS wavelengths as the number of iterations increases; (b) the change curve with increasing
number of RMSECV iterations.

Table 4. The performance of two feature extraction methods after SG preprocessing under SVM
model is compared.

Feature Extraction Method Number of Characteristic
Variables RMSEC R2

p RMSEP

CARS 42 0.4550 0.7433 0.6912
SPA 10 0.6542 0.7278 0.6915

4.4. Optimization Algorithm Effectiveness

(1) Performance comparison of SVR and GASVR models
The SG-preprocessed full-wavelength data were used to build a genetic-algorithm-
optimized support vector machine regression (GASVR) model. The outcomes of this
method were compared with those from the classic support vector machine regression
(SVR) model. Table 5 displays the specific outcomes.

Table 5. The performance of SVR model before and after GA optimization is compared.

Pretreatment Developed Model
Training Set Test Set

R2
c RMSEC R2

p RMSEP

SG SVR 0.7475 0.5212 0.7835 0.4442
SG GASVR 0.8945 0.4067 0.8156 0.4175

The results in Table 4 show that, compared with the SVR model, GASVR exhibited
stabler and superior fitting on the training set (R2

c = 0.8945, RMSEC = 0.4709).
Specifically, the determination coefficient (R2

p = 0.8156) on the prediction set was
0.0321 higher than that of the SVR model (R2

p = 0.7835). The root mean square error
on the prediction set was 0.0267 lower than that of the SVR model (RMSEP = 0.4442).
This verified that optimization using the genetic algorithm substantially improved the
performance of the support vector regression prediction model;

(2) Construction of GASVR regression model
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To find the best model for predicting crisp pear sugar content, we built a GASVR
model using the 48 and 10 distinctive wavelengths screened using CARS and SPA,
respectively. We then used the full-wavelength GASVR model prediction findings as
the reference standard. Table 6 shows the prediction impacts of the GASVR model for
these three different preprocessed wavelength inputs.

Table 6. GA–SVR modeling result.

Pretreatment Optimal
Parameters C, g

Model
Developed Final R2 RMSE

Raw Data 2.8/0.13

GASVR

0.8550 0.4709

SNV
MSC
SG

CARS 3.22/0.51
0.8774 0.4287
0.8812 0.4310
0.8992 0.4400

SNV
MSC
SG

SPA 7.83/1.38
0.6259 0.6203
0.8705 0.4226
0.8409 0.4428

Table 6 shows that most of the final performance indicators of the GASVR model
established using the wavelengths processed via feature engineering were better than
those of the GASVR model established using the original wavelengths. The final
performance index of the GASVR model established after CARS characteristic wave-
length extraction was generally higher than that of the model established after SPA
characteristic wavelength extraction. Therefore, the optimal model was the SG-CARS-
GASVR model established using the characteristic wavelengths filtered with CARS,
which achieved an R2 = 0.8992 and an RMSE = 0.4400. Ranked second was the
MSC–CARS–GASVR model, established using the characteristic wavelengths filtered
with CARS, which achieved an R2 = 0.8812 and an RMSE = 0.4310. The results on
the calibration set (R2 = 0.8550 and RMSE = 0.4709 ) were substantially improved
compared with those of the full-wavelength model. To summarize, the GASVR model
produced more accurate predictions, and the SG–CARS–GASVR model produced
the best prediction performance overall. Scatter plots of the overall evaluation of the
CARS–GASVR model, the test set evaluation, the training set evaluation, and the
fitting diagrams of the test and true values in the test set are shown in Figure 12.

We developed a method for estimating pear sugar content based on a support vector
machine (SVM), and we optimized the model using the genetic algorithm (GA), with the
goal of increasing prediction accuracy. We also conducted a comparison of our results with
those obtained in other studies, as shown in Table 7.

Table 7. Comparison of results among the proposed method and previously reported methods.

Author Study Target Model R2

Ours
Sugar

content in
crispy pears

SG–CARS–GASVR 0.8992

Wei et al. [48] Persimmon
Brix

Savitzky–Golay–
RS–CARS–PLS

0.757

Kim et al. [49]
Soluble solids

content in
citrus fruits

CARS–PLSR 0.75

Zhao, Yu, and He [50] Total soluble solids
in mulberry

LS–SVM–linear 0.857
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(a) (b)

(c) (d)

Figure 12. The final model prediction effect. The blue circle and red asterisk in the figure represent
the sample points, and the curve in the figure represents the fitting under the corresponding sample
points. (a) Test set result graph (performance measurement graph); (b) All samples fit prediction graph
(test set performance measurement graph); (c) Training set result graph (training set performance
measurement scatter plot of CARS–GASVR model); (d) Comparison of prediction results on test set
(test value and true fitted plot of values).

5. Conclusions

We developed a method for estimating the sugar content in pears using a support
vector machine (SVM). We optimized the model using the genetic algorithm (GA), with
the goal of increasing the accuracy of sugar content prediction. First, crisp pear spectral
data were subjected to extensive preprocessing, including standard normal transformation
(SNV), multivariate scattering correction (MSC), and convolution smoothing (SG). The SG
technique produced the best results in the preprocessing stage. Finally, the competitive
adaptive reweighting (CARS) method and the continuous projection algorithm (SPA) were
used to screen the characteristic wavelengths, and an optimized GA support vector machine
(GASVR) model was built on this basis.

According to the findings, the GASVR model increased the prediction set correlation
coefficient by 0.0321 compared with that of the classic SVM model, resulting in higher
prediction accuracy. The GASVR model also reduced the root mean square error on the
prediction set by 0.0267 compared with that of the SVR model. The CARS approach chose
48 distinctive wavelengths, whereas the SPA method chose 10 important wavelengths
throughout the feature selection process. Both methods outperformed the full-wavelength
model, demonstrating the efficiency of the characteristic wavelength selection approach.
The CARS-based GASVR model performed exceptionally well. Finally, the C (3.22) and g
(0.51) parameters of the support vector machine optimized using the genetic method were
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determined. Compared with the full-wavelength GASVR model, the optimized model’s
coefficient of determination was 0.0442 higher, and the root mean square error was 0.0309
lower. As a result, we illustrated the effectiveness of employing a genetic algorithm to
refine SVM to create a crisp pear sugar content prediction model.

In the future, we plan to add noise to the original data for training during the pre-
processing stage to improve the model’s generalization ability; additional quantitative
research will also be conducted on the optimization of model parameters to investigate the
specific impact of these parameters on model training. Given the possibility of using more
kinds of fruit and sugar content ranges in practical applications, more thorough empirical
studies and verification under varied environmental conditions will be important aspects
of future study.
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